1
|
Kremers L, Rose T. Feedback needs experience. Neuron 2024; 112:3226-3227. [PMID: 39389010 DOI: 10.1016/j.neuron.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Visual perception requires aligned feedforward and feedback processing, yet the role of experience remains unclear. The study by Dias et al.1 in this issue of Neuron shows that the retinotopic organization of orientation-tuned feedback from higher to primary visual cortex is learned in mice.
Collapse
Affiliation(s)
- Leon Kremers
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tobias Rose
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
2
|
Dias RF, Rajan R, Baeta M, Belbut B, Marques T, Petreanu L. Visual experience reduces the spatial redundancy between cortical feedback inputs and primary visual cortex neurons. Neuron 2024; 112:3329-3342.e7. [PMID: 39137776 DOI: 10.1016/j.neuron.2024.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024]
Abstract
The role of experience in the organization of cortical feedback (FB) remains unknown. We measured the effects of manipulating visual experience on the retinotopic specificity of supragranular and infragranular projections from the lateromedial (LM) visual area to layer (L)1 of the mouse primary visual cortex (V1). LM inputs were, on average, retinotopically matched with V1 neurons in normally and dark-reared mice, but visual exposure reduced the fraction of spatially overlapping inputs to V1. FB inputs from L5 conveyed more surround information to V1 than those from L2/3. The organization of LM inputs from L5 depended on their orientation preference and was disrupted by dark rearing. These observations were recapitulated by a model where visual experience minimizes receptive field overlap between LM inputs and V1 neurons. Our results provide a mechanism for the dependency of surround modulations on visual experience and suggest how expected interarea coactivation patterns are learned in cortical circuits.
Collapse
Affiliation(s)
- Rodrigo F Dias
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Radhika Rajan
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Beatriz Belbut
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Tiago Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
3
|
Antolík J, Cagnol R, Rózsa T, Monier C, Frégnac Y, Davison AP. A comprehensive data-driven model of cat primary visual cortex. PLoS Comput Biol 2024; 20:e1012342. [PMID: 39167628 PMCID: PMC11371232 DOI: 10.1371/journal.pcbi.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Knowledge integration based on the relationship between structure and function of the neural substrate is one of the main targets of neuroinformatics and data-driven computational modeling. However, the multiplicity of data sources, the diversity of benchmarks, the mixing of observables of different natures, and the necessity of a long-term, systematic approach make such a task challenging. Here we present a first snapshot of a long-term integrative modeling program designed to address this issue in the domain of the visual system: a comprehensive spiking model of cat primary visual cortex. The presented model satisfies an extensive range of anatomical, statistical and functional constraints under a wide range of visual input statistics. In the presence of physiological levels of tonic stochastic bombardment by spontaneous thalamic activity, the modeled cortical reverberations self-generate a sparse asynchronous ongoing activity that quantitatively matches a range of experimentally measured statistics. When integrating feed-forward drive elicited by a high diversity of visual contexts, the simulated network produces a realistic, quantitatively accurate interplay between visually evoked excitatory and inhibitory conductances; contrast-invariant orientation-tuning width; center surround interactions; and stimulus-dependent changes in the precision of the neural code. This integrative model offers insights into how the studied properties interact, contributing to a better understanding of visual cortical dynamics. It provides a basis for future development towards a comprehensive model of low-level perception.
Collapse
Affiliation(s)
- Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- INSERM UMRI S 968; Sorbonne Université, UPMC Univ Paris 06, UMR S 968; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Rémy Cagnol
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Tibor Rózsa
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Cyril Monier
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Yves Frégnac
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Andrew P. Davison
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| |
Collapse
|
4
|
Molnár F, Horvát S, Ribeiro Gomes AR, Martinez Armas J, Molnár B, Ercsey-Ravasz M, Knoblauch K, Kennedy H, Toroczkai Z. Predictability of cortico-cortical connections in the mammalian brain. Netw Neurosci 2024; 8:138-157. [PMID: 38562298 PMCID: PMC10861169 DOI: 10.1162/netn_a_00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.
