1
|
Xu Z, Duan W, Yuan S, Zhang X, You C, Yu JT, Wang J, Li JD, Deng S, Shu Y. Deep brain stimulation alleviates Parkinsonian motor deficits through desynchronizing GABA release in mice. Nat Commun 2025; 16:3726. [PMID: 40253429 PMCID: PMC12009282 DOI: 10.1038/s41467-025-59113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
High-frequency deep brain stimulation (DBS) at subthalamic nucleus (STN) is an effective therapy for Parkinson's disease (PD), but the underlying mechanisms remain unclear. Here we find an important role of asynchronous release (AR) of GABA induced by high-frequency stimulation (HFS) in alleviating motor functions of dopamine-depleted male mice. Electrophysiological recordings reveal that 130-Hz HFS causes an initial inhibition followed by desynchronization of STN neurons, largely attributable to presynaptic GABA release. Low-frequency stimulation at 20 Hz, however, produces much weaker AR and negligible effects on neuronal firing. Further optogenetic and cell-ablation experiments demonstrate that activation of parvalbumin axons, but not non-parvalbumin axons, from external globus pallidus (GPe) is both necessary and sufficient for DBS effects. Reducing AR diminishes the high-frequency DBS effect, while increasing AR allows low-frequency DBS to achieve a therapeutic benefit. Therefore, asynchronous GABA release from GPe PV neurons may contribute significantly to the therapeutic effects of high-frequency DBS.
Collapse
Affiliation(s)
- Zongyi Xu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Duan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Shuyu Yuan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Chong You
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Suixin Deng
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Zhang CY, Yuan J, Jiang H, Sun P, Hui L, Xu L, Yu L, Guo Z, Wang L, Yang Y, Li M, Li SW, Yang J, Li W, Teng Z, Xiao X. Human mood disorder risk gene Synaptotagmin-14 contributes to mania-like behaviors in mice. Mol Psychiatry 2025:10.1038/s41380-025-02933-1. [PMID: 39966626 DOI: 10.1038/s41380-025-02933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) and major depressive disorder (MDD) are the most prevalent mood disorders and cause considerable burden worldwide. Compelling evidence suggests a pronounced overlap between these two disorders in clinical symptoms, treatment strategies, and genetic etiology. Here we leverage a BD GWAS (1822 cases and 4650 controls) and a MDD GWAS (5303 cases and 5337 controls), followed by independent replications, to investigate their shared genetic basis among Han Chinese. We have herein identified a lead SNP rs126277 at the 1q32.2 locus, which also exhibited nominal associations with mood disorders and several relevant sub-clinical phenotypes (e.g., mania) in European populations. Bulk tissue and single-cell eQTL analyses suggest that the risk G-allele of rs126277 predicted lower SYT14 mRNA expression in human brains. We generated mice lacking Syt14 (Syt14-/-) and mice with insufficient expression of Syt14 in the hippocampus (Syt14-KD), and found that depletion of Syt14 resulted in mania-like behaviors including hyperactivity and anti-depressive behaviors, resembling aspects of mood disorders. We also confirmed that deficiency of this gene in the hippocampus was sufficient to induce hyperactivity in mice. RNA-sequencing analyses of the hippocampus of Syt14-/- mice revealed significant upregulation of Per1 as well as downregulation of Slc7a11 and Ptprb. Ultrastructural analyses showed significant alteration of the number of vesicles within 50 nm to the active zone and the width of synaptic cleft in the ventral hippocampus of Syt14-/- mice compared with the control mice. Overall, we have identified a novel mood disorder risk gene SYT14, and confirmed its impact on mania-like behaviors. While the current study identifies an essential mood disorder risk gene, further investigations elucidating the detailed mechanisms by which SYT14 contributes to the pathogenesis of the illnesses are needed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Yuan
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Xu
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Yu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zeyi Guo
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lu Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianzhong Yang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaowei Teng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nat Commun 2024; 15:10741. [PMID: 39738049 PMCID: PMC11685451 DOI: 10.1038/s41467-024-54960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Christopher A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
4
|
Weingarten DJ, Shrestha A, Orlin DJ, Le Moing CL, Borchardt LA, Jackman SL. Synaptotagmins 3 and 7 mediate the majority of asynchronous release from synapses in the cerebellum and hippocampus. Cell Rep 2024; 43:114595. [PMID: 39116209 PMCID: PMC11410144 DOI: 10.1016/j.celrep.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel J Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Chloé L Le Moing
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luke A Borchardt
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Neyens DM, Brenner L, Calkins R, Winzenried ET, Ritter RC, Appleyard SM. CCK-sensitive C fibers activate NTS leptin receptor-expressing neurons via NMDA receptors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R383-R400. [PMID: 38105761 PMCID: PMC11381032 DOI: 10.1152/ajpregu.00238.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.
