1
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
2
|
Chinta S, Pluta SR. Whisking and locomotion are jointly represented in superior colliculus neurons. PLoS Biol 2025; 23:e3003087. [PMID: 40193391 PMCID: PMC12005515 DOI: 10.1371/journal.pbio.3003087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Active sensation requires the brain to interpret external stimuli against an ongoing estimate of body position. While internal estimates of body position are often ascribed to the cerebral cortex, we examined the midbrain superior colliculus (SC), due to its close relationship with the sensory periphery as well as higher, motor-related brain regions. Using high-density electrophysiology and movement tracking, we discovered that the on-going kinematics of whisker motion and locomotion speed accurately predict the firing rate of mouse SC neurons. Neural activity was best predicted by movements occurring either in the past, present, or future, indicating that the SC population continuously estimates a trajectory of self-motion. A combined representation of slow and fast whisking features predicted absolute whisker angle at high temporal resolution. Sensory reafference played at least a partial role in shaping this feature tuning. Taken together, these data indicate that the SC contains a joint representation of whisking and locomotor features that is potentially useful in guiding complex orienting movements involving the face and limbs.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R. Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O'Connor D, Fontolan L, Rumbaugh G. Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics. Nat Commun 2025; 16:812. [PMID: 39827187 PMCID: PMC11743135 DOI: 10.1038/s41467-025-56125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O'Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
4
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
5
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Gardères PM, Le Gal S, Rousseau C, Mamane A, Ganea DA, Haiss F. Coexistence of state, choice, and sensory integration coding in barrel cortex LII/III. Nat Commun 2024; 15:4782. [PMID: 38839747 PMCID: PMC11153558 DOI: 10.1038/s41467-024-49129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
During perceptually guided decisions, correlates of choice are found as upstream as in the primary sensory areas. However, how well these choice signals align with early sensory representations, a prerequisite for their interpretation as feedforward substrates of perception, remains an open question. We designed a two alternative forced choice task (2AFC) in which male mice compared stimulation frequencies applied to two adjacent vibrissae. The optogenetic silencing of individual columns in the primary somatosensory cortex (wS1) resulted in predicted shifts of psychometric functions, demonstrating that perception depends on focal, early sensory representations. Functional imaging of layer II/III single neurons revealed mixed coding of stimuli, choices and engagement in the task. Neurons with multi-whisker suppression display improved sensory discrimination and had their activity increased during engagement in the task, enhancing selectively representation of the signals relevant to solving the task. From trial to trial, representation of stimuli and choice varied substantially, but mostly orthogonally to each other, suggesting that perceptual variability does not originate from wS1 fluctuations but rather from downstream areas. Together, our results highlight the role of primary sensory areas in forming a reliable sensory substrate that could be used for flexible downstream decision processes.
Collapse
Affiliation(s)
- Pierre-Marie Gardères
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Sébastien Le Gal
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Charly Rousseau
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Alexandre Mamane
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Dan Alin Ganea
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- University of Basel, Department of Biomedicine, 4001, Basel, Switzerland
| | - Florent Haiss
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
| |
Collapse
|
7
|
Alachkar A, Phan A, Dabbous T, Alhassen S, Alhassen W, Reynolds B, Rubinstein M, Ferré S, Civelli O. Humanized dopamine D 4.7 receptor male mice display risk-taking behavior and deficits of social recognition and working memory in light/dark-dependent manner. J Neurosci Res 2024; 102:e25299. [PMID: 38361407 PMCID: PMC11503891 DOI: 10.1002/jnr.25299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
The dopamine D4 receptor 7-repeat allele (D4.7 R) has been linked with psychiatric disorders such as attention-deficit-hyperactivity disorder, autism, and schizophrenia. However, the highly diverse study populations and often contradictory findings make it difficult to draw reliable conclusions. The D4.7 R has the potential to explain individual differences in behavior. However, there is still a great deal of ambiguity surrounding whether it is causally connected to the etiology of psychiatric disorders. Therefore, humanized D4.7 R mice, with the long third intracellular domain of the human D4.7 R, may provide a valuable tool to examine the relationship between the D4.7 R variant and specific behavioral phenotypes. We report that D4.7 R male mice carrying the humanized D4.7 R variant exhibit distinct behavioral features that are dependent on the light-dark cycle. The behavioral phenotype was characterized by a working memory deficit, delayed decision execution in the light phase, decreased stress and anxiety, and increased risk behavior in the dark phase. Further, D4.7 R mice displayed impaired social recognition memory in both the light and dark phases. These findings provide insight into the potential causal relationship between the human D4.7 R variant and specific behaviors and encourage further consideration of dopamine D4 receptor (DRD4) ligands as novel treatments for psychiatric disorders in which D4.7 R has been implicated.
