1
|
Tanaka R, Portugues R. On analogies in vertebrate and insect visual systems. Nat Rev Neurosci 2025:10.1038/s41583-025-00932-3. [PMID: 40410391 DOI: 10.1038/s41583-025-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
Despite the large evolutionary distance between vertebrates and insects, the visual systems of these two taxa bear remarkable similarities that have been noted repeatedly, including by pioneering neuroanatomists such as Ramón y Cajal. Fuelled by the advent of transgenic approaches in neuroscience, studies of visual system anatomy and function in both vertebrates and insects have made dramatic progress during the past two decades, revealing even deeper analogies between their visual systems than were noted by earlier observers. Such across-taxa comparisons have tended to focus on either elementary motion detection or relatively peripheral layers of the visual systems. By contrast, the aims of this Review are to expand the scope of this comparison to pathways outside visual motion detection, as well as to deeper visual structures. To achieve these aims, we primarily discuss examples from recent work in larval zebrafish (Danio rerio) and the fruitfly (Drosophila melanogaster), a pair of genetically tractable model organisms with comparatively sized, small brains. In particular, we argue that the brains of both vertebrates and insects are equipped with third-order visual structures that specialize in shared behavioural tasks, including postural and course stabilization, approach and avoidance, and some other behaviours. These wider analogies between the two distant taxa highlight shared behavioural goals and associated evolutionary constraints and suggest that studies on vertebrate and insect vision have a lot to inspire each other.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Max Planck Fellow Group - Mechanisms of Cognition, MPI Psychiatry, Munich, Germany.
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
2
|
Matsumoto A, Morris J, Looger LL, Yonehara K. Functionally distinct GABAergic amacrine cell types regulate spatiotemporal encoding in the mouse retina. Nat Neurosci 2025:10.1038/s41593-025-01935-0. [PMID: 40234708 DOI: 10.1038/s41593-025-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the mammalian central nervous system. GABAergic neuronal types play important roles in neural processing and the etiology of neurological disorders; however, there is no comprehensive understanding of their functional diversity. Here we perform two-photon imaging of GABA release in the inner plexiform layer of male and female mice retinae (8-16 weeks old) using the GABA sensor iGABASnFR2. By applying varied light stimuli to isolated retinae, we reveal over 40 different GABA-releasing neuron types. Individual types show layer-specific visual encoding within inner plexiform layer sublayers. Synaptic input and output sites are aligned along specific retinal orientations. The combination of cell type-specific spatial structure and unique release kinetics enables inhibitory neurons to sculpt excitatory signals in response to a wide range of behaviorally relevant motion structures. Our findings emphasize the importance of functional diversity and intricate specialization of GABAergic neurons in the central nervous system.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| | - Jacqueline Morris
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Loren L Looger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
3
|
Philip SA, Singh NP, Viswanathan S, Parida P, Sethuramanujam S. Asymmetries in the Architecture of ON and OFF Arbors in ON-OFF Direction-Selective Ganglion Cells. J Comp Neurol 2025; 533:e70023. [PMID: 39871013 PMCID: PMC7617701 DOI: 10.1002/cne.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/14/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear. To gain insights, we examined the ON-OFF direction-selective ganglion cells (DSGCs), which recombine signals from both circuits. Specifically, we investigated the dendritic architecture of these neurons with the premise that asymmetries in architecture will provide insights into function. Scrutinizing the dendrites of dye-filled ON-OFF DSGCs reveals that the OFF arbors of these neurons are substantially denser. The increase in density can be primarily attributed to the higher branching seen in OFF arbors. Further, analysis of ON-OFF DSGCs in a previously published serial block-face electron microscopy dataset revealed that the denser OFF arbors packed more bipolar synapses per unit dendritic length. These asymmetries in the dendritic architecture suggest that the ON-OFF DSGC preferentially magnifies the synaptic drive of the OFF pathway, potentially allowing it to encode information distinct from the ON pathway.
Collapse
Affiliation(s)
- Sheba Annie Philip
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Narendra Pratap Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Saranya Viswanathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Priyanka Parida
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Santhosh Sethuramanujam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Lei W, Clark DA, Demb JB. Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells. Proc Natl Acad Sci U S A 2024; 121:e2411130121. [PMID: 39602271 PMCID: PMC11626119 DOI: 10.1073/pnas.2411130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Orientation is one of the most salient features in visual scenes. Neurons at multiple levels of the visual system detect orientation, but in many cases, the underlying biophysical mechanisms remain unresolved. Here, we studied mechanisms for orientation detection at the earliest stage in the visual system, in B/K wide-field amacrine cells (B/K WACs), a group of giant, nonspiking interneurons in the mouse retina that coexpress Bhlhe22 (B) and Kappa Opioid Receptor (K). B/K WACs exhibit orientation-tuned calcium signals along their long, straight, unbranching dendrites, which contain both synaptic inputs and outputs. Simultaneous dendritic calcium imaging and somatic voltage recordings reveal that individual B/K dendrites are electrotonically isolated, exhibiting a spatially confined yet extended receptive field along the dendrite, which we term "compartmentalized pooling." Further, the receptive field of a B/K WAC dendrite exhibits center-surround antagonism. Phenomenological receptive field models demonstrate that compartmentalized pooling generates orientation selectivity, and center-surround antagonism shapes band-pass spatial frequency tuning. At the microcircuit level, B/K WACs receive excitation driven by one contrast polarity (e.g., "ON") and glycinergic inhibition driven by the opposite polarity (e.g., "OFF"). However, this "crossover" inhibition is not essential for generating orientation selectivity. A minimal biophysical model reproduced compartmentalized pooling from feedforward excitatory inputs combined with a substantial increase in the specific membrane resistance between somatic and dendritic compartments. Collectively, our results reveal the biophysical mechanism for generating orientation selectivity in dendrites of B/K WACs, enriching our understanding of the diverse strategies employed throughout the visual system to detect orientation.