Collapse
Affiliation(s)
- Drew M Neyens
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Lynne Brenner
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Rowan Calkins
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Eric T Winzenried
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Robert C Ritter
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| |
Collapse
|
6
|
Bose D, Bera M, Norman CA, Timofeeva Y, Volynski KE, Krishnakumar SS. A minimal presynaptic protein machinery mediating synchronous and asynchronous exocytosis and short-term plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589559. [PMID: 38659918 PMCID: PMC11042279 DOI: 10.1101/2024.04.15.589559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic Ca2+ influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically-relevant conditions to delineate the minimal protein machinery sufficient to account for different modes of Ca2+-triggered vesicle fusion and short-term facilitation. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin, synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon Ca2+ activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of Ca2+-triggered fusion clamp reversal, govern the kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal Ca2+ concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the Ca2+-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.
Collapse
Affiliation(s)
- Dipayan Bose
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Manindra Bera
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Cell Biology, Yale University School of Medicine, New Haven, USA
| | - Chris A Norman
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Kirill E Volynski
- Cell Biology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Shyam S Krishnakumar
- Yale Nanobiology Institute, Yale University School of Medicine, New Haven, USA
- Department of Neurology, Yale University School of Medicine, New Haven, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
7
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
8
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation. PLoS One 2024; 19:e0300529. [PMID: 38498506 PMCID: PMC10947677 DOI: 10.1371/journal.pone.0300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line (escapist) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a (syt7a) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate independently from those regulating acute threshold regulation.
Collapse
Affiliation(s)
- Elelbin A. Ortiz
- Department of Neuroscience, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Philip D. Campbell
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Psychiatry, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| |
Collapse
|
9
|
Vandael D, Jonas P. Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal. Science 2024; 383:eadg6757. [PMID: 38452088 DOI: 10.1126/science.adg6757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.
Collapse
Affiliation(s)
- David Vandael
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| |
Collapse
|
10
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution on Chromosome 25 in zebrafish distinguishes between development and acute regulation of behavioral thresholds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554673. [PMID: 37662318 PMCID: PMC10473726 DOI: 10.1101/2023.08.25.554673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line ( escapist ) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a ( syt7a ) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate largely independently from those regulating acute threshold regulation.
Collapse
|
11
|
Malagon G, Myeong J, Klyachko VA. Two forms of asynchronous release with distinctive spatiotemporal dynamics in central synapses. eLife 2023; 12:e84041. [PMID: 37166282 PMCID: PMC10174687 DOI: 10.7554/elife.84041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Asynchronous release is a ubiquitous form of neurotransmitter release that persists for tens to hundreds of milliseconds after an action potential. How asynchronous release is organized and regulated at the synaptic active zone (AZ) remains debatable. Using nanoscale-precision imaging of individual release events in rat hippocampal synapses, we observed two spatially distinct subpopulations of asynchronous events, ~75% of which occurred inside the AZ and with a bias towards the AZ center, while ~25% occurred outside of the functionally defined AZ, that is, ectopically. The two asynchronous event subpopulations also differed from each other in temporal properties, with ectopic events occurring at significantly longer time intervals from synchronous events than the asynchronous events inside the AZ. Both forms of asynchronous release did not, to a large extent, utilize the same release sites as synchronous events. The two asynchronous event subpopulations also differ from synchronous events in some aspects of exo-endocytosis coupling, particularly in the contribution from the fast calcium-dependent endocytosis. These results identify two subpopulations of asynchronous release events with distinctive organization and spatiotemporal dynamics.