Collapse
Affiliation(s)
- Amal Alachkar
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, CA 92697, USA
| | - Alvin Phan
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
| | - Travis Dabbous
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
| | - Sammy Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
| | - Wedad Alhassen
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
| | - Bryan Reynolds
- Department of Drama, School of the Arts, University of California-Irvine, CA 92697, USA
| | - Marcelo Rubinstein
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Buenos Aires, Argentina
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Olivier Civelli
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, CA 92697, USA
| |
Collapse
|
8
|
Montanari R, Alegre-Cortés J, Alonso-Andrés A, Cabrera-Moreno J, Navarro I, García-Frigola C, Sáez M, Reig R. Callosal inputs generate side-invariant receptive fields in the barrel cortex. SCIENCE ADVANCES 2023; 9:eadi3728. [PMID: 38019920 PMCID: PMC10686559 DOI: 10.1126/sciadv.adi3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Barrel cortex integrates contra- and ipsilateral whiskers' inputs. While contralateral inputs depend on the thalamocortical innervation, ipsilateral ones are thought to rely on callosal axons. These are more abundant in the barrel cortex region bordering with S2 and containing the row A-whiskers representation, the row lying nearest to the facial midline. Here, we ask what role this callosal axonal arrangement plays in ipsilateral tactile signaling. We found that novel object exploration with ipsilateral whiskers confines c-Fos expression within the highly callosal subregion. Targeting this area with in vivo patch-clamp recordings revealed neurons with uniquely strong ipsilateral responses dependent on the corpus callosum, as assessed by tetrodotoxin silencing and by optogenetic activation of the contralateral hemisphere. Still, in this area, stimulation of contra- or ipsilateral row A-whiskers evoked an indistinguishable response in some neurons, mostly located in layers 5/6, indicating their involvement in the midline representation of the whiskers' sensory space.
Collapse
Affiliation(s)
| | | | | | - Jorge Cabrera-Moreno
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | | - Cristina García-Frigola
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | - María Sáez
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | |
Collapse
|
9
|
Lande AS, Garvert AC, Ebbesen NC, Jordbræk SV, Vervaeke K. Representations of tactile object location in the retrosplenial cortex. Curr Biol 2023; 33:4599-4610.e7. [PMID: 37774708 DOI: 10.1016/j.cub.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.
Collapse
Affiliation(s)
- Andreas Sigstad Lande
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Sondre Valentin Jordbræk
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
10
|
Chinta S, Pluta SR. Neural mechanisms for the localization of unexpected external motion. Nat Commun 2023; 14:6112. [PMID: 37777516 PMCID: PMC10542789 DOI: 10.1038/s41467-023-41755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
To localize objects during active sensing, animals must differentiate stimuli caused by volitional movement from real-world object motion. To determine a neural basis for this ability, we examined the mouse superior colliculus (SC), which contains multiple egocentric maps of sensorimotor space. By placing mice in a whisker-guided virtual reality, we discovered a rapidly adapting tactile response that transiently emerged during externally generated gains in whisker contact. Responses to self-generated touch that matched self-generated history were significantly attenuated, revealing that transient response magnitude is controlled by sensorimotor predictions. The magnitude of the transient response gradually decreased with repetitions in external motion, revealing a slow habituation based on external history. The direction of external motion was accurately encoded in the firing rates of transiently responsive neurons. These data reveal that whisker-specific adaptation and sensorimotor predictions in SC neurons enhance the localization of unexpected, externally generated changes in tactile space.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Veit J, Handy G, Mossing DP, Doiron B, Adesnik H. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms. Neuron 2023; 111:405-417.e5. [PMID: 36384143 PMCID: PMC9898108 DOI: 10.1016/j.neuron.2022.10.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Gamma band synchronization can facilitate local and long-range neural communication. In the primary visual cortex, visual stimulus properties within a specific location determine local synchronization strength, while the match of stimulus properties between distant locations controls long-range synchronization. The neural basis for the differential control of local and global gamma band synchronization is unknown. Combining electrophysiology, optogenetics, and computational modeling, we found that VIP disinhibitory interneurons in mouse cortex linearly scale gamma power locally without changing its stimulus tuning. Conversely, they suppress long-range synchronization when two regions process non-matched stimuli, tuning gamma coherence globally. Modeling shows that like-to-like connectivity across space and specific VIP→SST inhibition capture these opposing effects. VIP neurons thus differentially impact local and global properties of gamma rhythms depending on visual stimulus statistics. They may thereby construct gamma-band filters for spatially extended but continuous image features, such as contours, facilitating the downstream generation of coherent visual percepts.