Collapse
Affiliation(s)
- Wanyu Lei
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06511
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT06511
| | - Damon A. Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
| | - Jonathan B. Demb
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT06511
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT06511
| |
Collapse
|
5
|
Korympidou MM, Strauss S, Schubert T, Franke K, Berens P, Euler T, Vlasits AL. GABAergic amacrine cells balance biased chromatic information in the mouse retina. Cell Rep 2024; 43:114953. [PMID: 39509269 DOI: 10.1016/j.celrep.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
The retina extracts chromatic information present in an animal's environment. How this information is processed in the retina is not well understood. In the mouse, chromatic information is not collected equally throughout the retina. Green and UV signals are primarily detected in the dorsal and ventral retina, respectively. However, at the output of the retina, chromatic tuning is more mixed throughout the retina. This suggests that lateral processing by inhibitory amacrine cells shapes chromatic information at the retinal output. We systematically surveyed the chromatic responses of dendritic processes of the 40+ GABAergic amacrine cell types. We identified 25 functional types with distinct chromatic and achromatic properties. We used pharmacology and a biologically inspired deep learning model to explore how inhibition and excitation shape the properties of functional types. Our data suggest that amacrine cells balance the biased spectral tuning of excitation, thereby supporting diversity of chromatic information at the retinal output.
Collapse
Affiliation(s)
- Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Strauss
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Franke
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA 94303, USA
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Department of Ophthalmology & Visual Sciences, University of Illinois, Chicago, IL 60603, USA.
| |
Collapse
|
6
|
Tworig JM, Morrie RD, Bistrong K, Somaiya RD, Hsu S, Liang J, Cornejo KG, Feller MB. Differential Expression Analysis Identifies Candidate Synaptogenic Molecules for Wiring Direction-Selective Circuits in the Retina. J Neurosci 2024; 44:e1461232024. [PMID: 38514178 PMCID: PMC11063823 DOI: 10.1523/jneurosci.1461-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of four preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retinas of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knock-out strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage-clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karina Bistrong
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Rachana D Somaiya
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Shaw Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Jocelyn Liang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karen G Cornejo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
7
|
Acarón Ledesma H, Ding J, Oosterboer S, Huang X, Chen Q, Wang S, Lin MZ, Wei W. Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells. Nat Commun 2024; 15:1819. [PMID: 38418467 PMCID: PMC10901804 DOI: 10.1038/s41467-024-46234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.
Collapse
Affiliation(s)
- Héctor Acarón Ledesma
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Ding
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Swen Oosterboer
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaolin Huang
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Qiang Chen
- The Committee on Computational Neuroscience Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Z Lin
- Department of Neurobiology, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Wei
- Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Patterson SS, Girresch RJ, Mazzaferri MA, Bordt AS, Piñon-Teal WL, Jesse BD, Perera DCW, Schlepphorst MA, Kuchenbecker JA, Chuang AZ, Neitz J, Marshak DW, Ogilvie JM. Synaptic Origins of the Complex Receptive Field Structure in Primate Smooth Monostratified Retinal Ganglion Cells. eNeuro 2024; 11:ENEURO.0280-23.2023. [PMID: 38290840 PMCID: PMC11078106 DOI: 10.1523/eneuro.0280-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots." Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC's complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NewYork 14617
| | - Rebecca J Girresch
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Andrea S Bordt
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Wendy L Piñon-Teal
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | - Brett D Jesse
- Department of Biology, Saint Louis University, Saint Louis, Missouri 63103
| | | | | | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - Alice Z Chuang
- Departments of Ophthalmology & Visual Science, McGovern Medical School, Houston, Texas 77030
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104
| | - David W Marshak
- Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030
| | | |
Collapse
|
10
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. eLife 2023; 12:RP90456. [PMID: 38149980 PMCID: PMC10752589 DOI: 10.7554/elife.90456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal DS are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying DS in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by SACs.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
11
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
12
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551732. [PMID: 37577661 PMCID: PMC10418172 DOI: 10.1101/2023.08.02.551732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of bipolar cells along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal directional selectivity are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field (RF) properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying direction selectivity in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by starburst amacrine cells.