Collapse
Affiliation(s)
- Gerardo Malagon
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
12
|
Caballero-Florán RN, Bendahmane M, Gupta JP, Chen X, Wu X, Morales A, Anantharam A, Jenkins PM. Synaptotagmin-7 facilitates acetylcholine release in splanchnic nerve-chromaffin cell synapses during nerve activity. Neurosci Lett 2023; 800:137129. [PMID: 36796621 PMCID: PMC10145958 DOI: 10.1016/j.neulet.2023.137129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Disturbances that threaten homeostasis elicit activation of the sympathetic nervous system (SNS) and the adrenal medulla. The effectors discharge as a unit to drive global and immediate changes in whole-body physiology. Descending sympathetic information is conveyed to the adrenal medulla via preganglionic splanchnic fibers. These fibers pass into the gland and synapse onto chromaffin cells, which synthesize, store, and secrete catecholamines and vasoactive peptides. While the importance of the sympatho-adrenal branch of the autonomic nervous system has been appreciated for many decades, the mechanisms underlying transmission between presynaptic splanchnic neurons and postsynaptic chromaffin cells have remained obscure. In contrast to chromaffin cells, which have enjoyed sustained attention as a model system for exocytosis, even the Ca2+ sensors that are expressed within splanchnic terminals have not yet been identified. This study shows that a ubiquitous Ca2+-binding protein, synaptotagmin-7 (Syt7), is expressed within the fibers that innervate the adrenal medulla, and that its absence can alter synaptic transmission in the preganglionic terminals of chromaffin cells. The prevailing impact in synapses that lack Syt7 is a decrease in synaptic strength and neuronal short-term plasticity. Evoked excitatory postsynaptic currents (EPSCs) in Syt7 KO preganglionic terminals are smaller in amplitude than in wild-type synapses stimulated in an identical manner. Splanchnic inputs also display robust short-term presynaptic facilitation, which is compromised in the absence of Syt7. These data reveal, for the first time, a role for any synaptotagmin at the splanchnic-chromaffin cell synapse. They also suggest that Syt7 has actions at synaptic terminals that are conserved across central and peripheral branches of the nervous system.
Collapse
Affiliation(s)
- René N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Mounir Bendahmane
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Xiaohuan Chen
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Xiaojun Wu
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Alina Morales
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States
| | - Arun Anantharam
- Department of Neuroscience, University of Toledo, Toledo, OH 43614, United States.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
13
|
Weingarten DJ, Shrestha A, Juda-Nelson K, Kissiwaa SA, Spruston E, Jackman SL. Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 2022; 611:320-325. [PMID: 36261524 DOI: 10.1038/s41586-022-05337-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/12/2022] [Indexed: 01/09/2023]
Abstract
Sustained neuronal activity demands a rapid resupply of synaptic vesicles to maintain reliable synaptic transmission. Such vesicle replenishment is accelerated by submicromolar presynaptic Ca2+ signals by an as-yet unidentified high-affinity Ca2+ sensor1,2. Here we identify synaptotagmin-3 (SYT3)3,4 as that presynaptic high-affinity Ca2+ sensor, which drives vesicle replenishment and short-term synaptic plasticity. Synapses in Syt3 knockout mice exhibited enhanced short-term depression, and recovery from depression was slower and insensitive to presynaptic residual Ca2+. During sustained neuronal firing, SYT3 accelerated vesicle replenishment and increased the size of the readily releasable pool. SYT3 also mediated short-term facilitation under conditions of low release probability and promoted synaptic enhancement together with another high-affinity synaptotagmin, SYT7 (ref. 5). Biophysical modelling predicted that SYT3 mediates both replenishment and facilitation by promoting the transition of loosely docked vesicles to tightly docked, primed states. Our results reveal a crucial role for presynaptic SYT3 in the maintenance of reliable high-frequency synaptic transmission. Moreover, multiple forms of short-term plasticity may converge on a mechanism of reversible, Ca2+-dependent vesicle docking.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kessa Juda-Nelson
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah A Kissiwaa
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Evan Spruston
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
14
|
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci 2022; 16:1037721. [DOI: 10.3389/fncel.2022.1037721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.
Collapse
|
15
|
Suo H, Xiao N, Wang K. Potential roles of synaptotagmin family members in cancers: Recent advances and prospects. Front Med (Lausanne) 2022; 9:968081. [PMID: 36004367 PMCID: PMC9393329 DOI: 10.3389/fmed.2022.968081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
With the continuous development of bioinformatics and public database, more and more genes that play a role in cancers have been discovered. Synaptotagmins (SYTs) are abundant, evolutionarily conserved integral membrane proteins composed of a short N-terminus, a variable linker domain, a single transmembrane domain, and two C2 domains, and they constitute a family of 17 isoforms. The synaptotagmin family members are known to regulate calcium-dependent membrane fusion events. Some SYTs play roles in hormone secretion or neurotransmitter release or both, and much evidence supports SYTs as Ca2+ sensors of exocytosis. Since 5 years ago, an increasing number of studies have found that SYTs also played important roles in the occurrence and development of lung cancer, gastric cancer, colon cancer, and other cancers. Down-regulation of SYTs inhibited cell proliferation, migration, and invasion of cancer cells, but promoted cell apoptosis. Growth of peritoneal nodules is inhibited and survival is prolonged in mice administrated with siSYTs intraperitoneally. Therefore, most studies have found SYTs serve as an oncogene after overexpression and may become potential prognostic biomarkers for multiple cancers. This article provides an overview of recent studies that focus on SYT family members’ roles in cancers and highlights the advances that have been achieved.