Collapse
Affiliation(s)
- Ferenc Molnár
- Department of Physics, University of Notre Dame, Notre Dame, IN, USA
| | - Szabolcs Horvát
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Department of Computer Science, Reykjavik University, Reykjavík, Iceland
| | - Ana R. Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute, Bron, France
| | | | - Botond Molnár
- Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Mária Ercsey-Ravasz
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Henry Kennedy
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zoltan Toroczkai
- Department of Physics, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Cai B, Wu D, Xie H, Chen Y, Wang H, Jin S, Song Y, Li A, Huang S, Wang S, Lu Y, Bao L, Xu F, Gong H, Li C, Zhang X. A direct spino-cortical circuit bypassing the thalamus modulates nociception. Cell Res 2023; 33:775-789. [PMID: 37311832 PMCID: PMC10542357 DOI: 10.1038/s41422-023-00832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.
Collapse
Affiliation(s)
- Bing Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China
| | - Hong Xie
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Institute of Photonic Chips; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Huadong Wang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Yuran Song
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Shiqi Huang
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China
| | - Yingjin Lu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Lan Bao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China.
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Huang J, Zhou Y, Tzvetanov T. Influences of local and global context on local orientation perception. Eur J Neurosci 2023; 58:3503-3517. [PMID: 37547942 DOI: 10.1111/ejn.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Visual context modulates perception of local orientation attributes. These spatially very localised effects are considered to correspond to specific excitatory-inhibitory connectivity patterns of early visual areas as V1, creating perceptual tilt repulsion and attraction effects. Here, orientation misperception of small Gabor stimuli was used as a probe of this computational structure by sampling a large spatio-orientation space to reveal expected asymmetries due to the underlying neuronal processing. Surprisingly, the results showed a regular iso-orientation pattern of nearby location effects whose reference point was globally modulated by the spatial structure, without any complex interactions between local positions and orientation. This pattern of results was confirmed by the two perceptual parameters of bias and discrimination ability. Furthermore, the response times to stimulus configuration displayed variations that further provided evidence of how multiple early visual stages affect perception of simple stimuli.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yifeng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tzvetomir Tzvetanov
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine, School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
- NEUROPSYPHY Tzvetomir TZVETANOV EIRL, Horbourg-Wihr, France
- Ciwei Kexue Yanjiu (Shenzhen) Youxian Gongsi , Shenzhen, China
| |
Collapse
|
7
|
Partouche E, Adenis V, Stahl P, Huetz C, Edeline JM. What Is the Benefit of Ramped Pulse Shapes for Activating Auditory Cortex Neurons? An Electrophysiological Study in an Animal Model of Cochlear Implant. Brain Sci 2023; 13:brainsci13020250. [PMID: 36831793 PMCID: PMC9954719 DOI: 10.3390/brainsci13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.
Collapse
Affiliation(s)
- Elie Partouche
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Victor Adenis
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Pierre Stahl
- Departement of Scientific and Clinical Research, Oticon Medical, 06220 Vallauris, France
| | - Chloé Huetz
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Jean-Marc Edeline
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
- Correspondence:
| |
Collapse
|
8
|
Suri H, Rothschild G. Enhanced stability of complex sound representations relative to simple sounds in the auditory cortex. eNeuro 2022; 9:ENEURO.0031-22.2022. [PMID: 35868858 PMCID: PMC9347310 DOI: 10.1523/eneuro.0031-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.Significance statementThe ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Le Bec B, Troncoso XG, Desbois C, Passarelli Y, Baudot P, Monier C, Pananceau M, Frégnac Y. Horizontal connectivity in V1: Prediction of coherence in contour and motion integration. PLoS One 2022; 17:e0268351. [PMID: 35802625 PMCID: PMC9269411 DOI: 10.1371/journal.pone.0268351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.