Collapse
Affiliation(s)
- John A. Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samuel A. Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J. Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Ichinose T, Hellmer CB, Bohl JM. Presynaptic depolarization differentially regulates dual neurotransmitter release from starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1225824. [PMID: 38444728 PMCID: PMC10914334 DOI: 10.3389/fopht.2023.1225824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The retina is comprised of diverse neural networks, signaling from photoreceptors to ganglion cells to encode images. The synaptic connections between these retinal neurons are crucial points for information transfer; however, the input-output relations of many synapses are understudied. Starburst amacrine cells in the retina are known to contribute to retinal motion detection circuits, providing a unique window for understanding neural computations. We examined the dual transmitter release of GABA and acetylcholine from starburst amacrine cells by optogenetic activation of these cells, and conducted patch clamp recordings from postsynaptic ganglion cells to record excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs). As starburst amacrine cells exhibit distinct kinetics in response to objects moving in a preferred or null direction, we mimicked their depolarization kinetics using optogenetic stimuli by varying slopes of the rising phase. The amplitudes of EPSCs and IPSCs in postsynaptic ganglion cells were reduced as the stimulus rising speed was prolonged. However, the sensitivity of postsynaptic currents to the stimulus slope differed. EPSC amplitudes were consistently reduced as the steepness of the rising phase fell. By contrast, IPSCs were less sensitive to the slope of the stimulus rise phase and maintained their amplitudes until the slope became shallow. These results indicate that distinct synaptic release mechanisms contribute to acetylcholine and GABA release from starburst amacrine cells, which could contribute to the ganglion cells' direction selectivity.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Jeremy M. Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
14
|
Wu J, Kim YJ, Dacey DM, Troy JB, Smith RG. Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Vis Neurosci 2023; 40:E003. [PMID: 37218623 PMCID: PMC10207453 DOI: 10.1017/s0952523823000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yeon Jin Kim
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Dennis M. Dacey
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - John B. Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Galindo SE, Wood AJ, Cooney PC, Hammond LA, Grueber WB. Axon-axon interactions determine modality-specific wiring and subcellular synaptic specificity in a somatosensory circuit. Development 2023; 150:dev199832. [PMID: 36920224 PMCID: PMC10112896 DOI: 10.1242/dev.199832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Synaptic connections between neurons are often formed in precise subcellular regions of dendritic arbors with implications for information processing within neurons. Cell-cell interactions are widely important for circuit wiring; however, their role in subcellular specificity is not well understood. We studied the role of axon-axon interactions in precise targeting and subcellular wiring of Drosophila somatosensory circuitry. Axons of nociceptive and gentle touch neurons terminate in adjacent, non-overlapping layers in the central nervous system (CNS). Nociceptor and touch receptor axons synapse onto distinct dendritic regions of a second-order interneuron, the dendrites of which span these layers, forming touch-specific and nociceptive-specific connectivity. We found that nociceptor ablation elicited extension of touch receptor axons and presynapses into the nociceptor recipient region, supporting a role for axon-axon interactions in somatosensory wiring. Conversely, touch receptor ablation did not lead to expansion of nociceptor axons, consistent with unidirectional axon-axon interactions. Live imaging provided evidence for sequential arborization of nociceptive and touch neuron axons in the CNS. We propose that axon-axon interactions and modality-specific timing of axon targeting play key roles in subcellular connection specificity of somatosensory circuitry.
Collapse
Affiliation(s)
- Samantha E. Galindo
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Abby J. Wood
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Patricia C. Cooney
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Luke A. Hammond
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wesley B. Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Gaynes JA, Budoff SA, Grybko MJ, Hunt JB, Poleg-Polsky A. Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nat Commun 2022; 13:5575. [PMID: 36163249 PMCID: PMC9512824 DOI: 10.1038/s41467-022-32761-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Antagonistic interactions between center and surround receptive field (RF) components lie at the heart of the computations performed in the visual system. Circularly symmetric center-surround RFs are thought to enhance responses to spatial contrasts (i.e., edges), but how visual edges affect motion processing is unclear. Here, we addressed this question in retinal bipolar cells, the first visual neuron with classic center-surround interactions. We found that bipolar glutamate release emphasizes objects that emerge in the RF; their responses to continuous motion are smaller, slower, and cannot be predicted by signals elicited by stationary stimuli. In our hands, the alteration in signal dynamics induced by novel objects was more pronounced than edge enhancement and could be explained by priming of RF surround during continuous motion. These findings echo the salience of human visual perception and demonstrate an unappreciated capacity of the center-surround architecture to facilitate novel object detection and dynamic signal representation.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Liu Z, Lu X, Villette V, Gou Y, Colbert KL, Lai S, Guan S, Land MA, Lee J, Assefa T, Zollinger DR, Korympidou MM, Vlasits AL, Pang MM, Su S, Cai C, Froudarakis E, Zhou N, Patel SS, Smith CL, Ayon A, Bizouard P, Bradley J, Franke K, Clandinin TR, Giovannucci A, Tolias AS, Reimer J, Dieudonné S, St-Pierre F. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 2022; 185:3408-3425.e29. [PMID: 35985322 PMCID: PMC9563101 DOI: 10.1016/j.cell.2022.07.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 μm and report voltage correlations in pairs of neurons.
Collapse
Affiliation(s)
- Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin L Colbert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tensae Assefa
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Michelle M Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Changjia Cai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Greece
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cameron L Smith
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Pierre Bizouard
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, Chapel Hill, NC 27599, USA
| | - Andreas S Tolias
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - François St-Pierre
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Tiriac A, Feller MB. Roles of visually evoked and spontaneous activity in the development of retinal direction selectivity maps. Trends Neurosci 2022; 45:529-538. [PMID: 35491255 DOI: 10.1016/j.tins.2022.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Detecting the direction of motion underlies many visually guided behaviors, from reflexive eye movements to identifying and catching moving objects. A subset of motion sensitive cells are direction selective - responding strongly to motion in one direction and weakly to motion in other directions. In mammals, direction-selective cells are found throughout the visual system, including the retina, superior colliculus, and primary visual cortex. Direction selectivity maps are well characterized in the mouse retina, where the preferred directions of retinal direction-selective cells follow the projections of optic flow, generated by the movements animals make as they navigate their environment. Here, we synthesize recent findings implicating activity-dependent mechanisms in the development of retinal direction selectivity maps, with primary focus on studies in mice, and discuss the implications for the development of direction-selective responses in downstream visual areas.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Manookin MB. Neuroscience: Reliable and refined motion computations in the retina. Curr Biol 2022; 32:R474-R476. [PMID: 35609547 DOI: 10.1016/j.cub.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We can distinguish between the direction and speed of a moving object effortlessly, but this is actually a very challenging computational task. A new study demonstrates that this process begins at the first stages of visual processing in the retina.