Collapse
Affiliation(s)
- Huandan Suo
- Department of Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Kewei Wang,
| |
Collapse
|
16
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
18
|
Mendonça PRF, Tagliatti E, Langley H, Kotzadimitriou D, Zamora-Chimal CG, Timofeeva Y, Volynski KE. Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone. Nat Commun 2022; 13:3497. [PMID: 35715404 PMCID: PMC9206079 DOI: 10.1038/s41467-022-31070-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.
Collapse
Affiliation(s)
- Philipe R F Mendonça
- University College London Institute of Neurology, London, UK. .,Department of Physiology and Biophysics, Federal University of Minas Gerais, Gerais, Brazil.
| | - Erica Tagliatti
- University College London Institute of Neurology, London, UK
| | - Helen Langley
- University College London Institute of Neurology, London, UK
| | | | | | - Yulia Timofeeva
- University College London Institute of Neurology, London, UK. .,Department of Computer Science, University of Warwick, Coventry, UK.
| | | |
Collapse
|
19
|
Kusick GF, Ogunmowo TH, Watanabe S. Transient docking of synaptic vesicles: Implications and mechanisms. Curr Opin Neurobiol 2022; 74:102535. [PMID: 35398664 PMCID: PMC9167714 DOI: 10.1016/j.conb.2022.102535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
As synaptic vesicles fuse, they must continually be replaced with new docked, fusion-competent vesicles to sustain neurotransmission. It has long been appreciated that vesicles are recruited to docking sites in an activity-dependent manner. However, once entering the sites, vesicles were thought to be stably docked, awaiting calcium signals. Based on recent data from electrophysiology, electron microscopy, biochemistry, and computer simulations, a picture emerges in which vesicles can rapidly and reversibly transit between docking and undocking during activity. This "transient docking" can account for many aspects of synaptic physiology. In this review, we cover recent evidence for transient docking, physiological processes at the synapse that it may support, and progress on the underlying mechanisms. We also discuss an open question: what determines for how long and whether vesicles stay docked, or eventually undock?
Collapse
Affiliation(s)
- Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@ultrafastgrant
| | - Tyler H Ogunmowo
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@unculturedTy
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
21
|
Lai Y, Fois G, Flores JR, Tuvim MJ, Zhou Q, Yang K, Leitz J, Peters J, Zhang Y, Pfuetzner RA, Esquivies L, Jones P, Frick M, Dickey BF, Brunger AT. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature 2022; 603:949-956. [PMID: 35322233 PMCID: PMC8967716 DOI: 10.1038/s41586-022-04543-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Membrane fusion triggered by Ca2+ is orchestrated by a conserved set of proteins to mediate synaptic neurotransmitter release, mucin secretion and other regulated exocytic processes1-4. For neurotransmitter release, the Ca2+ sensitivity is introduced by interactions between the Ca2+ sensor synaptotagmin and the SNARE complex5, and sequence conservation and functional studies suggest that this mechanism is also conserved for mucin secretion6. Disruption of Ca2+-triggered membrane fusion by a pharmacological agent would have therapeutic value for mucus hypersecretion as it is the major cause of airway obstruction in the pathophysiology of respiratory viral infection, asthma, chronic obstructive pulmonary disease and cystic fibrosis7-11. Here we designed a hydrocarbon-stapled peptide that specifically disrupts Ca2+-triggered membrane fusion by interfering with the so-called primary interface between the neuronal SNARE complex and the Ca2+-binding C2B domain of synaptotagmin-1. In reconstituted systems with these neuronal synaptic proteins or with their airway homologues syntaxin-3, SNAP-23, VAMP8, synaptotagmin-2, along with Munc13-2 and Munc18-2, the stapled peptide strongly suppressed Ca2+-triggered fusion at physiological Ca2+ concentrations. Conjugation of cell-penetrating peptides to the stapled peptide resulted in efficient delivery into cultured human airway epithelial cells and mouse airway epithelium, where it markedly and specifically reduced stimulated mucin secretion in both systems, and substantially attenuated mucus occlusion of mouse airways. Taken together, peptides that disrupt Ca2+-triggered membrane fusion may enable the therapeutic modulation of mucin secretory pathways.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jose R Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Cell & Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt University, TN, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - John Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Fudan University, Shanghai, China
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany.
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Henry D, Joselevitch C, Matthews GG, Wollmuth LP. Expression and distribution of synaptotagmin family members in the zebrafish retina. J Comp Neurol 2022; 530:705-728. [PMID: 34468021 PMCID: PMC8792163 DOI: 10.1002/cne.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.