Collapse
Affiliation(s)
- Benoit Le Bec
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Xoana G. Troncoso
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Christophe Desbois
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Yannick Passarelli
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Pierre Baudot
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Monier
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marc Pananceau
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Yves Frégnac
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
10
|
Wyzykowski ABV, Segundo MP, Paula Lemes R. Multiresolution synthetic fingerprint generation. IET BIOMETRICS 2022. [DOI: 10.1049/bme2.12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Rubisley Paula Lemes
- Institute of Mathematics and Statistics Federal University of Bahia Salvador Brazil
| |
Collapse
|
11
|
Amunts K, DeFelipe J, Pennartz C, Destexhe A, Migliore M, Ryvlin P, Furber S, Knoll A, Bitsch L, Bjaalie JG, Ioannidis Y, Lippert T, Sanchez-Vives MV, Goebel R, Jirsa V. Linking Brain Structure, Activity, and Cognitive Function through Computation. eNeuro 2022; 9:ENEURO.0316-21.2022. [PMID: 35217544 PMCID: PMC8925650 DOI: 10.1523/eneuro.0316-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Understanding the human brain is a "Grand Challenge" for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function. An example of a resource enabling such an integrated approach to neuroscientific discovery is the BigBrain, which spatially anchors tissue models and data across different scales and ensures that multiscale models are supported by the data, making the bridge to both basic neuroscience and medicine. Research at the intersection of neuroscience, computing and robotics has the potential to advance neuro-inspired technologies by taking advantage of a growing body of insights into perception, plasticity and learning. To render data, tools and methods, theories, basic principles and concepts interoperable, the Human Brain Project (HBP) has launched EBRAINS, a digital neuroscience research infrastructure, which brings together a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating insights and perspectives for societal benefits.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Cyriel Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Alain Destexhe
- Centre National de la Recherche Scientifique, Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif sur Yvette 91400, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | - Steve Furber
- Department of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Garching 385748, Germany
| | - Lise Bitsch
- The Danish Board of Technology Foundation, Copenhagen, 2650 Hvidovre, Denmark
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yannis Ioannidis
- ATHENA Research & Innovation Center, Athena 12125, Greece
- Department of Informatics & Telecom, Nat'l and Kapodistrian University of Athens, 157 84 Athens, Greece
| | - Thomas Lippert
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Research Centre Jülich, Jülich 52425, Germany
| | - Maria V Sanchez-Vives
- ICREA and Systems Neuroscience, Institute of Biomedical Investigations August Pi i Sunyer, Barcelona 08036, Spain
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Viktor Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|
12
|
Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat Commun 2022; 13:503. [PMID: 35082302 PMCID: PMC8791996 DOI: 10.1038/s41467-022-28035-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex. Mouse visual cortex is a dense, interconnected network of distinct areas. D’Souza et al. identify an anatomical index to quantify the hierarchical nature of pathways, and highlight the hierarchical and nonhierarchical features of the network.
Collapse
|
13
|
Liang X, Koh CL, Yeh CH, Goodin P, Lamp G, Connelly A, Carey LM. Predicting Post-Stroke Somatosensory Function from Resting-State Functional Connectivity: A Feasibility Study. Brain Sci 2021; 11:brainsci11111388. [PMID: 34827387 PMCID: PMC8615819 DOI: 10.3390/brainsci11111388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence shows that brain functional deficits may be impacted by damage to remote brain regions. Recent advances in neuroimaging suggest that stroke impairment can be better predicted based on disruption to brain networks rather than from lesion locations or volumes only. Our aim was to explore the feasibility of predicting post-stroke somatosensory function from brain functional connectivity through the application of machine learning techniques. Somatosensory impairment was measured using the Tactile Discrimination Test. Functional connectivity was employed to model the global brain function. Behavioral measures and MRI were collected at the same timepoint. Two machine learning models (linear regression and support vector regression) were chosen to predict somatosensory impairment from disrupted networks. Along with two feature pools (i.e., low-order and high-order functional connectivity, or low-order functional connectivity only) engineered, four predictive models were built and evaluated in the present study. Forty-three chronic stroke survivors participated this study. Results showed that the regression model employing both low-order and high-order functional connectivity can predict outcomes based on correlation coefficient of r = 0.54 (p = 0.0002). A machine learning predictive approach, involving high- and low-order modelling, is feasible for the prediction of residual somatosensory function in stroke patients using functional brain networks.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Victorian Infant Brain Studies (VIBeS) Group, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Correspondence:
| | - Chia-Lin Koh
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Occupational Therapy, Social Work and Social Policy, School of Allied Health Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Hung Yeh
- Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-H.Y.); (A.C.)
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
| | - Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alan Connelly
- Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-H.Y.); (A.C.)