Collapse
Affiliation(s)
- Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA; Vision Science Center, University of Washington, Seattle, WA 98109, USA; Karalis Johnson Eye Center, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Patterson SS, Bembry BN, Mazzaferri MA, Neitz M, Rieke F, Soetedjo R, Neitz J. Conserved circuits for direction selectivity in the primate retina. Curr Biol 2022; 32:2529-2538.e4. [PMID: 35588744 DOI: 10.1016/j.cub.2022.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
The detection of motion direction is a fundamental visual function and a classic model for neural computation. In the non-primate retina, direction selectivity arises in starburst amacrine cell (SAC) dendrites, which provide selective inhibition to direction-selective retinal ganglion cells (dsRGCs). Although SACs are present in primates, their connectivity and the existence of dsRGCs remain open questions. Here, we present a connectomic reconstruction of the primate ON SAC circuit from a serial electron microscopy volume of the macaque central retina. We show that the structural basis for the SACs' ability to confer directional selectivity on postsynaptic neurons is conserved. SACs selectively target a candidate homolog to the mammalian ON-sustained dsRGCs that project to the accessory optic system (AOS) and contribute to gaze-stabilizing reflexes. These results indicate that the capacity to compute motion direction is present in the retina, which is earlier in the primate visual system than classically thought.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| | - Briyana N Bembry
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
23
|
Murphy-Baum BL, Awatramani GB. Parallel processing in active dendrites during periods of intense spiking activity. Cell Rep 2022; 38:110412. [PMID: 35196499 DOI: 10.1016/j.celrep.2022.110412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
A neuron's ability to perform parallel computations throughout its dendritic arbor substantially improves its computational capacity. However, during natural patterns of activity, the degree to which computations remain compartmentalized, especially in neurons with active dendritic trees, is not clear. Here, we examine how the direction of moving objects is computed across the bistratified dendritic arbors of ON-OFF direction-selective ganglion cells (DSGCs) in the mouse retina. We find that although local synaptic signals propagate efficiently throughout their dendritic trees, direction-selective computations in one part of the dendritic arbor have little effect on those being made elsewhere. Independent dendritic processing allows DSGCs to compute the direction of moving objects multiple times as they traverse their receptive fields, enabling them to rapidly detect changes in motion direction on a sub-receptive-field basis. These results demonstrate that the parallel processing capacity of neurons can be maintained even during periods of intense synaptic activity.
Collapse
Affiliation(s)
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
24
|
The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Rep 2022; 38:110225. [PMID: 35021080 PMCID: PMC8805704 DOI: 10.1016/j.celrep.2021.110225] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
In mice, retinal direction selectivity is organized in a map that aligns to the body and gravitational axes of optic flow, and little is known about how this map develops. We find direction selectivity maps are largely present at eye opening and develop normally in the absence of visual experience. Remarkably, in mice lacking the beta2 subunit of neuronal nicotinic acetylcholine receptors (β2-nAChR-KO), which exhibit drastically reduced cholinergic retinal waves in the first postnatal week, selectivity to horizontal motion is absent while selectivity to vertical motion remains. We tested several possible mechanisms that could explain the loss of horizontal direction selectivity in β2-nAChR-KO mice (wave propagation bias, FRMD7 expression, starburst amacrine cell morphology), but all were found to be intact when compared with WT mice. This work establishes a role for retinal waves in the development of asymmetric circuitry that mediates retinal direction selectivity via an unknown mechanism.
Collapse
|
25
|
Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, Jain V, Sethuramanujam S, Murphy-Baum BL, Yonehara K, Awatramani GB. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. eLife 2022; 11:81533. [PMID: 36346388 PMCID: PMC9674338 DOI: 10.7554/elife.81533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.
Collapse
Affiliation(s)
| | | | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Tracy Michaels
- Department of Biology, University of VictoriaVictoriaCanada
| | - Zachary Turple
- Department of Biology, University of VictoriaVictoriaCanada
| | - Varsha Jain
- Department of Biology, University of VictoriaVictoriaCanada
| | | | | | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
26
|
Hellmer CB, Hall LM, Bohl JM, Sharpe ZJ, Smith RG, Ichinose T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep 2021; 37:110106. [PMID: 34910920 PMCID: PMC8793255 DOI: 10.1016/j.celrep.2021.110106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal bipolar cells are second-order neurons that transmit basic features of the visual scene to postsynaptic partners. However, their contribution to motion detection has not been fully appreciated. Here, we demonstrate that cholinergic feedback from starburst amacrine cells (SACs) to certain presynaptic bipolar cells via alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) promotes direction-selective signaling. Patch clamp recordings reveal that distinct bipolar cell types making synapses at proximal SAC dendrites also express α7-nAChRs, producing directionally skewed excitatory inputs. Asymmetric SAC excitation contributes to motion detection in On-Off direction-selective ganglion cells (On-Off DSGCs), predicted by computational modeling of SAC dendrites and supported by patch clamp recordings from On-Off DSGCs when bipolar cell α7-nAChRs is eliminated pharmacologically or by conditional knockout. Altogether, these results show that cholinergic feedback to bipolar cells enhances direction-selective signaling in postsynaptic SACs and DSGCs, illustrating how bipolar cells provide a scaffold for postsynaptic microcircuits to cooperatively enhance retinal motion detection.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Internal Medicine, St. Mary Mercy Livonia Hospital, Livonia, MI 48154, USA
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary J Sharpe
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Ezra-Tsur E, Amsalem O, Ankri L, Patil P, Segev I, Rivlin-Etzion M. Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Comput Biol 2021; 17:e1009754. [PMID: 34968385 PMCID: PMC8754344 DOI: 10.1371/journal.pcbi.1009754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/12/2022] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.