Collapse
Affiliation(s)
- Diane Henry
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Christina Joselevitch
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Gary G. Matthews
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Lonnie P. Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| |
Collapse
|
23
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
24
|
Guzikowski NJ, Kavalali ET. Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission. Front Synaptic Neurosci 2022; 13:796498. [PMID: 35002671 PMCID: PMC8727373 DOI: 10.3389/fnsyn.2021.796498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Abstract
Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly diverse synapses onto a single master curve. This universality is complemented by the capacity of the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that uniquely identify each synapse. The theory provides a means to detect cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing data sets. The theory is further applied to establish connections between molecular constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off relation between the transmission rate and fidelity shows how transmission failure can be controlled by changing the microscopic properties of the vesicle pool and SNARE complexes. The established condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of synapses are crucial determinants of the computational and information-processing functions in synaptic transmission.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Olga K Dudko
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
26
|
Eshra A, Schmidt H, Eilers J, Hallermann S. Calcium dependence of neurotransmitter release at a high fidelity synapse. eLife 2021; 10:70408. [PMID: 34612812 PMCID: PMC8494478 DOI: 10.7554/elife.70408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
The Ca2+-dependence of the priming, fusion, and replenishment of synaptic vesicles are fundamental parameters controlling neurotransmitter release and synaptic plasticity. Despite intense efforts, these important steps in the synaptic vesicles’ cycle remain poorly understood due to the technical challenge in disentangling vesicle priming, fusion, and replenishment. Here, we investigated the Ca2+-sensitivity of these steps at mossy fiber synapses in the rodent cerebellum, which are characterized by fast vesicle replenishment mediating high-frequency signaling. We found that the basal free Ca2+ concentration (<200 nM) critically controls action potential-evoked release, indicating a high-affinity Ca2+ sensor for vesicle priming. Ca2+ uncaging experiments revealed a surprisingly shallow and non-saturating relationship between release rate and intracellular Ca2+ concentration up to 50 μM. The rate of vesicle replenishment during sustained elevated intracellular Ca2+ concentration exhibited little Ca2+-dependence. Finally, quantitative mechanistic release schemes with five Ca2+ binding steps incorporating rapid vesicle replenishment via parallel or sequential vesicle pools could explain our data. We thus show that co-existing high- and low-affinity Ca2+ sensors mediate priming, fusion, and replenishment of synaptic vesicles at a high-fidelity synapse.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Weyrer C, Turecek J, Harrison B, Regehr WG. Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse. Cell Rep 2021; 36:109719. [PMID: 34551307 PMCID: PMC9152841 DOI: 10.1016/j.celrep.2021.109719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022] Open
Abstract
Synaptotagmin 7 (Syt7) is a high-affinity calcium sensor that is implicated in multiple aspects of synaptic transmission. Here, we study the influence of Syt7 on the climbing fiber (CF) to Purkinje cell (PC) synapse. We find that small facilitation and prominent calcium-dependent recovery from depression at this synapse do not rely on Syt7 and that Syt7 is not normally present in CFs. We expressed Syt7 in CFs to assess the consequences of introducing Syt7 to a synapse that normally lacks Syt7. Syt7 expression does not promote asynchronous release or accelerate recovery from depression. Syt7 decreases the excitatory postsynaptic current (EPSC) magnitude, consistent with a decrease in the initial probability of release (PR). Syt7 also increases synaptic facilitation to such a large extent that it could not arise solely as an indirect consequence of decreased PR. Thus, the primary consequence of Syt7 expression in CFs, which normally lack Syt7, is to promote synaptic facilitation.
Collapse
Affiliation(s)
- Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bailey Harrison
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Yang Y, Paul A, Bach TN, Huang ZJ, Zhang MQ. Single-cell alternative polyadenylation analysis delineates GABAergic neuron types. BMC Biol 2021; 19:144. [PMID: 34301239 PMCID: PMC8299648 DOI: 10.1186/s12915-021-01076-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking. Results Here, we described a novel computational framework, SAPAS, that utilizes 3′-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3′ UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions. Conclusions We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01076-3.
Collapse
Affiliation(s)
- Yang Yang
- Present Address: Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Harbor, Cold Spring, NY, 11724, USA.,Deparment of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Thao Nguyen Bach
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Harbor, Cold Spring, NY, 11724, USA.,Deparment of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
29
|
Yang CH, Ho WK, Lee SH. Postnatal maturation of glutamate clearance and release kinetics at the rat and mouse calyx of Held synapses. Synapse 2021; 75:e22215. [PMID: 34057239 DOI: 10.1002/syn.22215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 11/09/2022]
Abstract
Although calyx of Held synapses undergo dramatic changes around the hearing onset, previous in vivo studies suggest that the calyx synapses undergo further post-hearing maturation process. While developmental changes over the hearing onset have been extensively studied, this post-hearing maturation process remained relatively little investigated. Because of post-hearing maturation, previous results from studies around hearing onset and studies of post-hearing calyx synapses are somewhat inconsistent. Here, we characterized the post-hearing maturation of calyx synapses with regard to in vitro electrophysiological properties in rats and mice. We found that parameters for residual glutamate in the cleft during a train, EPSC kinetics, and vesicle pool size became close to a full mature level by P14, but they further matured until P16 in the rats. Consistently, the phasic and slow EPSCs evoked by action potential trains at P16 calyx synapses were not different from those at P18 or P25 under physiological extracellular [Ca2+ ]o (1.2 mM). In contrast, the parameters for residual current and EPSC kinetics displayed drastic changes until P16 in mice, and slow EPSCs during the train further decreased between P16 and P18, suggesting that maturation of calyx synapses progresses at least up to P16 in rats and P18 in mice.