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Occupational Therapy, Social Work and Social Policy, School of Allied Health Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
14
|
Rikhye RV, Yildirim M, Hu M, Breton-Provencher V, Sur M. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. J Neurosci 2021; 41:8761-8778. [PMID: 34493543 PMCID: PMC8528503 DOI: 10.1523/jneurosci.3176-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). However, under certain conditions, neurons can respond reliably with highly precise responses to the same visual stimuli from trial to trial. This suggests that there exists intrinsic neural circuit mechanisms that dynamically modulate the intertrial variability of visual cortical neurons. Here, we sought to elucidate the role of different inhibitory interneurons (INs) in reliable coding in mouse V1. To study the interactions between somatostatin-expressing interneurons (SST-INs) and parvalbumin-expressing interneurons (PV-INs), we used a dual-color calcium imaging technique that allowed us to simultaneously monitor these two neural ensembles while awake mice, of both sexes, passively viewed natural movies. SST neurons were more active during epochs of reliable pyramidal neuron firing, whereas PV neurons were more active during epochs of unreliable firing. SST neuron activity lagged that of PV neurons, consistent with a feedback inhibitory SST→PV circuit. To dissect the role of this circuit in pyramidal neuron activity, we used temporally limited optogenetic activation and inactivation of SST and PV interneurons during periods of reliable and unreliable pyramidal cell firing. Transient firing of SST neurons increased pyramidal neuron reliability by actively suppressing PV neurons, a proposal that was supported by a rate-based model of V1 neurons. These results identify a cooperative functional role for the SST→PV circuit in modulating the reliability of pyramidal neuron activity.SIGNIFICANCE STATEMENT Cortical neurons often respond to identical sensory stimuli with large variability. However, under certain conditions, the same neurons can also respond highly reliably. The circuit mechanisms that contribute to this modulation remain unknown. Here, we used novel dual-wavelength calcium imaging and temporally selective optical perturbation to identify an inhibitory neural circuit in visual cortex that can modulate the reliability of pyramidal neurons to naturalistic visual stimuli. Our results, supported by computational models, suggest that somatostatin interneurons increase pyramidal neuron reliability by suppressing parvalbumin interneurons via the inhibitory SST→PV circuit. These findings reveal a novel role of the SST→PV circuit in modulating the fidelity of neural coding critical for visual perception.
Collapse
Affiliation(s)
- Rajeev V Rikhye
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Murat Yildirim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ming Hu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
15
|
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R. Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 2021; 11:10783. [PMID: 34031442 PMCID: PMC8144184 DOI: 10.1038/s41598-021-88960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Collapse
Affiliation(s)
- Jan Antolik
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00, Prague 1, Czechia.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Quentin Sabatier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Charlie Galle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), NeuroPSI, Gif-sur-Yvette, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
- University of Pittsburgh, McGowan Institute, 3025 E Carson St, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Abstract
The recent trend toward an industrialization of brain exploration and the technological prowess of artificial intelligence algorithms and high-performance computing has caught the imagination of the public. These impressive advances are fueling an uncontrolled societal hype, the more amplified, the more "Blue Sky" the claim is. Will we ever be able to simulate a brain in silico? Will "it" (the digital avatar) be conscious? The Blue Brain Project (BBP) and the European flagship the Human Brain Project (HBP) have surfed on this wave for the past 10 years. Their already significant lifetimes now offer new case studies for neuroscience sociology and epistemology, as the projects mature. Their distinctive "Blue Sky" flavor has been a key feature in securing unprecedented funding (more than one billion Euros) mostly through supranational institutions. The longitudinal analysis of these ventures provides clues to how the neuromyth they propagate sells science, in a scientific world based on an economy of promises.
Collapse
Affiliation(s)
- Yves Frégnac
- UNIC-NeuroPSI, Institut des Neurosciences Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette 91190, France
| |
Collapse
|
17
|
Takahashi N, Ebner C, Sigl-Glöckner J, Moberg S, Nierwetberg S, Larkum ME. Active dendritic currents gate descending cortical outputs in perception. Nat Neurosci 2020; 23:1277-1285. [DOI: 10.1038/s41593-020-0677-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
|
18
|
Bonzon P. Symbolic Modeling of Asynchronous Neural Dynamics Reveals Potential Synchronous Roots for the Emergence of Awareness. Front Comput Neurosci 2019; 13:1. [PMID: 30809141 PMCID: PMC6380086 DOI: 10.3389/fncom.2019.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
A new computational framework implementing asynchronous neural dynamics is used to address the duality between synchronous vs. asynchronous processes, and their possible relation to conscious vs. unconscious behaviors. Extending previous results on modeling the first three levels of animal awareness, this formalism is used here to produce the execution traces of parallel threads that implement these models. Running simulations demonstrate how sensory stimuli associated with a population of excitatory neurons inhibit in turn other neural assemblies i.e., a kind of neuronal asynchronous wiring/unwiring process that is reflected in the progressive trimming of execution traces. Whereas, reactive behaviors relying on configural learning produce vanishing traces, the learning of a rule and its later application produce persistent traces revealing potential synchronous roots of animal awareness. In contrast, to previous formalisms that use analytical and/or statistical methods to search for patterns existing in a brain, this new framework proposes a tool for studying the emergence of brain structures that might be associated with higher level cognitive capabilities.
