1
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. EMBO Rep 2025:10.1038/s44319-025-00476-8. [PMID: 40389758 DOI: 10.1038/s44319-025-00476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~50 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available information is limited by the incomplete data and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional, and evolutionary studies to generate an integrated dataset and associated visualizations of these sensory neuron pathways, creating an unprecedented resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. Such examples emphasize the power of this resource to promote further understanding of the construction, function, and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jérôme Mermet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Keita Endo
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Iwasaki K, Neuhauser C, Stokes C, Rayshubskiy A. The fruit fly, Drosophila melanogaster, as a microrobotics platform. Proc Natl Acad Sci U S A 2025; 122:e2426180122. [PMID: 40198707 PMCID: PMC12012547 DOI: 10.1073/pnas.2426180122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Engineering small autonomous agents capable of operating in the microscale environment remains a key challenge, with current systems still evolving. Our study explores the fruit fly, Drosophila melanogaster, a classic model system in biology and a species adept at microscale interaction, as a biological platform for microrobotics. Initially, we focus on remotely directing the walking paths of fruit flies in an experimental arena. We accomplish this through two distinct approaches: harnessing the fruit flies' optomotor response and optogenetic modulation of its olfactory system. These techniques facilitate reliable and repeated guidance of flies between arbitrary spatial locations. We guide flies along predetermined trajectories, enabling them to scribe patterns resembling textual characters through their locomotion. We enhance olfactory-guided navigation through additional optogenetic activation of attraction-inducing mushroom body output neurons. We extend this control to collective behaviors in shared spaces and navigation through constrained maze-like environments. We further use our guidance technique to enable flies to carry a load across designated points in space, establishing the upper bound on their weight-carrying capabilities. Additionally, we demonstrate that visual guidance can facilitate novel interactions between flies and objects, showing that flies can consistently relocate a small spherical object over significant distances. Last, we demonstrate multiagent formation control, with flies alternating between distinct spatial patterns. Beyond expanding tools available for microrobotics, these behavioral contexts can provide insights into the neurological basis of behavior in fruit flies.
Collapse
Affiliation(s)
- Kenichi Iwasaki
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | - Charles Neuhauser
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Chris Stokes
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA02138
| | | |
Collapse
|
3
|
Ellison L, Raiser G, Garrido-Peña A, Kemenes G, Nowotny T. SSSort 2.0: A semi-automated spike detection and sorting system for single sensillum recordings. J Neurosci Methods 2025; 415:110351. [PMID: 39709073 DOI: 10.1016/j.jneumeth.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli. NEW METHOD Here we present SSSort 2.0, a method and software addressing both problems through automated and semi-automated signal processing. We have also developed a method for more objective validation of spike sorting methods based on generating surrogate ground truth data and we have tested the practical effectiveness of our software in a user study. RESULTS We find that SSSort 2.0 typically matches or exceeds the performance of expert manual spike sorting. We further demonstrate that, for novices, accuracy is much better with SSSort 2.0 under most conditions. CONCLUSION Overall, we have demonstrated that spike-sorting with SSSort 2.0 software can automate data processing of SSRs with accuracy levels comparable to, or above, expert manual performance.
Collapse
Affiliation(s)
- Lydia Ellison
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | - Alicia Garrido-Peña
- Dpto. Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, 28049, Spain.
| | - György Kemenes
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Thomas Nowotny
- Sussex AI, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| |
Collapse
|
4
|
Siliciano AF, Minni S, Morton C, Dowell CK, Eghbali NB, Rhee JY, Abbott L, Ruta V. A vector-based strategy for olfactory navigation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638426. [PMID: 39990408 PMCID: PMC11844514 DOI: 10.1101/2025.02.15.638426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Odors serve as essential cues for navigation. Although tracking an odor plume has been modeled as a reflexive process, it remains unclear whether animals can use memories of their past odor encounters to infer the spatial structure of their chemical environment or their location within it. Here we developed a virtual-reality olfactory paradigm that allows head-fixed Drosophila to navigate structured chemical landscapes, offering insight into how memory mechanisms shape their navigational strategies. We found that flies track an appetitive odor corridor by following its boundary, alternating between rapid counterturns to exit the plume and directed returns to its edge. Using a combination of behavioral modeling, functional calcium imaging, and neural perturbations, we demonstrate that this 'edge-tracking' strategy relies on vector-based computations within the Drosophila central complex in which flies store and dynamically update memories of the direction to return them to the plume's boundary. Consistent with this, we find that FC2 neurons within the fan-shaped body, which encode a fly's navigational goal, signal the direction back to the odor boundary when flies are outside the plume. Together, our studies suggest that flies leverage the plume's boundary as a dynamic landmark to guide their navigation, analogous to the memory-based strategies other insects use for long-distance migration or homing to their nests. Plume tracking thus uses components of a conserved navigational toolkit, enabling flies to use memory mechanisms to navigate through a complex shifting chemical landscape.