Collapse
Affiliation(s)
- Che Ho Yang
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Cell Physiology Lab, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Tawfik B, Martins JS, Houy S, Imig C, Pinheiro PS, Wojcik SM, Brose N, Cooper BH, Sørensen JB. Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca 2+-dependent priming. eLife 2021; 10:64527. [PMID: 33749593 PMCID: PMC8012061 DOI: 10.7554/elife.64527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.
Collapse
Affiliation(s)
- Bassam Tawfik
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Joana S Martins
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Paulo S Pinheiro
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
32
|
Li J, Deng S, He Q, Ke W, Shu Y. Asynchronous Glutamate Release at Autapses Regulates Spike Reliability and Precision in Mouse Neocortical Pyramidal Cells. Cereb Cortex 2021; 31:2278-2290. [PMID: 33279969 DOI: 10.1093/cercor/bhaa361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Autapses are self-synapses of a neuron. Inhibitory autapses in the neocortex release GABA in 2 modes, synchronous release and asynchronous release (AR), providing precise and prolonged self-inhibition, respectively. A subpopulation of neocortical pyramidal cells (PCs) also forms functional autapses, activation of which promotes burst firing by strong unitary autaptic response that reflects synchronous glutamate release. However, it remains unclear whether AR occurs at PC autapses and plays a role in neuronal signaling. We performed whole-cell recordings from layer-5 PCs in slices of mouse prefrontal cortex (PFC). In response to action potential (AP) burst, 63% of PCs showed robust long-lasting autaptic AR, much stronger than synaptic AR between neighboring PCs. The autaptic AR is mediated predominantly by P/Q-type Ca2+ channels, and its strength depends on the intensity of PC activity and the level of residual Ca2+. Further experiments revealed that autaptic AR enhances spiking activities but reduces the temporal precision of post-burst APs. Together, the results show the occurrence of AR at PC autapses, the delayed and persistent glutamate AR causes self-excitation in individual PCs but may desynchronize the autaptic PC population. Thus, glutamatergic autapses should be essential elements in PFC and contribute to cortical information processing.
Collapse
Affiliation(s)
- Junlong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Ke
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
34
|
The potassium channel subunit K vβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A 2020; 117:29937-29947. [PMID: 33168717 PMCID: PMC7703594 DOI: 10.1073/pnas.2000790117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nerve terminals generally engage in two opposite and essential forms of synaptic plasticity (facilitation or depression) that play critical roles in learning and memory. While the molecular components of both types of terminals are similar with regards to vesicle fusion, much less is known about their molecular control of electrical signaling. Measurements of the electrical impulses (action potentials) underlying these two forms of plasticity have been difficult in small nerve terminals due to their size. In this study we deployed optical physiology measurements to overcome this size barrier. Here, we identify a unique mechanism (Kvβ1 subunit) that enables broadening of the presynaptic action potentials that selectively supports synaptic facilitation, but does not alter any other aspects of nerve terminal function. Analysis of the presynaptic action potential’s (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvβ1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvβ1 blocked all broadening of the APsyn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kv channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.
Collapse
|
35
|
Zhou M, Melin MD, Xu W, Südhof TC. Dysfunction of parvalbumin neurons in the cerebellar nuclei produces an action tremor. J Clin Invest 2020; 130:5142-5156. [PMID: 32634124 PMCID: PMC7524475 DOI: 10.1172/jci135802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Essential tremor is a common brain disorder affecting millions of people, yet the neuronal mechanisms underlying this prevalent disease remain elusive. Here, we showed that conditional deletion of synaptotagmin-2, the fastest Ca2+ sensor for synaptic neurotransmitter release, from parvalbumin neurons in mice caused an action tremor syndrome resembling the core symptom of essential tremor patients. Combining brain region-specific and cell type-specific genetic manipulation methods, we found that deletion of synaptotagmin-2 from excitatory parvalbumin-positive neurons in cerebellar nuclei was sufficient to generate an action tremor. The synaptotagmin-2 deletion converted synchronous into asynchronous neurotransmitter release in projections from cerebellar nuclei neurons onto gigantocellular reticular nucleus neurons, which might produce an action tremor by causing signal oscillations during movement. The tremor was rescued by completely blocking synaptic transmission with tetanus toxin in cerebellar nuclei, which also reversed the tremor phenotype in the traditional harmaline-induced essential tremor model. Using a promising animal model for action tremor, our results thus characterized a synaptic circuit mechanism that may underlie the prevalent essential tremor disorder.