Collapse
Affiliation(s)
- Elishai Ezra-Tsur
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel
| | - Oren Amsalem
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
28
|
Biane C, Rückerl F, Abrahamsson T, Saint-Cloment C, Mariani J, Shigemoto R, DiGregorio DA, Sherrard RM, Cathala L. Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons. eLife 2021; 10:65954. [PMID: 34730085 PMCID: PMC8565927 DOI: 10.7554/elife.65954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.
Collapse
Affiliation(s)
- Celia Biane
- Sorbonne Université et CNRS UMR 8256, Adaptation Biologique et Vieillissement, Paris, France
| | - Florian Rückerl
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Unit of Synapse and Circuit Dynamics, Paris, France
| | - Therese Abrahamsson
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Unit of Synapse and Circuit Dynamics, Paris, France
| | - Cécile Saint-Cloment
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Unit of Synapse and Circuit Dynamics, Paris, France
| | - Jean Mariani
- Sorbonne Université et CNRS UMR 8256, Adaptation Biologique et Vieillissement, Paris, France
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - David A DiGregorio
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Unit of Synapse and Circuit Dynamics, Paris, France
| | - Rachel M Sherrard
- Sorbonne Université et CNRS UMR 8256, Adaptation Biologique et Vieillissement, Paris, France
| | - Laurence Cathala
- Sorbonne Université et CNRS UMR 8256, Adaptation Biologique et Vieillissement, Paris, France.,Paris Brain Institute, CNRS UMR 7225 - Inserm U1127 - Sorbonne Université Groupe Hospitalier Pitié Salpêtrière, Paris, France
| |
Collapse
|
29
|
Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, Yonehara K. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021; 109:2928-2942.e8. [PMID: 34390651 PMCID: PMC8478419 DOI: 10.1016/j.neuron.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs) because of directionally tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected at bipolar cell outputs. Individual bipolar cells contained four distinct populations of axon terminal boutons with different preferred directions. We further show that this bouton-specific tuning relies on cholinergic excitation from starburst cells and GABAergic inhibition from wide-field amacrine cells. DSGCs received both tuned directionally aligned inputs and untuned inputs from among heterogeneously tuned glutamatergic bouton populations. Thus, directional tuning in the excitatory visual pathway is incrementally refined at the bipolar cell axon terminals and their recipient DSGC dendrites by two different neurotransmitters co-released from starburst cells.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Weaam Agbariah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Stella Solveig Nolte
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Rawan Andrawos
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadara Levi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
30
|
Pottackal J, Singer JH, Demb JB. Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type. Front Cell Neurosci 2021; 15:660773. [PMID: 34381333 PMCID: PMC8351878 DOI: 10.3389/fncel.2021.660773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022] Open
Abstract
A presynaptic neuron can increase its computational capacity by transmitting functionally distinct signals to each of its postsynaptic cell types. To determine whether such computational specialization occurs over fine spatial scales within a neurite arbor, we investigated computation at output synapses of the starburst amacrine cell (SAC), a critical component of the classical direction-selective (DS) circuit in the retina. The SAC is a non-spiking interneuron that co-releases GABA and acetylcholine and forms closely spaced (<5 μm) inhibitory synapses onto two postsynaptic cell types: DS ganglion cells (DSGCs) and neighboring SACs. During dynamic optogenetic stimulation of SACs in mouse retina, whole-cell recordings of inhibitory postsynaptic currents revealed that GABAergic synapses onto DSGCs exhibit stronger low-pass filtering than those onto neighboring SACs. Computational analyses suggest that this filtering difference can be explained primarily by presynaptic properties, rather than those of the postsynaptic cells per se. Consistent with functionally diverse SAC presynapses, blockade of N-type voltage-gated calcium channels abolished GABAergic currents in SACs but only moderately reduced GABAergic and cholinergic currents in DSGCs. These results jointly demonstrate how specialization of synaptic outputs could enhance parallel processing in a compact interneuron over fine spatial scales. Moreover, the distinct transmission kinetics of GABAergic SAC synapses are poised to support the functional diversity of inhibition within DS circuitry.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Oh MA, Shin CI, Kim M, Kim J, Kang CM, Han SH, Sun JY, Oh SS, Kim YR, Chung TD. Inverted Ion Current Rectification-Based Chemical Delivery Probes for Stimulation of Neurons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26748-26758. [PMID: 34078075 DOI: 10.1021/acsami.1c04949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion current rectification (ICR), diodelike behavior in surface-charged nanopores, shows promise in the design of delivery probes for manipulation of neural networks as it can solve diffusive leakages that might be critical in clinical and research applications. However, it has not been achieved because ICR has restrictions in nanosized dimension and low electrolyte concentration, and rectification direction is inappropriate for delivery. Herein, we present a polyelectrolyte gel-filled (PGF) micropipette harnessing inverted ICR as a delivery probe, which quantitatively transports glutamate to stimulate primary cultured neurons with high efficiency while minimizing leakages. Since the gel works as an ensemble of numerous surface-charged nanopores, the current is rectified in the micro-opening and physiological environment. By extending the charge-selective region using the gel, inverted ICR is generated, which drives outward deliveries of major charge carriers. This study will help in exploring new aspects of ICR and broaden its applications for advanced chemical delivery.