Collapse
Affiliation(s)
- Andrew F. Siliciano
- These authors contributed equally to this work
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Sun Minni
- These authors contributed equally to this work
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Chad Morton
- These authors contributed equally to this work
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Charles K. Dowell
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Noelle B. Eghbali
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Juliana Y. Rhee
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - L.F. Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.632927. [PMID: 39868125 PMCID: PMC11760703 DOI: 10.1101/2025.01.16.632927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~60 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available data is limited by the incompleteness and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional and evolutionary studies to generate an integrated dataset of these sensory neuron pathways - and associated visualizations - creating an unprecedented comprehensive resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. These examples emphasize the power of this resource to promote further understanding of the construction, function and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Jérôme Mermet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
| | - Keita Endo
- RIKEN Center for Brain Science Wako Saitama 351-0198 Japan
| | - Steeve Cruchet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
- Connecticut Institute for Brain and Cognitive Sciences University of Connecticut Storrs Connecticut 06269 United States
| |
Collapse
|
6
|
Tao L, Wechsler SP, Bhandawat V. Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila. Nat Commun 2023; 14:6818. [PMID: 37884581 PMCID: PMC10603174 DOI: 10.1038/s41467-023-42613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Most real-world behaviors - such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes in Drosophila by optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
| | - Samuel P Wechsler
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
8
|
Jayaram V, Sehdev A, Kadakia N, Brown EA, Emonet T. Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments. PLoS Comput Biol 2023; 19:e1010606. [PMID: 37167321 PMCID: PMC10205008 DOI: 10.1371/journal.pcbi.1010606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/23/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
To survive, insects must effectively navigate odor plumes to their source. In natural plumes, turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter brief bursts of odor interrupted by bouts of clean air. The timing of these encounters plays a critical role in navigation, determining the direction, rate, and magnitude of insects' orientation and speed dynamics. Disambiguating the specific role of odor timing from other cues, such as spatial structure, is challenging due to natural correlations between plumes' temporal and spatial features. Here, we use optogenetics to isolate temporal features of odor signals, examining how the frequency and duration of odor encounters shape the navigational decisions of freely-walking Drosophila. We find that fly angular velocity depends on signal frequency and intermittency-the fraction of time signal can be detected-but not directly on durations. Rather than switching strategies when signal statistics change, flies smoothly transition between signal regimes, by combining an odor offset response with a frequency-dependent novelty-like response. In the latter, flies are more likely to turn in response to each odor hit only when the hits are sparse. Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct timescales, allowing rapid and sustained responses in a variety of signal statistics. A quantitative model incorporating these ingredients recapitulates fly orientation dynamics across a wide range of environments and shows that temporal novelty detection, when combined with odor motion detection, enhances odor plume navigation.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Aarti Sehdev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Ethan A. Brown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Yale College, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Alač M. On body-environment continuities from a laboratory commensalism. SOCIAL STUDIES OF SCIENCE 2023; 53:242-270. [PMID: 36458623 DOI: 10.1177/03063127221136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The article attends to everyday practices in a laboratory of neural genetics that studies olfaction, with the fruit fly as its model organism. Practices in neural genetics exhibit one of the 'post' aspects in post-genomic science - a turn to the environment. To get at how laboratory members engage body-environment continuities, I pay attention to an occasion of designing experimental chambers for an optogenetics study. As practitioners deal with the body's continuities with the world by engaging the spatial character of olfaction, their accounts exhibit qualities of feelings of immediate experience, relatable to C.S. Peirce's phenomenological category of Firstness. While these traces of Firstness inevitably manifest themselves in mixtures with the other two of Peirce's categories - namely, Secondness and Thirdness - noticing them allows for an engagement of the environment that goes beyond action and meaning. I reflect on that environment by considering the involvement of scientists' bodies in life with flies, while not forgetting my inhabitation of the laboratory space. Rather than relying on a cross-mapping of attributes known from the human sphere (intentional states or features of the human body) while managing a measurable space observed from the outside, this is an environment lived from within and with others. I conclude the article by proposing its noticing as an orientation toward ecological preoccupations.
Collapse
Affiliation(s)
- Morana Alač
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Zocchi D, Ye ES, Hauser V, O'Connell TF, Hong EJ. Parallel encoding of CO 2 in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents. Curr Biol 2022; 32:4225-4239.e7. [PMID: 36070776 PMCID: PMC9561050 DOI: 10.1016/j.cub.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dhruv Zocchi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily S Ye
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Virginie Hauser
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
13
|
Validation of an Optogenetic Approach to the Study of Olfactory Behavior in the T-Maze of Drosophila melanogaster Adults. INSECTS 2022; 13:insects13080662. [PMID: 35893017 PMCID: PMC9330658 DOI: 10.3390/insects13080662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The fruit fly (Drosophila melanogaster) has been used as a model organism to study the olfactory system of insects thanks to the wide range of genetic tools available in this species. Among these tools, optogenetics allows the immediate alteration of the functioning of certain cells with light by the targeted expression of light receptor proteins in these cells. Thus, by successively expressing these receptors in different elements of the behavioral circuit, it is possible to evaluate their effect on the final behavior of the organism. However, the use of optogenetics to dissect the receptor elements of adult olfactory behavior presents a challenge because most odorants elicit gradual attraction or avoidance depending on their concentration, complicating the representative substitution of odor by light. In this work, we explore a dual excitation model in which the subject responds to various odorant concentrations while the olfactory receptor neurons are activated by light. The dose–response curve in these flies remains odorant concentration dependent, but with reduced sensitivity compared to olfactory stimulation alone. The existence of an effect associated with each of the two stimuli, odor and light, allows us to explore the quantitative contribution of the receptor elements to olfactory behavior also by optogenetics. Abstract Optogenetics enables the alteration of neural activity using genetically targeted expression of light activated proteins for studying behavioral circuits in several species including Drosophila. The main idea behind this approach is to replace the native behavioral stimulus by the light-induced electrical activation of different points of the circuit. Therefore, its effects on subsequent steps of the circuit or on the final behavior can be analyzed. However, the use of optogenetics to dissect the receptor elements of the adult olfactory behavior presents a challenge due to one additional factor: Most odorants elicit attraction or avoidance depending on their concentration; this complicates the representative replacement of odor activation of olfactory sensory neurons (OSNs) by light. Here, we explore a dual excitation model where the subject is responding to odors while the OSNs are optogenetically activated. Thereby, we can assess if and how the olfactory behavior is modified. We measure the effects of light excitation on the response to several odorant concentrations. The dose-response curve of these flies still depends on odor concentration but with reduced sensitivity compared to olfactory stimulation alone. These results are consistent with behavioral tests performed with a background odor and suggest an additive effect of light and odor excitation on OSNs.