Collapse
Affiliation(s)
- Mu Zhou
- Department of Molecular and Cellular Physiology and
| | | | - Wei Xu
- Department of Molecular and Cellular Physiology and
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
36
|
Huson V, Meijer M, Dekker R, Ter Veer M, Ruiter M, van Weering JR, Verhage M, Cornelisse LN. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. eLife 2020; 9:55713. [PMID: 32831174 PMCID: PMC7500951 DOI: 10.7554/elife.55713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/23/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Rien Dekker
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Mirelle Ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
37
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
38
|
The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms. J Neurosci 2020; 39:8209-8216. [PMID: 31619489 DOI: 10.1523/jneurosci.1158-19.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/01/2023] Open
Abstract
Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.
Collapse
|
39
|
Chamberland S, Timofeeva Y, Evstratova A, Norman CA, Volynski K, Tóth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse 2020; 74:e22178. [PMID: 32598500 PMCID: PMC7685170 DOI: 10.1002/syn.22178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF–CA3 synapse. We found that asynchronous release at MF–CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst‐evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q‐type voltage‐gated Ca2+ channels, while the contribution of N‐type VGCCs was limited. Overall, our results uncover the determinants of long‐lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.
Collapse
Affiliation(s)
- Simon Chamberland
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK.,Centre for Complexity Science, University of Warwick, Coventry, UK.,University College London Institute of Neurology, University College London, London, UK
| | - Alesya Evstratova
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Christopher A Norman
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Kirill Volynski
- University College London Institute of Neurology, University College London, London, UK
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proc Natl Acad Sci U S A 2020; 117:14493-14502. [PMID: 32513685 DOI: 10.1073/pnas.2000265117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.
Collapse
|
41
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
42
|
Ruiter M, Kádková A, Scheutzow A, Malsam J, Söllner TH, Sørensen JB. An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission. Cell Rep 2020; 26:2340-2352.e5. [PMID: 30811985 DOI: 10.1016/j.celrep.2019.01.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kádková
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Scheutzow
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Huson V, Regehr WG. Diverse roles of Synaptotagmin-7 in regulating vesicle fusion. Curr Opin Neurobiol 2020; 63:42-52. [PMID: 32278209 DOI: 10.1016/j.conb.2020.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
Synaptotagmin 7 (Syt7) is a multifunctional calcium sensor expressed throughout the body. Its high calcium affinity makes it well suited to act in processes triggered by modest calcium increases within cells. In synaptic transmission, Syt7 has been shown to mediate asynchronous neurotransmitter release, facilitation, and vesicle replenishment. In this review we provide an update on recent developments, and the newly emerging roles of Syt7 in frequency invariant synaptic transmission and in suppressing spontaneous release. Additionally, we discuss Syt7's regulation of membrane fusion in non-neuronal cells, and its involvement in disease. How such diversity of functions is regulated remains an open question. We discuss several potential factors including temperature, presynaptic calcium signals, the localization of Syt7, and its interaction with other Syt isoforms.