Collapse
Affiliation(s)
- Pierre Bonzon
- Department of Information Systems, Faculty of HEC, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Fornaciai M, Park J. Early Numerosity Encoding in Visual Cortex Is Not Sufficient for the Representation of Numerical Magnitude. J Cogn Neurosci 2018; 30:1788-1802. [DOI: 10.1162/jocn_a_01320] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent studies have demonstrated that the numerosity of visually presented dot arrays is represented in low-level visual cortex extremely early in latency. However, whether or not such an early neural signature reflects the perceptual representation of numerosity remains unknown. Alternatively, such a signature may indicate the raw sensory representation of the dot-array stimulus before becoming the perceived representation of numerosity. Here, we addressed this question by using the connectedness illusion, whereby arrays with pairwise connected dots are perceived to be less numerous compared with arrays containing isolated dots. Using EEG and fMRI in two independent experiments, we measured neural responses to dot-array stimuli comprising 16 or 32 dots, either isolated or pairwise connected. The effect of connectedness, which reflects the segmentation of the visual stimulus into perceptual units, was observed in the neural activity after 150 msec post stimulus onset in the EEG experiment and in area V3 in the fMRI experiment using a multivariate pattern analysis. In contrast, earlier neural activity before 100 msec and in area V2 was strictly modulated by numerosity regardless of connectedness, suggesting that this early activity reflects the sensory representation of a dot array before perceptual segmentation. Our findings thus demonstrate that the neural representation for numerosity in early visual cortex is not sufficient for visual number perception and suggest that the perceptual encoding of numerosity occurs at or after the segmentation process that takes place later in area V3.
Collapse
|
20
|
Kuchibhotla K, Bathellier B. Neural encoding of sensory and behavioral complexity in the auditory cortex. Curr Opin Neurobiol 2018; 52:65-71. [PMID: 29709885 DOI: 10.1016/j.conb.2018.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/01/2018] [Accepted: 04/07/2018] [Indexed: 01/07/2023]
Abstract
Converging evidence now supports the idea that auditory cortex is an important step for the emergence of auditory percepts. Recent studies have extended the list of complex, nonlinear sound features coded by cortical neurons. Moreover, we are beginning to uncover general properties of cortical representations, such as invariance and discreteness, which reflect the structure of auditory perception. Complexity, however, emerges not only through nonlinear shaping of auditory information into perceptual bricks. Behavioral context and task-related information strongly influence cortical encoding of sounds via ascending neuromodulation and descending top-down frontal control. These effects appear to be mediated through local inhibitory networks. Thus, auditory cortex can be seen as a hub linking structured sensory representations with behavioral variables.
Collapse
Affiliation(s)
- Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, United States; Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure - PSL Research University, Paris, France
| | - Brice Bathellier
- Unité de Neuroscience, Information et Complexité (UNIC), FRE 3693, Centre National de la Recherche Scientifique and Paris-Saclay University, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
21
|
Frégnac Y. Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science 2018; 358:470-477. [PMID: 29074766 DOI: 10.1126/science.aan8866] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain.
Collapse
Affiliation(s)
- Yves Frégnac
- Unité de Neuroscience, Information et Complexité (UNIC-CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
22
|
McFarland DJ. How neuroscience can inform the study of individual differences in cognitive abilities. Rev Neurosci 2018; 28:343-362. [PMID: 28195556 DOI: 10.1515/revneuro-2016-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.