Collapse
|
14
|
Flexible navigational computations in the Drosophila central complex. Curr Opin Neurobiol 2022; 73:102514. [DOI: 10.1016/j.conb.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
|
15
|
Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Rep 2022; 38:110494. [PMID: 35263579 PMCID: PMC8957105 DOI: 10.1016/j.celrep.2022.110494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Mosquitoes locate and approach humans based on the activity of odorant receptors (ORs) expressed on olfactory receptor neurons (ORNs). Olfactogenetic experiments in Anopheles gambiae mosquitoes revealed that the ectopic expression of an AgOR (AgOR2) in ORNs dampened the activity of the expressing neuron. This contrasts with studies in Drosophila melanogaster in which the ectopic expression of non-native ORs in ORNs confers ectopic neuronal responses without interfering with native olfactory physiology. RNA-seq analyses comparing wild-type antennae to those ectopically expressing AgOR2 in ORNs indicated that nearly all AgOR transcripts were significantly downregulated (except for AgOR2). Additional experiments suggest that AgOR2 protein rather than mRNA mediates this downregulation. Using in situ hybridization, we find that AgOR gene choice is active into adulthood and that AgOR2 expression inhibits AgORs from turning on at this late stage. Our study shows that the ORNs of Anopheles mosquitoes (in contrast to Drosophila) are sensitive to a currently unexplored mechanism of AgOR regulation. Maguire et al. discover that the ectopic expression of an olfactory receptor can downregulate the transcription of endogenous odorant receptors in mosquito olfactory neurons. The onset of mosquito odorant-receptor expression by an olfactory neuron continues into adult stages, and is particularly sensitive to exogenous olfactory reception expression.
Collapse
|
16
|
Abstract
Are olfactory receptor neurons (ORNs) arranged in a functionally meaningful manner to facilitate information processing? Here, we address this long-standing question by uncovering a valence map in the olfactory periphery of Drosophila. Within sensory hairs, we find that neighboring ORNs antagonistically regulate behaviors: stereotypically compartmentalized large- and small-spike ORNs, recognized by their characteristic spike amplitudes, either promote or inhibit the same type of behavior, respectively. Systematic optogenetic and thermogenetic assays—covering the majority of antennal sensilla—highlight a valence-opponent organization. Critically, odor-mixture behavioral experiments show that lateral inhibition between antagonistic ORNs mediates robust behavioral decisions in response to countervailing cues. Computational modeling predicts that the robustness of behavioral output depends on odor mixture ratios. A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.
Collapse
|
17
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
18
|
Sun X, Yue S, Mangan M. How the insect central complex could coordinate multimodal navigation. eLife 2021; 10:e73077. [PMID: 34882094 PMCID: PMC8741217 DOI: 10.7554/elife.73077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
19
|
Hernandez-Nunez L, Chen A, Budelli G, Berck ME, Richter V, Rist A, Thum AS, Cardona A, Klein M, Garrity P, Samuel ADT. Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. SCIENCE ADVANCES 2021; 7:7/35/eabg6707. [PMID: 34452914 PMCID: PMC8397275 DOI: 10.1126/sciadv.abg6707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.
Collapse
Affiliation(s)
- Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, Boston, MA 02115, USA
| | - Alicia Chen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Gonzalo Budelli
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Matthew E Berck
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Vincent Richter
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Anna Rist
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Andreas S Thum
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mason Klein
- Department of Physics, University of Miami, Coral Gables, FL 33124, USA.
| | - Paul Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Breugel FV. Correlated decision making across multiple phases of olfactory guided search in Drosophila improves search efficiency. J Exp Biol 2021; 224:271881. [PMID: 34286337 DOI: 10.1242/jeb.242267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Nearly all motile organisms must search for food, often requiring multiple phases of exploration across heterogeneous environments. The fruit fly, Drosophila, has emerged as an effective model system for studying this behavior, however, little is known about the extent to which experiences at one point in their search might influence decisions in another. To investigate whether prior experiences impact flies' search behavior after landing, I tracked individually labelled fruit flies as they explored three odor emitting but food-barren objects. I found two features of their behavior that are correlated with the distance they travel on foot. First, flies walked larger distances when they approached the odor source, which they were almost twice as likely to do when landing on the patch farthest downwind. Computational fluid dynamics simulations suggest this patch may have had a stronger baseline odor, but only ∼15% higher than the other two. This small increase, together with flies' high olfactory sensitivity, suggests that perhaps their flight trajectory used to approach the patches plays a role. Second, flies also walked larger distances when the time elapsed since their last visit was longer. However, the correlation is subtle and subject to a large degree of variability. Using agent-based models, I show that this small correlation can increase search efficiency by 25-50% across many scenarios. Furthermore, my models provide mechanistic hypotheses explaining the variability through either a noisy or straightforward decision-making process. Surprisingly, these stochastic decision-making algorithms enhance search efficiency in challenging but realistic search scenarios compared to deterministic strategies.
Collapse
|
21
|
Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genet 2021; 17:e1009677. [PMID: 34237075 PMCID: PMC8291717 DOI: 10.1371/journal.pgen.1009677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/20/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-β-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum. Pyrethrum extract began to be used as an insect repellent against biting arthropods and blood-sucking mosquitoes since ancient times. However, the mechanisms underlying pyrethrum repellency remains unknown. In this study, we took advantage of Drosophila melanogaster as a model insect system for olfaction studies and conducted a series of electrophysiological, molecular genetic and behavioral experiments to understand the mechanism of pyrethrum repellency in D. melanogaster. We discovered that pyrethrum repels D. melanogaster by activating multiple odorant receptors (Ors). Apparently simultaneous activation of these Ors by various components in pyrethrum extract makes pyrethrum one of the most potent and the longest used insect repellents in the human history.
Collapse
|
22
|
Das Chakraborty S, Sachse S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res 2021; 383:113-123. [PMID: 33475851 PMCID: PMC7873099 DOI: 10.1007/s00441-020-03392-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Sensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.