Collapse
|
44
|
Bridi MS, Shin S, Huang S, Kirkwood A. Dynamic Recovery from Depression Enables Rate Encoding in Inhibitory Synapses. iScience 2020; 23:100940. [PMID: 32163896 PMCID: PMC7066227 DOI: 10.1016/j.isci.2020.100940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/18/2019] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Parvalbumin-expressing fast-spiking interneurons (PV-INs) control network firing and the gain of cortical response to sensory stimulation. Crucial for these functions, PV-INs can sustain high-frequency firing with no accommodation. However, PV-INs also exhibit short-term depression (STD) during sustained activation, largely due to the depletion of synaptic resources (vesicles). In most synapses the rate of replenishment of depleted vesicles is constant, determining an inverse relationship between depression levels and the activation rate, which theoretically, severely limits rate-coding capabilities. We examined STD of the PV-IN to pyramidal cell synapse in the mouse visual cortex and found that in these synapses the recovery from depression is not constant but increases linearly with the frequency of use. By combining modeling, dynamic clamp, and optogenetics, we demonstrated that this recovery enables PV-INs to reduce pyramidal cell firing in a linear manner, which theoretically is crucial for controlling the gain of cortical visual responses. Recovery rate from depression in inhibitory synapses from PV-INs is use dependent Dynamic recovery from depression enables rate coding in inhibitory inputs PV-IN synapses reduce pyramidal firing in a frequency-dependent manner
Collapse
Affiliation(s)
- Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Sangyep Shin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA; The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
46
|
Doc2 Proteins Are Not Required for the Increased Spontaneous Release Rate in Synaptotagmin-1-Deficient Neurons. J Neurosci 2020; 40:2606-2617. [PMID: 32098902 DOI: 10.1523/jneurosci.0309-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
Regulated secretion is controlled by Ca2+ sensors with different affinities and subcellular distributions. Inactivation of Syt1 (synaptotagmin-1), the main Ca2+ sensor for synchronous neurotransmission in many neurons, enhances asynchronous and spontaneous release rates, suggesting that Syt1 inhibits other sensors with higher Ca2+ affinities and/or lower cooperativities. Such sensors could include Doc2a and Doc2b, which have been implicated in spontaneous and asynchronous neurotransmitter release and compete with Syt1 for binding SNARE complexes. Here, we tested this hypothesis using triple-knock-out mice. Inactivation of Doc2a and Doc2b in Syt1-deficient neurons did not reduce the high spontaneous release rate. Overexpression of Doc2b variants in triple-knock-out neurons reduced spontaneous release but did not rescue synchronous release. A chimeric construct in which the C2AB domain of Syt1 was substituted by that of Doc2b did not support synchronous release either. Conversely, the soluble C2AB domain of Syt1 did not affect spontaneous release. We conclude that the high spontaneous release rate in synaptotagmin-deficient neurons does not involve the binding of Doc2 proteins to Syt1 binding sites in the SNARE complex. Instead, our results suggest that the C2AB domains of Syt1 and Doc2b specifically support synchronous and spontaneous release by separate mechanisms. (Both male and female neurons were studied without sex determination.)SIGNIFICANCE STATEMENT Neurotransmission in the brain is regulated by presynaptic Ca2+ concentrations. Multiple Ca2+ sensor proteins contribute to synchronous (Syt1, Syt2), asynchronous (Syt7), and spontaneous (Doc2a/Doc2b) phases of neurotransmitter release. Genetic ablation of synchronous release was previously shown to affect other release phases, suggesting that multiple sensors may compete for similar release sites, together encoding stimulus-secretion coupling over a large range of synaptic Ca2+ concentrations. Here, we investigated the extent of functional overlap between Syt1, Doc2a, and Doc2b by reintroducing wild-type and mutant proteins in triple-knock-out neurons, and conclude that the sensors are highly specialized for different phases of release.
Collapse
|
47
|
Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex. Neuron 2020; 105:522-533.e4. [DOI: 10.1016/j.neuron.2019.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
|
48
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
49
|
Fritsche L, Teuber-Hanselmann S, Soub D, Harnisch K, Mairinger F, Junker A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol 2019; 30:524-540. [PMID: 31663645 PMCID: PMC8018161 DOI: 10.1111/bpa.12800] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR‐330‐3p, miR‐4286, miR‐4488, let‐7e‐5p, miR‐432‐5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse‐associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.
Collapse
Affiliation(s)
- Lena Fritsche
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | | | - Daniel Soub
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Kim Harnisch
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, D-45147, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| |
Collapse
|
50
|
Doc2b Ca 2+ binding site mutants enhance synaptic release at rest at the expense of sustained synaptic strength. Sci Rep 2019; 9:14408. [PMID: 31594980 PMCID: PMC6783474 DOI: 10.1038/s41598-019-50684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022] Open
Abstract
Communication between neurons involves presynaptic neurotransmitter release which can be evoked by action potentials or occur spontaneously as a result of stochastic vesicle fusion. The Ca2+-binding double C2 proteins Doc2a and –b were implicated in spontaneous and asynchronous evoked release, but the mechanism remains unclear. Here, we compared wildtype Doc2b with two Ca2+ binding site mutants named DN and 6A, previously classified as gain- and loss-of-function mutants. They carry the substitutions D218,220N or D163,218,220,303,357,359A respectively. We found that both mutants bound phospholipids at low Ca2+ concentrations and were membrane-associated in resting neurons, thus mimicking a Ca2+-activated state. Their overexpression in hippocampal primary cultured neurons had similar effects on spontaneous and evoked release, inducing high mEPSC frequencies and increased short-term depression. Together, these data suggest that the DN and 6A mutants both act as gain-of-function mutants at resting conditions.
Collapse
|