Collapse
|
23
|
Abstract
The mechanisms underlying the emergence of orientation selectivity in the visual cortex have been, and continue to be, the subjects of intense scrutiny. Orientation selectivity reflects a dramatic change in the representation of the visual world: Whereas afferent thalamic neurons are generally orientation insensitive, neurons in the primary visual cortex (V1) are extremely sensitive to stimulus orientation. This profound change in the receptive field structure along the visual pathway has positioned V1 as a model system for studying the circuitry that underlies neural computations across the neocortex. The neocortex is characterized anatomically by the relative uniformity of its circuitry despite its role in processing distinct signals from region to region. A combination of physiological, anatomical, and theoretical studies has shed some light on the circuitry components necessary for generating orientation selectivity in V1. This targeted effort has led to critical insights, as well as controversies, concerning how neural circuits in the neocortex perform computations.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Center for Learning and Memory, Center for Perceptual Systems, Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712;
| |
Collapse
|
24
|
Cortical Merging in S1 as a Substrate for Tactile Input Grouping. eNeuro 2018; 5:eN-NWR-0342-17. [PMID: 29354679 PMCID: PMC5773279 DOI: 10.1523/eneuro.0342-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/03/2022] Open
Abstract
Perception is a reconstruction process guided by rules based on knowledge about the world. Little is known about the neural implementation of the rules of object formation in the tactile sensory system. When two close tactile stimuli are delivered simultaneously on the skin, subjects feel a unique sensation, spatially centered between the two stimuli. Voltage-sensitive dye imaging (VSDi) and electrophysiological recordings [local field potentials (LFPs) and single units] were used to extract the cortical representation of two-point tactile stimuli in the primary somatosensory cortex of anesthetized Long-Evans rats. Although layer 4 LFP responses to brief costimulation of the distal region of two digits resembled the sum of individual responses, approximately one-third of single units demonstrated merging-compatible changes. In contrast to previous intrinsic optical imaging studies, VSD activations reflecting layer 2/3 activity were centered between the representations of the digits stimulated alone. This merging was found for every tested distance between the stimulated digits. We discuss this laminar difference as evidence that merging occurs through a buildup stream and depends on the superposition of inputs, which increases with successive stages of sensory processing. These findings show that layers 2/3 are involved in the grouping of sensory inputs. This process that could be inscribed in the cortical computing routine and network organization is likely to promote object formation and implement perception rules.
Collapse
|
25
|
Method of experimental synaptic conductance estimation: Limitations of the basic approach and extension to voltage-dependent conductances. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang Z, Zeljic K, Jiang Q, Gu Y, Wang W, Wang Z. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion. Cereb Cortex 2018; 28:48-62. [PMID: 29117288 DOI: 10.1093/cercor/bhw347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Qinying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Yong Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| |
Collapse
|
27
|
Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased. J Neurosci 2017; 38:595-612. [PMID: 29196320 DOI: 10.1523/jneurosci.2099-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Inhibition in thalamorecipient layer 4 simple cells of primary visual cortex is believed to play important roles in establishing visual response properties and integrating visual inputs across their receptive fields (RFs). Simple cell RFs are characterized by nonoverlapping, spatially restricted subregions in which visual stimuli can either increase or decrease the firing rate of the cell, depending on contrast. Inhibition is believed to be triggered exclusively from visual stimulation of individual RF subregions. However, this view is at odds with the known anatomy of layer 4 interneurons in visual cortex and differs from recent findings in mouse visual cortex. Here we show with in vivo intracellular recordings in cats that while excitation is restricted to RF subregions, inhibition spans the width of simple cell RFs. Consequently, excitatory stimuli within a subregion concomitantly drive excitation and inhibition. Furthermore, we found that the distribution of inhibition across the RF is stronger toward OFF subregions. This inhibitory OFF-subregion bias has a functional consequence on spatial integration of inputs across the RF. A model based on the known anatomy of layer 4 demonstrates that the known proportion and connectivity of inhibitory neurons in layer 4 of primary visual cortex is sufficient to explain broad inhibition with an OFF-subregion bias while generating a variety of phase relations, including antiphase, between excitation and inhibition in response to drifting gratings.SIGNIFICANCE STATEMENT The wiring of excitatory and inhibitory neurons in cortical circuits is key to determining the response properties in sensory cortex. In the visual cortex, the first cells that receive visual input are simple cells in layer 4. The underlying circuitry responsible for the response properties of simple cells is not yet known. In this study, we challenge a long-held view concerning the pattern of inhibitory input and provide results that agree with current known anatomy. We show here that inhibition is evoked broadly across the receptive fields of simple cells, and we identify a surprising bias in inhibition within the receptive field. Our findings represent a step toward a unified view of inhibition across different species and sensory systems.