Collapse
Affiliation(s)
- Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
23
|
Demir M, Kadakia N, Anderson HD, Clark DA, Emonet T. Walking Drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters. eLife 2020; 9:e57524. [PMID: 33140723 PMCID: PMC7609052 DOI: 10.7554/elife.57524] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
How insects navigate complex odor plumes, where the location and timing of odor packets are uncertain, remains unclear. Here we imaged complex odor plumes simultaneously with freely-walking flies, quantifying how behavior is shaped by encounters with individual odor packets. We found that navigation was stochastic and did not rely on the continuous modulation of speed or orientation. Instead, flies turned stochastically with stereotyped saccades, whose direction was biased upwind by the timing of prior odor encounters, while the magnitude and rate of saccades remained constant. Further, flies used the timing of odor encounters to modulate the transition rates between walks and stops. In more regular environments, flies continuously modulate speed and orientation, even though encounters can still occur randomly due to animal motion. We find that in less predictable environments, where encounters are random in both space and time, walking flies navigate with random walks biased by encounter timing.
Collapse
Affiliation(s)
- Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Swartz Foundation Fellow, Yale UniversityNew HavenUnited States
| | - Hope D Anderson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| |
Collapse
|
24
|
Okubo TS, Patella P, D'Alessandro I, Wilson RI. A Neural Network for Wind-Guided Compass Navigation. Neuron 2020; 107:924-940.e18. [PMID: 32681825 PMCID: PMC7507644 DOI: 10.1016/j.neuron.2020.06.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/27/2022]
Abstract
Spatial maps in the brain are most accurate when they are linked to external sensory cues. Here, we show that the compass in the Drosophila brain is linked to the direction of the wind. Shifting the wind rightward rotates the compass as if the fly were turning leftward, and vice versa. We describe the mechanisms of several computations that integrate wind information into the compass. First, an intensity-invariant representation of wind direction is computed by comparing left-right mechanosensory signals. Then, signals are reformatted to reduce the coding biases inherent in peripheral mechanics, and wind cues are brought into the same circular coordinate system that represents visual cues and self-motion signals. Because the compass incorporates both mechanosensory and visual cues, it should enable navigation under conditions where no single cue is consistently reliable. These results show how local sensory signals can be transformed into a global, multimodal, abstract representation of space.
Collapse
Affiliation(s)
- Tatsuo S Okubo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paola Patella
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Chong E, Moroni M, Wilson C, Shoham S, Panzeri S, Rinberg D. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 2020; 368:368/6497/eaba2357. [PMID: 32554567 DOI: 10.1126/science.aba2357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
How does neural activity generate perception? Finding the combinations of spatial or temporal activity features (such as neuron identity or latency) that are consequential for perception remains challenging. We trained mice to recognize synthetic odors constructed from parametrically defined patterns of optogenetic activation, then measured perceptual changes during extensive and controlled perturbations across spatiotemporal dimensions. We modeled recognition as the matching of patterns to learned templates. The templates that best predicted recognition were sequences of spatially identified units, ordered by latencies relative to each other (with minimal effects of sniff). Within templates, individual units contributed additively, with larger contributions from earlier-activated units. Our synthetic approach reveals the fundamental logic of the olfactory code and provides a general framework for testing links between sensory activity and perception.
Collapse
Affiliation(s)
- Edmund Chong
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Monica Moroni
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy. .,CIMeC, University of Trento, Rovereto, Italy
| | | | - Shy Shoham
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.,Center for Neural Science, New York University, New York, NY 10003, USA.,Tech4Health Institute, NYU Langone Health, New York, NY 10010, USA.,Department of Ophthalmology, NYU Langone Health, New York, NY 10017, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Dmitry Rinberg
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA. .,Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
26
|
Mechanisms underlying attraction to odors in walking Drosophila. PLoS Comput Biol 2020; 16:e1007718. [PMID: 32226007 PMCID: PMC7105121 DOI: 10.1371/journal.pcbi.1007718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that control movements range from navigational mechanisms, in which the animal employs directional cues to reach a specific destination, to search movements during which there are little or no environmental cues. Even though most real-world movements result from an interplay between these mechanisms, an experimental system and theoretical framework for the study of interplay of these mechanisms is not available. Here, we rectify this deficit. We create a new method to stimulate the olfactory system in Drosophila or fruit flies. As flies explore a circular arena, their olfactory receptor neuron (ORNs) are optogenetically activated within a central region making this region attractive to the flies without emitting any clear directional signals outside this central region. In the absence of ORN activation, the fly’s locomotion can be described by a random walk model where a fly’s movement is described by its speed and turn-rate (or kinematics). Upon optogenetic stimulation, the fly’s behavior changes dramatically in two respects. First, there are large kinematic changes. Second, there are more turns at the border between light-zone and no-light-zone and these turns have an inward bias. Surprisingly, there is no increase in turn-rate, rather a large decrease in speed that makes it appear that the flies are turning at the border. Similarly, the inward bias of the turns is a result of the increase in turn angle. These two mechanisms entirely account for the change in a fly’s locomotion. No complex mechanisms such as path-integration or a careful evaluation of gradients are necessary. The strategy an animal employs to explore the environment and to find and return to the location where it has previously found food or mates is an important part of its behavior. In nature, animals have incomplete information about their environment, and must use this incomplete information to navigate. In most laboratory experiments, there is usually clear directional information making it difficult to infer an animal’s real strategy from laboratory behavioral experiments. In this study, we devise a new behavioral task wherein we remotely activate olfactory neurons when fruit flies are in a given location. This activation makes a given location attractive to the flies without providing any directional information and allows us to assess how flies navigate under these conditions. We find that flies navigate towards the activated location using two simple mechanisms: First, its speed in the activated region and its turn rate is much lower than it is elsewhere. Second, at the boundary of the odor-zone, its speed decreases dramatically and its turns become much sharper. Essentially, these simple mechanisms appear to be extremely robust.