Collapse
Affiliation(s)
- Min-Ah Oh
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jayol Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Seok Hee Han
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Yang-Rae Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Antagonistic Center-Surround Mechanisms for Direction Selectivity in the Retina. Cell Rep 2021; 31:107608. [PMID: 32375036 PMCID: PMC7221349 DOI: 10.1016/j.celrep.2020.107608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022] Open
Abstract
An antagonistic center-surround receptive field is a key feature in sensory processing, but how it contributes to specific computations such as direction selectivity is often unknown. Retinal On-starburst amacrine cells (SACs), which mediate direction selectivity in direction-selective ganglion cells (DSGCs), exhibit antagonistic receptive field organization: depolarizing to light increments and decrements in their center and surround, respectively. We find that a repetitive stimulation exhausts SAC center and enhances its surround and use it to study how center-surround responses contribute to direction selectivity. Center, but not surround, activation induces direction-selective responses in SACs. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and modeling data suggest that the opposing direction selectivity can result from inverted temporal balance between excitation and inhibition in DSGCs, implying that SAC's response timing dictates direction selectivity. Our findings reveal antagonistic center-surround mechanisms for direction selectivity and demonstrate how context-dependent receptive field reorganization enables flexible computations.
Collapse
|
33
|
Pottackal J, Singer JH, Demb JB. Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Front Cell Neurosci 2020; 14:604163. [PMID: 33324168 PMCID: PMC7726240 DOI: 10.3389/fncel.2020.604163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Direction selectivity represents an elementary sensory computation that can be related to underlying synaptic mechanisms. In mammalian retina, direction-selective ganglion cells (DSGCs) respond strongly to visual motion in a "preferred" direction and weakly to motion in the opposite, "null" direction. The DS mechanism depends on starburst amacrine cells (SACs), which provide null direction-tuned GABAergic inhibition and untuned cholinergic excitation to DSGCs. GABAergic inhibition depends on conventional synaptic transmission, whereas cholinergic excitation apparently depends on paracrine (i.e., non-synaptic) transmission. Despite its paracrine mode of transmission, cholinergic excitation is more transient than GABAergic inhibition, yielding a temporal difference that contributes essentially to the DS computation. To isolate synaptic mechanisms that generate the distinct temporal properties of cholinergic and GABAergic transmission from SACs to DSGCs, we optogenetically stimulated SACs while recording postsynaptic currents (PSCs) from DSGCs in mouse retina. Direct recordings from channelrhodopsin-2-expressing (ChR2+) SACs during quasi-white noise (WN) (0-30 Hz) photostimulation demonstrated precise, graded optogenetic control of SAC membrane current and potential. Linear systems analysis of ChR2-evoked PSCs recorded in DSGCs revealed cholinergic transmission to be faster than GABAergic transmission. A deconvolution-based analysis showed that distinct postsynaptic receptor kinetics fully account for the temporal difference between cholinergic and GABAergic transmission. Furthermore, GABAA receptor blockade prolonged cholinergic transmission, identifying a new functional role for GABAergic inhibition of SACs. Thus, fast cholinergic transmission from SACs to DSGCs arises from at least two distinct mechanisms, yielding temporal properties consistent with conventional synapses despite its paracrine nature.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Joshua H. Singer
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jonathan B. Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
34
|
Elbaz M, Buterman R, Ezra Tsur E. NeuroConstruct-based implementation of structured-light stimulated retinal circuitry. BMC Neurosci 2020; 21:28. [PMID: 32580768 PMCID: PMC7315481 DOI: 10.1186/s12868-020-00578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinal circuitry provides a fundamental window to neural networks, featuring widely investigated visual phenomena ranging from direction selectivity to fast detection of approaching motion. As the divide between experimental and theoretical visual neuroscience is fading, neuronal modeling has proven to be important for retinal research. In neuronal modeling a delicate balance is maintained between bio-plausibility and model tractability, giving rise to myriad modeling frameworks. One biologically detailed framework for neuro modeling is NeuroConstruct, which facilitates the creation, visualization and analysis of neural networks in 3D. RESULTS Here, we extended NeuroConstruct to support the generation of structured visual stimuli, to feature different synaptic dynamics, to allow for heterogeneous synapse distribution and to enable rule-based synaptic connectivity between cell populations. We utilized this framework to demonstrate a simulation of a dense plexus of biologically realistic and morphologically detailed starburst amacrine cells. The amacrine cells were connected to a ganglion cell and stimulated with expanding and collapsing rings of light. CONCLUSIONS This framework provides a powerful toolset for the investigation of the yet elusive underlying mechanisms of retinal computations such as direction selectivity. Particularly, we showcased the way NeuroConstruct can be extended to support advanced field-specific neuro-modeling.