Collapse
Affiliation(s)
- Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Daniel P Mossing
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
14
|
Ota K, Uwamori H, Ode T, Murayama M. Breaking trade-offs: development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain. Neurosci Res 2022; 179:3-14. [PMID: 35390357 DOI: 10.1016/j.neures.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Information in the brain is represented by the collective and coordinated activity of single neurons. Activity is determined by a large amount of dynamic synaptic inputs from neurons in the same and/or distant brain regions. Therefore, the simultaneous recording of single neurons across several brain regions is critical for revealing the interactions among neurons that reflect the computational principles of the brain. Recently, several wide-field two-photon (2P) microscopes equipped with sizeable objective lenses have been reported. These microscopes enable large-scale in vivo calcium imaging and have the potential to make a significant contribution to the elucidation of information-processing mechanisms in the cerebral cortex. This review discusses recent reports on wide-field 2P microscopes and describes the trade-offs encountered in developing wide-field 2P microscopes. Large-scale imaging of neural activity allows us to test hypotheses proposed in theoretical neuroscience, and to identify rare but influential neurons that have potentially significant impacts on the whole-brain system.
Collapse
Affiliation(s)
- Keisuke Ota
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan; Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan.
| | - Hiroyuki Uwamori
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| | - Takahiro Ode
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan; FOV Corporation, 2-12-3 Taru-machi, Kouhoku-ku, Yokohama, Kanagawa222-0001, Japan
| | - Masanori Murayama
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| |
Collapse
|
15
|
Lyall EH, Mossing DP, Pluta SR, Chu YW, Dudai A, Adesnik H. Synthesis of a comprehensive population code for contextual features in the awake sensory cortex. eLife 2021; 10:e62687. [PMID: 34723796 PMCID: PMC8598168 DOI: 10.7554/elife.62687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
How cortical circuits build representations of complex objects is poorly understood. Individual neurons must integrate broadly over space, yet simultaneously obtain sharp tuning to specific global stimulus features. Groups of neurons identifying different global features must then assemble into a population that forms a comprehensive code for these global stimulus properties. Although the logic for how single neurons summate over their spatial inputs has been well explored in anesthetized animals, how large groups of neurons compose a flexible population code of higher-order features in awake animals is not known. To address this question, we probed the integration and population coding of higher-order stimuli in the somatosensory and visual cortices of awake mice using two-photon calcium imaging across cortical layers. We developed a novel tactile stimulator that allowed the precise measurement of spatial summation even in actively whisking mice. Using this system, we found a sparse but comprehensive population code for higher-order tactile features that depends on a heterogeneous and neuron-specific logic of spatial summation beyond the receptive field. Different somatosensory cortical neurons summed specific combinations of sensory inputs supra-linearly, but integrated other inputs sub-linearly, leading to selective responses to higher-order features. Visual cortical populations employed a nearly identical scheme to generate a comprehensive population code for contextual stimuli. These results suggest that a heterogeneous logic of input-specific supra-linear summation may represent a widespread cortical mechanism for the synthesis of sparse higher-order feature codes in neural populations. This may explain how the brain exploits the thalamocortical expansion of dimensionality to encode arbitrary complex features of sensory stimuli.
Collapse
Affiliation(s)
- Evan H Lyall
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Daniel P Mossing
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Scott R Pluta
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Yun Wen Chu
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences and The Life Sciences Institute, The Hebrew University of JerusalemJerusalemIsrael
| | - Hillel Adesnik
- Department of Molecular and Cell BiologyBerkeleyUnited States
- The Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
16
|
Rodgers CC, Nogueira R, Pil BC, Greeman EA, Park JM, Hong YK, Fusi S, Bruno RM. Sensorimotor strategies and neuronal representations for shape discrimination. Neuron 2021; 109:2308-2325.e10. [PMID: 34133944 PMCID: PMC8298290 DOI: 10.1016/j.neuron.2021.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/28/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Humans and other animals can identify objects by active touch, requiring the coordination of exploratory motion and tactile sensation. Both the motor strategies and neural representations employed could depend on the subject's goals. We developed a shape discrimination task that challenged head-fixed mice to discriminate concave from convex shapes. Behavioral decoding revealed that mice did this by comparing contacts across whiskers. In contrast, a separate group of mice performing a shape detection task simply summed up contacts over whiskers. We recorded populations of neurons in the barrel cortex, which processes whisker input, and found that individual neurons across the cortical layers encoded touch, whisker motion, and task-related signals. Sensory representations were task-specific: during shape discrimination, but not detection, neurons responded most to behaviorally relevant whiskers, overriding somatotopy. Thus, sensory cortex employs task-specific representations compatible with behaviorally relevant computations.