Collapse
|
27
|
Chin SG, Maguire SE, Huoviala P, Jefferis GSXE, Potter CJ. Olfactory Neurons and Brain Centers Directing Oviposition Decisions in Drosophila. Cell Rep 2020; 24:1667-1678. [PMID: 30089274 PMCID: PMC6290906 DOI: 10.1016/j.celrep.2018.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/30/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The sense of smell influences many behaviors, yet how odors are represented in the brain remains unclear. A major challenge to studying olfaction is the lack of methods allowing activation of specific types of olfactory neurons in an ethologically relevant setting. To address this, we developed a genetic method in Drosophila called olfactogenetics in which a narrowly tuned odorant receptor, Or56a, is ectopically expressed in different olfactory neuron types. Stimulation with geosmin (the only known Or56a ligand) in an Or56a mutant background leads to specific activation of only target olfactory neuron types. We used this approach to identify olfactory sensory neurons (OSNs) that directly guide oviposition decisions. We identify 5 OSN-types (Or71a, Or47b, Or49a, Or67b, and Or7a) that, when activated alone, suppress oviposition. Projection neurons partnering with these OSNs share a region of innervation in the lateral horn, suggesting that oviposition site selection might be encoded in this brain region.
Collapse
Affiliation(s)
- Sonia G Chin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sarah E Maguire
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Paavo Huoviala
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Gregory S X E Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Ahsan R, Ebrahimi M. Image processing techniques represent innovative tools for comparative analysis of proteins. Comput Biol Med 2019; 117:103584. [PMID: 32072976 DOI: 10.1016/j.compbiomed.2019.103584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
Different bioinformatic and data-mining approaches have been used for the analysis of proteins. Here, we describe a novel, robust, and reliable approach for comparative analysis of a large number of proteins by combining Image Processing Techniques and Convolutional Deep Neural Network (IPT-CNN). As proof of principle, we used IPT-CNN to predict different subtypes of Influenza A virus (IAV). Over 8000 sequences of surface proteins haemagglutinin (HA) and neuraminidase (NA) from different IAV subtypes were used to create polynomial or binary vector datasets. The datasets were then converted into binary images. Analysis of these images enabled the classification of IAV subtypes with 100% accuracy and, compared to non-image-based approaches, within a shorter time frame. The proteome-based IPT-CNN approach described here may be used for analysis and proteome-based classification of other proteins.
Collapse
Affiliation(s)
- Reza Ahsan
- Department of Information Technology, School of Engineering, University of Qom, Qom, Iran
| | - Mansour Ebrahimi
- Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran; School of Agriculture and Veterinary Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
29
|
Currier TA, Nagel KI. Multisensory control of navigation in the fruit fly. Curr Opin Neurobiol 2019; 64:10-16. [PMID: 31841944 DOI: 10.1016/j.conb.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Katherine I Nagel
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
30
|
Amin H, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:9-17. [PMID: 31280185 DOI: 10.1016/j.cois.2019.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Olfaction allows animals to adapt their behavior in response to different chemical cues in their environment. How does the brain efficiently discriminate different odors to drive appropriate behavior, and how does it flexibly assign value to odors to adjust behavior according to experience? This review traces neuronal mechanisms underlying these processes in adult Drosophila melanogaster from olfactory receptors to higher brain centers. We highlight neural circuit principles such as lateral inhibition, segregation and integration of olfactory channels, temporal accumulation of sensory evidence, and compartmentalized synaptic plasticity underlying associative memory.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
31
|
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019; 10:972. [PMID: 31427985 PMCID: PMC6688386 DOI: 10.3389/fphys.2019.00972] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
Collapse
Affiliation(s)
- Lucie Conchou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Philippe Lucas
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Camille Meslin
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Magali Proffit
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michel Renou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
32
|
Handler A, Graham TGW, Cohn R, Morantte I, Siliciano AF, Zeng J, Li Y, Ruta V. Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning. Cell 2019; 178:60-75.e19. [PMID: 31230716 PMCID: PMC9012144 DOI: 10.1016/j.cell.2019.05.040] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/19/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
Collapse
Affiliation(s)
- Annie Handler
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Thomas G W Graham
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Andrew F Siliciano
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
33
|
Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. Encoding of Wind Direction by Central Neurons in Drosophila. Neuron 2019; 102:828-842.e7. [PMID: 30948249 PMCID: PMC6533146 DOI: 10.1016/j.neuron.2019.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
Collapse
Affiliation(s)
- Marie P Suver
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sinekdha Sarkar
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Matthew Damiata
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - David Schoppik
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Katherine I Nagel
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
34
|
Dolan MJ, Frechter S, Bates AS, Dan C, Huoviala P, Roberts RJV, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou C, Close K, Sutcliffe B, Giuliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock DD, Aso Y, Rubin GM, Jefferis GSXE. Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife 2019; 8:e43079. [PMID: 31112130 PMCID: PMC6529221 DOI: 10.7554/elife.43079] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/07/2019] [Indexed: 01/26/2023] Open
Abstract
Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In Drosophila, one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.