Collapse
Affiliation(s)
- Miriam Elbaz
- Jerusalem College of Technology, Jerusalem, Israel
| | | | - Elishai Ezra Tsur
- Jerusalem College of Technology, Jerusalem, Israel. .,Neuro-Biomorphic Engineering Lab, Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel.
| |
Collapse
|
35
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
36
|
Poleg-Polsky A, Ding H, Diamond JS. Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina. Cell Rep 2019. [PMID: 29539419 PMCID: PMC5877421 DOI: 10.1016/j.celrep.2018.02.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina. We measure visual receptive fields of individual output synapses and show that small groups of outputs are functionally compartmentalized within starburst dendrites, creating distinct computational units. Inhibition enhances compartmentalization and directional tuning of individual outputs but also decreases the signal-to-noise ratio. Simulations suggest, however, that the noise underlying output signal variability is well tolerated by postsynaptic direction-selective ganglion cells, which integrate convergent inputs to acquire reliable directional information.
Collapse
Affiliation(s)
- Alon Poleg-Polsky
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA
| | - Huayu Ding
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Balaskas N, Abbott LF, Jessell TM, Ng D. Positional Strategies for Connection Specificity and Synaptic Organization in Spinal Sensory-Motor Circuits. Neuron 2019; 102:1143-1156.e4. [PMID: 31076274 DOI: 10.1016/j.neuron.2019.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
Abstract
Proprioceptive sensory axons in the spinal cord form selective connections with motor neuron partners, but the strategies that confer such selectivity remain uncertain. We show that muscle-specific sensory axons project to motor neurons along topographically organized angular trajectories and that motor pools exhibit diverse dendritic arbors. On the basis of spatial constraints on axo-dendritic interactions, we propose positional strategies that can account for sensory-motor connectivity and synaptic organization. These strategies rely on two patterning principles. First, the degree of axo-dendritic overlap reduces the number of potential post-synaptic partners. Second, a close correlation between the small angle of axo-dendritic approach and the formation of synaptic clusters imposes specificity of connections when sensory axons intersect multiple motor pools with overlapping dendritic arbors. Our study identifies positional strategies with prominent roles in the organization of spinal sensory-motor circuits.
Collapse
Affiliation(s)
- Nikolaos Balaskas
- The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - L F Abbott
- The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - David Ng
- The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
38
|
Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani GB. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019; 8:42392. [PMID: 30714905 PMCID: PMC6377229 DOI: 10.7554/elife.42392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/01/2019] [Indexed: 01/18/2023] Open
Abstract
In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | - Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
39
|
Cyr A, Thériault F, Ross M, Berberian N, Chartier S. Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context. Front Neurorobot 2018; 12:75. [PMID: 30524261 PMCID: PMC6256284 DOI: 10.3389/fnbot.2018.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.
Collapse
Affiliation(s)
- André Cyr
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Frédéric Thériault
- Department of Computer Science, Cégep du Vieux Montréal, Montreal, QC, Canada
| | - Matthew Ross
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Nareg Berberian
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Sylvain Chartier
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| |
Collapse
|
40
|
GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proc Natl Acad Sci U S A 2018; 115:E12083-E12090. [PMID: 30509993 DOI: 10.1073/pnas.1803490115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic inhibition controls a neuron's output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on-off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC's soma and dendrites could facilitate homeostatic control of the ooDSGC's output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.
Collapse
|
41
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
42
|
Barnhart EL, Wang IE, Wei H, Desplan C, Clandinin TR. Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits. Neuron 2018; 100:229-243.e3. [PMID: 30220510 DOI: 10.1016/j.neuron.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Many animals guide their movements using optic flow, the displacement of stationary objects across the retina caused by self-motion. How do animals selectively synthesize a global motion pattern from its local motion components? To what extent does this feature selectivity rely on circuit mechanisms versus dendritic processing? Here we used in vivo calcium imaging to identify pre- and postsynaptic mechanisms for processing local motion signals in global motion detection circuits in Drosophila. Lobula plate tangential cells (LPTCs) detect global motion by pooling input from local motion detectors, T4/T5 neurons. We show that T4/T5 neurons suppress responses to adjacent local motion signals whereas LPTC dendrites selectively amplify spatiotemporal sequences of local motion signals consistent with preferred global patterns. We propose that sequential nonlinear suppression and amplification operations allow optic flow circuitry to simultaneously prevent saturating responses to local signals while creating selectivity for global motion patterns critical to behavior.
Collapse
Affiliation(s)
- Erin L Barnhart
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Huayi Wei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Prigge CL, Kay JN. Dendrite morphogenesis from birth to adulthood. Curr Opin Neurobiol 2018; 53:139-145. [PMID: 30092409 DOI: 10.1016/j.conb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.