Collapse
|
28
|
Abstract
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
Collapse
|
29
|
Bonzon P. Towards neuro-inspired symbolic models of cognition: linking neural dynamics to behaviors through asynchronous communications. Cogn Neurodyn 2017; 11:327-353. [PMID: 28761554 PMCID: PMC5509613 DOI: 10.1007/s11571-017-9435-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022] Open
Abstract
A computational architecture modeling the relation between perception and action is proposed. Basic brain processes representing synaptic plasticity are first abstracted through asynchronous communication protocols and implemented as virtual microcircuits. These are used in turn to build mesoscale circuits embodying parallel cognitive processes. Encoding these circuits into symbolic expressions gives finally rise to neuro-inspired programs that are compiled into pseudo-code to be interpreted by a virtual machine. Quantitative evaluation measures are given by the modification of synapse weights over time. This approach is illustrated by models of simple forms of behaviors exhibiting cognition up to the third level of animal awareness. As a potential benefit, symbolic models of emergent psychological mechanisms could lead to the discovery of the learning processes involved in the development of cognition. The executable specifications of an experimental platform allowing for the reproduction of simulated experiments are given in “Appendix”.
Collapse
Affiliation(s)
- Pierre Bonzon
- Department of Information Systems, Faculty of HEC, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Estebanez L, Bertherat J, Shulz DE, Bourdieu L, Léger JF. A radial map of multi-whisker correlation selectivity in the rat barrel cortex. Nat Commun 2016; 7:13528. [PMID: 27869114 PMCID: PMC5121329 DOI: 10.1038/ncomms13528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023] Open
Abstract
In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. Barrel cortex contains a functional map of whiskers but how neuronal activity maps multi-whisker inputs has not been studied. Here the authors show that while uncorrelated multi-whisker stimuli activate barrel neurons, correlated multi-whisker inputs activate neurons in a ring at the barrel-septa boundary
Collapse
Affiliation(s)
- Luc Estebanez
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France.,Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Julien Bertherat
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France.,Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Daniel E Shulz
- Unité de Neurosciences, Information et Complexité, UNIC-FRE3693, Centre National de la Recherche Scientifique, Gif sur Yvette, F-91198, France
| | - Laurent Bourdieu
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France
| | - Jean-François Léger
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Paris F-75005, France
| |
Collapse
|
31
|
Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates. PLoS Biol 2016; 14:e1002512. [PMID: 27441598 PMCID: PMC4956175 DOI: 10.1371/journal.pbio.1002512] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023] Open
Abstract
Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class.
Collapse
Affiliation(s)
- Szabolcs Horvát
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
| | - Răzvan Gămănuț
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
| | - Mária Ercsey-Ravasz
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- * E-mail: (MER); (ZT); (HK)
| | - Loïc Magrou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
| | - Bianca Gămănuț
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
| | - David C. Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andreas Burkhalter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
| | - Zoltán Toroczkai
- Department of Physics, and the Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (MER); (ZT); (HK)
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem-cell and Brain Research Institute U1208, Bron, France
- * E-mail: (MER); (ZT); (HK)
| |
Collapse
|
32
|
Kremkow J, Perrinet LU, Monier C, Alonso JM, Aertsen A, Frégnac Y, Masson GS. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Front Neural Circuits 2016; 10:37. [PMID: 27242445 PMCID: PMC4862982 DOI: 10.3389/fncir.2016.00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.
Collapse
Affiliation(s)
- Jens Kremkow
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille UniversitéMarseille, France; Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany; Department of Biological Sciences, State University of New York (SUNY-Optometry)New York, NY, USA
| | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| | - Cyril Monier
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Jose-Manuel Alonso
- Department of Biological Sciences, State University of New York (SUNY-Optometry) New York, NY, USA
| | - Ad Aertsen
- Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| |
Collapse
|
33
|
Gerard-Mercier F, Carelli PV, Pananceau M, Troncoso XG, Frégnac Y. Synaptic Correlates of Low-Level Perception in V1. J Neurosci 2016; 36:3925-42. [PMID: 27053201 PMCID: PMC6705520 DOI: 10.1523/jneurosci.4492-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/26/2016] [Accepted: 02/13/2016] [Indexed: 11/21/2022] Open
Abstract
The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. SIGNIFICANCE STATEMENT The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation.
Collapse
Affiliation(s)
- Florian Gerard-Mercier
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570, Japan, and
| | - Pedro V Carelli
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Marc Pananceau
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Université Paris-Sud, 91405 Orsay, France
| | - Xoana G Troncoso
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Yves Frégnac
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France,
| |
Collapse
|