Collapse
Affiliation(s)
- Michael-John Dolan
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Shahar Frechter
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Chuntao Dan
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Paavo Huoviala
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Philipp Schlegel
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Serene Dhawan
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Remy Tabano
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Heather Dionne
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | | | - Kari Close
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ben Sutcliffe
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Bianca Giuliani
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Feng Li
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Marta Costa
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Gudrun Ihrke
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | | | - Davi D Bock
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Yoshinori Aso
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Gerald M Rubin
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Gregory SXE Jefferis
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Division of NeurobiologyMRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
35
|
Corfas RA, Sharma T, Dickinson MH. Diverse Food-Sensing Neurons Trigger Idiothetic Local Search in Drosophila. Curr Biol 2019; 29:1660-1668.e4. [PMID: 31056390 DOI: 10.1016/j.cub.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023]
Abstract
Foraging animals may benefit from remembering the location of a newly discovered food patch while continuing to explore nearby [1, 2]. For example, after encountering a drop of yeast or sugar, hungry flies often perform a local search [3, 4]. That is, rather than remaining on the food or simply walking away, flies execute a series of exploratory excursions during which they repeatedly depart and return to the resource. Fruit flies, Drosophila melanogaster, can perform this food-centered search behavior in the absence of external landmarks, instead relying on internal (idiothetic) cues [5]. This path-integration behavior may represent a deeply conserved navigational capacity in insects [6, 7], but its underlying neural basis remains unknown. Here, we used optogenetic activation to screen candidate cell classes and found that local searches can be initiated by diverse sensory neurons. Optogenetically induced searches resemble those triggered by actual food, are modulated by starvation state, and exhibit key features of path integration. Flies perform tightly centered searches around the fictive food site, even within a constrained maze, and they can return to the fictive food site after long excursions. Together, these results suggest that flies enact local searches in response to a wide variety of food-associated cues and that these sensory pathways may converge upon a common neural system for navigation. Using a virtual reality system, we demonstrate that local searches can be optogenetically induced in tethered flies walking on a spherical treadmill, laying the groundwork for future studies to image the brain during path integration. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Román A Corfas
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Tarun Sharma
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology & Bioengineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
36
|
Haberkern H, Basnak MA, Ahanonu B, Schauder D, Cohen JD, Bolstad M, Bruns C, Jayaraman V. Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape. Curr Biol 2019; 29:1647-1659.e8. [DOI: 10.1016/j.cub.2019.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
|
37
|
Mohamed AAM, Retzke T, Das Chakraborty S, Fabian B, Hansson BS, Knaden M, Sachse S. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe. Nat Commun 2019; 10:1201. [PMID: 30867415 PMCID: PMC6416470 DOI: 10.1038/s41467-019-09069-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
Evaluating odor blends in sensory processing is a crucial step for signal recognition and execution of behavioral decisions. Using behavioral assays and 2-photon imaging, we have characterized the neural and behavioral correlates of mixture perception in the olfactory system of Drosophila. Mixtures of odors with opposing valences elicit strong inhibition in certain attractant-responsive input channels. This inhibition correlates with reduced behavioral attraction. We demonstrate that defined subsets of GABAergic interneurons provide the neuronal substrate of this computation at pre- and postsynaptic loci via GABAB- and GABAA receptors, respectively. Intriguingly, manipulation of single input channels by silencing and optogenetic activation unveils a glomerulus-specific crosstalk between the attractant- and repellent-responsive circuits. This inhibitory interaction biases the behavioral output. Such a form of selective lateral inhibition represents a crucial neuronal mechanism in the processing of conflicting sensory information.
Collapse
Affiliation(s)
- Ahmed A M Mohamed
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Tom Retzke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Benjamin Fabian
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
38
|
Batchelor AV, Wilson RI. Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. ACTA ACUST UNITED AC 2019; 222:222/3/jeb191213. [PMID: 30733260 DOI: 10.1242/jeb.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Drosophila melanogaster hear with their antennae: sound evokes vibration of the distal antennal segment, and this vibration is transduced by specialized mechanoreceptor cells. The left and right antennae vibrate preferentially in response to sounds arising from different azimuthal angles. Therefore, by comparing signals from the two antennae, it should be possible to obtain information about the azimuthal angle of a sound source. However, behavioral evidence of sound localization has not been reported in Drosophila Here, we show that walking D. melanogaster do indeed turn in response to lateralized sounds. We confirm that this behavior is evoked by vibrations of the distal antennal segment. The rule for turning is different for sounds arriving from different locations: flies turn toward sounds in their front hemifield, but they turn away from sounds in their rear hemifield, and they do not turn at all in response to sounds from 90 or -90 deg. All of these findings can be explained by a simple rule: the fly steers away from the antenna with the larger vibration amplitude. Finally, we show that these behaviors generalize to sound stimuli with diverse spectro-temporal features, and that these behaviors are found in both sexes. Our findings demonstrate the behavioral relevance of the antenna's directional tuning properties. They also pave the way for investigating the neural implementation of sound localization, as well as the potential roles of sound-guided steering in courtship and exploration.
Collapse
Affiliation(s)
- Alexandra V Batchelor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
39
|
Tao L, Ozarkar S, Beck JM, Bhandawat V. Statistical structure of locomotion and its modulation by odors. eLife 2019; 8:e41235. [PMID: 30620334 PMCID: PMC6361587 DOI: 10.7554/elife.41235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/05/2019] [Indexed: 11/22/2022] Open
Abstract
Most behaviors such as making tea are not stereotypical but have an obvious structure. However, analytical methods to objectively extract structure from non-stereotyped behaviors are immature. In this study, we analyze the locomotion of fruit flies and show that this non-stereotyped behavior is well-described by a Hierarchical Hidden Markov Model (HHMM). HHMM shows that a fly's locomotion can be decomposed into a few locomotor features, and odors modulate locomotion by altering the time a fly spends performing different locomotor features. Importantly, although all flies in our dataset use the same set of locomotor features, individual flies vary considerably in how often they employ a given locomotor feature, and how this usage is modulated by odor. This variation is so large that the behavior of individual flies is best understood as being grouped into at least three to five distinct clusters, rather than variations around an average fly.
Collapse
Affiliation(s)
- Liangyu Tao
- Department of BiologyDuke UniversityDurhamUnited States
| | | | - Jeffrey M Beck
- Department of NeurobiologyDuke UniversityDurhamUnited States
| | - Vikas Bhandawat
- Department of BiologyDuke UniversityDurhamUnited States
- Department of NeurobiologyDuke UniversityDurhamUnited States
- Duke Institute for Brain SciencesDuke UniversityDurhamUnited States
| |
Collapse
|
40
|
Tastekin I, Khandelwal A, Tadres D, Fessner ND, Truman JW, Zlatic M, Cardona A, Louis M. Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva. eLife 2018; 7:e38740. [PMID: 30465650 PMCID: PMC6264072 DOI: 10.7554/elife.38740] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the Drosophila melanogaster larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.
Collapse
Affiliation(s)
- Ibrahim Tastekin
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - David Tadres
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUnited States
| | - Nico D Fessner
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - James W Truman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Marta Zlatic
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Cardona
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthieu Louis
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUnited States
- Department of PhysicsUniversity of California Santa BarbaraCaliforniaUnited States
| |
Collapse
|
41
|
Baker KL, Dickinson M, Findley TM, Gire DH, Louis M, Suver MP, Verhagen JV, Nagel KI, Smear MC. Algorithms for Olfactory Search across Species. J Neurosci 2018; 38:9383-9389. [PMID: 30381430 PMCID: PMC6209839 DOI: 10.1523/jneurosci.1668-18.2018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.