Collapse
Affiliation(s)
- Cameron L Prigge
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Abstract
Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; .,Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
45
|
Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron. Brain Struct Funct 2018; 223:3383-3410. [PMID: 29948192 DOI: 10.1007/s00429-018-1696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amacrine cells are critical for processing of visual signals, but little is known about their electrotonic structure and passive membrane properties. AII amacrine cells are multifunctional interneurons in the mammalian retina and essential for both rod- and cone-mediated vision. Their dendrites are the site of both input and output chemical synapses and gap junctions that form electrically coupled networks. This electrical coupling is a challenge for developing realistic computer models of single neurons. Here, we combined multiphoton microscopy and electrophysiological recording from dye-filled AII amacrine cells in rat retinal slices to develop morphologically accurate compartmental models. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses, obtained after blocking electrical coupling. The average best-fit parameters (obtained at - 60 mV and ~ 25 °C) were 0.91 µF cm-2 for specific membrane capacitance, 198 Ω cm for cytoplasmic resistivity, and 30 kΩ cm2 for specific membrane resistance. We examined the passive signal transmission between the cell body and the dendrites by the electrotonic transform and quantified the frequency-dependent voltage attenuation in response to sinusoidal current stimuli. There was significant frequency-dependent attenuation, most pronounced for signals generated at the arboreal dendrites and propagating towards the soma and lobular dendrites. In addition, we explored the consequences of the electrotonic structure for interpreting currents in somatic, whole-cell voltage-clamp recordings. The results indicate that AII amacrines cannot be characterized as electrotonically compact and suggest that their morphology and passive properties can contribute significantly to signal integration and processing.
Collapse
|
46
|
Chen Q, Wei W. Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. J Neurophysiol 2018; 120:1153-1161. [PMID: 29897862 DOI: 10.1152/jn.00716.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| | - Wei Wei
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| |
Collapse
|
47
|
Morrie RD, Feller MB. A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Curr Biol 2018; 28:1204-1212.e5. [PMID: 29606419 PMCID: PMC5916530 DOI: 10.1016/j.cub.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/02/2023]
Abstract
Starburst amacrine cell (SAC) morphology is considered central to retinal direction selectivity. In Sema6A-/- mice, SAC dendritic arbors are smaller and no longer radially symmetric, leading to a reduction in SAC dendritic plexus density. Sema6A-/- mice also have a dramatic reduction in the directional tuning of retinal direction-selective ganglion cells (DSGCs). Here we show that the loss of DSGC tuning in Sema6A-/- mice is due to reduced null direction inhibition, even though strong asymmetric SAC-DSGC connectivity and SAC dendritic direction selectivity are maintained. Hence, the reduced coverage factor of SAC dendrites leads specifically to a loss of null direction inhibition. Moreover, SAC dendrites are no longer strictly tuned to centrifugal motion, indicating that SAC morphology is critical in coordinating synaptic connectivity and dendritic integration to generate direction selectivity.
Collapse
Affiliation(s)
- Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Antic SD, Hines M, Lytton WW. Embedded ensemble encoding hypothesis: The role of the "Prepared" cell. J Neurosci Res 2018; 96:1543-1559. [PMID: 29633330 DOI: 10.1002/jnr.24240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/08/2023]
Abstract
We here reconsider current theories of neural ensembles in the context of recent discoveries about neuronal dendritic physiology. The key physiological observation is that the dendritic plateau potential produces sustained depolarization of the cell body (amplitude 10-20 mV, duration 200-500 ms). Our central hypothesis is that synaptically-evoked dendritic plateau potentials lead to a prepared state of a neuron that favors spike generation. The plateau both depolarizes the cell toward spike threshold, and provides faster response to inputs through a shortened membrane time constant. As a result, the speed of synaptic-to-action potential (AP) transfer is faster during the plateau phase. Our hypothesis relates the changes from "resting" to "depolarized" neuronal state to changes in ensemble dynamics and in network information flow. The plateau provides the Prepared state (sustained depolarization of the cell body) with a time window of 200-500 ms. During this time, a neuron can tune into ongoing network activity and synchronize spiking with other neurons to provide a coordinated Active state (robust firing of somatic APs), which would permit "binding" of signals through coordination of neural activity across a population. The transient Active ensemble of neurons is embedded in the longer-lasting Prepared ensemble of neurons. We hypothesize that "embedded ensemble encoding" may be an important organizing principle in networks of neurons.
Collapse
Affiliation(s)
- Srdjan D Antic
- Department of Neuroscience, Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, Connecticut
| | - Michael Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - William W Lytton
- Physiology and Pharmacology, Neurology, Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York.,Department of Neurology, Kings County Hospital, Brooklyn, New York
| |
Collapse
|
49
|
Ray TA, Roy S, Kozlowski C, Wang J, Cafaro J, Hulbert SW, Wright CV, Field GD, Kay JN. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact. eLife 2018; 7:e34241. [PMID: 29611808 PMCID: PMC5931800 DOI: 10.7554/elife.34241] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism's importance in forming circuit-specific sublayers.
Collapse
Affiliation(s)
- Thomas A Ray
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
- Department of OphthalmologyDuke University School of MedicineDurhamUnited States
| | - Suva Roy
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
| | - Christopher Kozlowski
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
- Department of OphthalmologyDuke University School of MedicineDurhamUnited States
| | - Jingjing Wang
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
- Department of OphthalmologyDuke University School of MedicineDurhamUnited States
| | - Jon Cafaro
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
| | - Samuel W Hulbert
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
| | - Christopher V Wright
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleUnited States
| | - Greg D Field
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
| | - Jeremy N Kay
- Department of NeurobiologyDuke University School of MedicineDurhamUnited States
- Department of OphthalmologyDuke University School of MedicineDurhamUnited States
| |
Collapse
|
50
|
Rivlin-Etzion M, Grimes WN, Rieke F. Flexible Neural Hardware Supports Dynamic Computations in Retina. Trends Neurosci 2018; 41:224-237. [PMID: 29454561 DOI: 10.1016/j.tins.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.
Collapse
Affiliation(s)
- Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|