Collapse
Affiliation(s)
- Keeley L Baker
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Michael Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena 91125, California
| | - Teresa M Findley
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon
- Department of Biology, University of Oregon, Eugene 97403, Oregon
| | - David H Gire
- Department of Psychology, University of Washington, Seattle 98195, Washington
| | - Matthieu Louis
- Neuroscience Research Institute, University of Santa Barbara, Santa Barbara 93106, California
- Department of Molecular, Cellular, and Developmental Biology, University of Santa Barbara, Santa Barbara 93106, California
- Department of Physics, University of Santa Barbara, Santa Barbara 93106, California
| | - Marie P Suver
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Justus V Verhagen
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon,
- Department of Psychology, University of Oregon, Eugene 97403, Oregon
| |
Collapse
|
42
|
Nemeth DC, Ammagarahalli B, Layne JE, Rollmann SM. Evolution of coeloconic sensilla in the peripheral olfactory system of Drosophila mojavensis. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:13-22. [PMID: 30107159 DOI: 10.1016/j.jinsphys.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Populations inhabiting habitats with different environmental conditions, such as climate, resource availability, predation, competition, can undergo selection for traits that are adaptive in one habitat and not the other, leading to divergence between populations. Changes in the olfactory systems of insects that rely on different host plants, for example, can occur in response to differences in sensory stimuli between habitats. In this study, we investigate the evolution of host preference by characterizing the coeloconic sensilla in Drosophila mojavensis, a species that breeds on different necrotic cacti across its geographic range. These cactus species differ in the volatile chemicals they emit, a primary sensory cue for host plant discrimination. Analysis of odor-evoked responses identified four coeloconic sensilla that were qualitatively similar to those of Drosophila melanogaster, but varied in the breadth and strength of their olfactory sensory neuron responses to some acids and amines. Variation in responses to certain odorants among D. mojavensis populations was also observed. Compared to D. melanogaster, there was a lack of sensitivity of antennal coeloconic type 3 (ac3) sensilla to primary ligands of OR35a across all populations. Consistent with this result was a lack of detectable Or35a gene expression. Using a comparative approach, we then examined odor specificity of ac3 sensilla for seven additional Drosophila species, and found that OR35a-like sensitivity may be limited to the melanogaster subgroup. The variation in specificity that was observed among species is not clearly attributable to the degree of ecological specialization, nor to the ecological niche.
Collapse
Affiliation(s)
- Daniel C Nemeth
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Byrappa Ammagarahalli
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
43
|
Álvarez-Salvado E, Licata AM, Connor EG, McHugh MK, King BMN, Stavropoulos N, Victor JD, Crimaldi JP, Nagel KI. Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies. eLife 2018; 7:e37815. [PMID: 30129438 PMCID: PMC6103744 DOI: 10.7554/elife.37815] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to behavior, but the algorithms underlying attraction are unclear. Here, we develop a high-throughput assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor. Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and history. Based on these data, we develop a navigation model that recapitulates the behavior of flies in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume. The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations provides a foundation for dissecting neural circuits that govern olfactory behavior.
Collapse
Affiliation(s)
- Efrén Álvarez-Salvado
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Angela M Licata
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Erin G Connor
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Margaret K McHugh
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Benjamin MN King
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Jonathan D Victor
- Institute for Computational BiomedicineWeill Cornell Medical CollegeNew YorkUnited States
- Feil Family Brain and Mind Research InstituteWeill Cornell Medical CollegeNew YorkUnited States
| | - John P Crimaldi
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Katherine I Nagel
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
44
|
Abstract
Sensory stimuli evoke spiking activities patterned across neurons and time that are hypothesized to encode information about their identity. Since the same stimulus can be encountered in a multitude of ways, how stable or flexible are these stimulus-evoked responses? Here we examine this issue in the locust olfactory system. In the antennal lobe, we find that both spatial and temporal features of odor-evoked responses vary in a stimulus-history dependent manner. The response variations are not random, but allow the antennal lobe circuit to enhance the uniqueness of the current stimulus. Nevertheless, information about the odorant identity is conf ounded due to this contrast enhancement computation. Notably, predictions from a linear logical classifier (OR-of-ANDs) that can decode information distributed in flexible subsets of neurons match results from behavioral experiments. In sum, our results suggest that a trade-off between stability and flexibility in sensory coding can be achieved using a simple computational logic. Sensory stimuli are encountered in multiple ways necessitating a flexible and adaptive neural population code for identification. Here, the authors show that the dynamics of odor coding in the locust antennal lobe varies with stimulus context so as to enhance the target stimulus representation.
Collapse
|
45
|
Information-theoretic analysis of realistic odor plumes: What cues are useful for determining location? PLoS Comput Biol 2018; 14:e1006275. [PMID: 29990365 PMCID: PMC6054425 DOI: 10.1371/journal.pcbi.1006275] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/20/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
Many species rely on olfaction to navigate towards food sources or mates. Olfactory navigation is a challenging task since odor environments are typically turbulent. While time-averaged odor concentration varies smoothly with the distance to the source, instaneous concentrations are intermittent and obtaining stable averages takes longer than the typical intervals between animals’ navigation decisions. How to effectively sample from the odor distribution to determine sampling location is the focus in this article. To investigate which sampling strategies are most informative about the location of an odor source, we recorded three naturalistic stimuli with planar lased-induced fluorescence and used an information-theoretic approach to quantify the information that different sampling strategies provide about sampling location. Specifically, we compared multiple sampling strategies based on a fixed number of coding bits for encoding the olfactory stimulus. When the coding bits were all allocated to representing odor concentration at a single sensor, information rapidly saturated. Using the same number of coding bits in two sensors provides more information, as does coding multiple samples at different times. When accumulating multiple samples at a fixed location, the temporal sequence does not yield a large amount of information and can be averaged with minimal loss. Furthermore, we show that histogram-equalization is not the most efficient way to use coding bits when using the olfactory sample to determine location. Navigating towards a food source or mating partner based on an animals’ sense of smell is a difficult task due to the complex spatiotemporal distribution of odor molecules. The most basic aspect of this task is the acquisition of samples from the environment. It is clear that odor concentration does not vary smoothly across space in many natural foraging environments. Using data from three different naturalistic environments, we compare different sampling strategies and assess their efficacy in determining the sources’ location. Our findings show that coarsely encoding the concentration of samples at separate sensors and/or multiple times provides more information than encoding fewer samples with higher resolution. Furthermore, coding resources should be focused on discriminating rare high-concentration odor samples, which are very informative about the sampling location. Such a nonlinear transformation can be implemented biologically by the receptor binding kinetics that bind odorants as a first stage of the sampling process. A further implication is that animals as well as computational models of algorithms can operate efficiently with a coarse representation of the odor concentration.
Collapse
|
46
|
Jeanne JM, Fişek M, Wilson RI. The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron 2018; 98:1198-1213.e6. [PMID: 29909998 PMCID: PMC6051339 DOI: 10.1016/j.neuron.2018.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Abstract
Each odorant receptor corresponds to a unique glomerulus in the brain. Projections from different glomeruli then converge in higher brain regions, but we do not understand the logic governing which glomeruli converge and which do not. Here, we use two-photon optogenetics to map glomerular connections onto neurons in the lateral horn, the region of the Drosophila brain that receives the majority of olfactory projections. We identify 39 morphological types of lateral horn neurons (LHNs) and show that different types receive input from different combinations of glomeruli. We find that different LHN types do not have independent inputs; rather, certain combinations of glomeruli converge onto many of the same LHNs and so are over-represented. Notably, many over-represented combinations are composed of glomeruli that prefer chemically dissimilar ligands whose co-occurrence indicates a behaviorally relevant "odor scene." The pattern of glomerulus-LHN connections thus represents a prediction of what ligand combinations will be most salient.
Collapse
Affiliation(s)
- James M Jeanne
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Mehmet Fişek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
47
|
The Olfactory Logic behind Fruit Odor Preferences in Larval and Adult Drosophila. Cell Rep 2018; 23:2524-2531. [DOI: 10.1016/j.celrep.2018.04.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
|
48
|
Patella P, Wilson RI. Functional Maps of Mechanosensory Features in the Drosophila Brain. Curr Biol 2018; 28:1189-1203.e5. [PMID: 29657118 PMCID: PMC5952606 DOI: 10.1016/j.cub.2018.02.074] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023]
Abstract
Johnston's organ is the largest mechanosensory organ in Drosophila. It contributes to hearing, touch, vestibular sensing, proprioception, and wind sensing. In this study, we used in vivo 2-photon calcium imaging and unsupervised image segmentation to map the tuning properties of Johnston's organ neurons (JONs) at the site where their axons enter the brain. We then applied the same methodology to study two key brain regions that process signals from JONs: the antennal mechanosensory and motor center (AMMC) and the wedge, which is downstream of the AMMC. First, we identified a diversity of JON response types that tile frequency space and form a rough tonotopic map. Some JON response types are direction selective; others are specialized to encode amplitude modulations over a specific range (dynamic range fractionation). Next, we discovered that both the AMMC and the wedge contain a tonotopic map, with a significant increase in tonotopy-and a narrowing of frequency tuning-at the level of the wedge. Whereas the AMMC tonotopic map is unilateral, the wedge tonotopic map is bilateral. Finally, we identified a subregion of the AMMC/wedge that responds preferentially to the coherent rotation of the two mechanical organs in the same angular direction, indicative of oriented steady air flow (directional wind). Together, these maps reveal the broad organization of the primary and secondary mechanosensory regions of the brain. They provide a framework for future efforts to identify the specific cell types and mechanisms that underlie the hierarchical re-mapping of mechanosensory information in this system.
Collapse
Affiliation(s)
- Paola Patella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
49
|
Behavioral readout of spatio-temporal codes in olfaction. Curr Opin Neurobiol 2018; 52:18-24. [PMID: 29694923 DOI: 10.1016/j.conb.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022]
Abstract
Neural recordings performed at an increasing scale and resolution have revealed complex, spatio-temporally precise patterns of activity in the olfactory system. Multiple models may explain the functional consequences of the spatio-temporal olfactory code, but the link to behavior remains unclear. Recent evidence in the field suggests a behavioral sensitivity to both fine spatial and temporal features in the code. How these features and combinations of features give rise to olfactory behavior is the subject of active research in the field. Modern genetic and optogenetic methods show great promise in testing the link between olfactory codes and behavior.
Collapse
|
50
|
Signaling Mode of the Broad-Spectrum Conserved CO 2 Receptor Is One of the Important Determinants of Odor Valence in Drosophila. Neuron 2018; 97:1153-1167.e4. [PMID: 29429938 DOI: 10.1016/j.neuron.2018.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Odor detection involves hundreds of olfactory receptors from diverse families, making modeling of hedonic valence of an odorant difficult, even in Drosophila melanogaster where most receptors have been deorphanised. We demonstrate that a broadly tuned heteromeric receptor that detects CO2 (Gr21a, Gr63a) and other odorants is a key determinant of valence along with a few members of the Odorant receptor family in a T-maze, but not in a trap assay. Gr21a and Gr63a have atypically high amino acid conservation in Dipteran insects, and they use both inhibition and activation to convey positive or negative valence for numerous odorants. Inhibitors elicit a robust Gr63a-dependent attraction, while activators, strong aversion. The attractiveness of inhibitory odorants increases with increasing background CO2 levels, providing a mechanism for behavior modulation in odor blends. In mosquitoes, valence is switched and activation of the orthologous receptor conveys attraction. Reverse chemical ecology enables the identification of inhibitory odorants to reduce attraction of mosquitoes to skin.
Collapse
|