Collapse
Affiliation(s)
- Chris C Rodgers
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Ramon Nogueira
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - B Christina Pil
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Esther A Greeman
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jung M Park
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Y Kate Hong
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Stefano Fusi
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
17
|
Brown J, Oldenburg IA, Telian GI, Griffin S, Voges M, Jain V, Adesnik H. Spatial integration during active tactile sensation drives orientation perception. Neuron 2021; 109:1707-1720.e7. [PMID: 33826906 PMCID: PMC8944414 DOI: 10.1016/j.neuron.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/24/2020] [Accepted: 03/11/2021] [Indexed: 01/07/2023]
Abstract
Active haptic sensation is critical for object identification, but its neural circuit basis is poorly understood. We combined optogenetics, two-photon imaging, and high-speed behavioral tracking in mice solving a whisker-based object orientation discrimination task. We found that orientation discrimination required animals to summate input from multiple whiskers specifically along the whisker arc. Animals discriminated the orientation of the stimulus per se as their performance was invariant to the location of the presented stimulus. Populations of barrel cortex neurons summated across whiskers to encode each orientation. Finally, acute optogenetic inactivation of the barrel cortex and cell-type-specific optogenetic suppression of layer 4 excitatory neurons degraded performance, implying that infragranular layers alone are not sufficient to solve the task. These data suggest that spatial summation over an active haptic array generates representations of an object's orientation, which may facilitate encoding of complex three-dimensional objects during active exploration.
Collapse
Affiliation(s)
- Jennifer Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory I Telian
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sandon Griffin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mieke Voges
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vedant Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Bernhard SM, Lee J, Zhu M, Hsu A, Erskine A, Hires SA, Barth AL. An automated homecage system for multiwhisker detection and discrimination learning in mice. PLoS One 2020; 15:e0232916. [PMID: 33264281 PMCID: PMC7710058 DOI: 10.1371/journal.pone.0232916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Automated, homecage behavioral training for rodents has many advantages: it is low stress, requires little interaction with the experimenter, and can be easily manipulated to adapt to different experimental conditions. We have developed an inexpensive, Arduino-based, homecage training apparatus for sensory association training in freely-moving mice using multiwhisker air current stimulation coupled to a water reward. Animals learn this task readily, within 1–2 days of training, and performance progressively improves with training. We examined the parameters that regulate task acquisition using different stimulus intensities, directions, and reward valence. Learning was assessed by comparing anticipatory licking for the stimulus compared to the no-stimulus (blank) trials. At high stimulus intensities (>9 psi), animals showed markedly less participation in the task. Conversely, very weak air current intensities (1–2 psi) were not sufficient to generate rapid learning behavior. At intermediate stimulus intensities (5–6 psi), a majority of mice learned that the multiwhisker stimulus predicted the water reward after 24–48 hrs of training. Both exposure to isoflurane and lack of whiskers decreased animals’ ability to learn the task. Following training at an intermediate stimulus intensity, mice were able to transfer learning behavior when exposed to a lower stimulus intensity, an indicator of perceptual learning. Mice learned to discriminate between two directions of stimulation rapidly and accurately, even when the angular distance between the stimuli was <15 degrees. Switching the reward to a more desirable reward, aspartame, had little effect on learning trajectory. Our results show that a tactile association task in an automated homecage environment can be monitored by anticipatory licking to reveal rapid and progressive behavioral change. These Arduino-based, automated mouse cages enable high-throughput training that facilitate analysis of large numbers of genetically modified mice with targeted manipulations of neural activity.
Collapse
Affiliation(s)
- Sarah M. Bernhard
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jiseok Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Alex Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Erskine
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Samuel A. Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Betting JHLF, Romano V, Al-Ars Z, Bosman LWJ, Strydis C, De Zeeuw CI. WhiskEras: A New Algorithm for Accurate Whisker Tracking. Front Cell Neurosci 2020; 14:588445. [PMID: 33281560 PMCID: PMC7705537 DOI: 10.3389/fncel.2020.588445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
Rodents engage in active touch using their facial whiskers: they explore their environment by making rapid back-and-forth movements. The fast nature of whisker movements, during which whiskers often cross each other, makes it notoriously difficult to track individual whiskers of the intact whisker field. We present here a novel algorithm, WhiskEras, for tracking of whisker movements in high-speed videos of untrimmed mice, without requiring labeled data. WhiskEras consists of a pipeline of image-processing steps: first, the points that form the whisker centerlines are detected with sub-pixel accuracy. Then, these points are clustered in order to distinguish individual whiskers. Subsequently, the whiskers are parameterized so that a single whisker can be described by four parameters. The last step consists of tracking individual whiskers over time. We describe that WhiskEras performs better than other whisker-tracking algorithms on several metrics. On our four video segments, WhiskEras detected more whiskers per frame than the Biotact Whisker Tracking Tool. The signal-to-noise ratio of the output of WhiskEras was higher than that of Janelia Whisk. As a result, the correlation between reflexive whisker movements and cerebellar Purkinje cell activity appeared to be stronger than previously found using other tracking algorithms. We conclude that WhiskEras facilitates the study of sensorimotor integration by markedly improving the accuracy of whisker tracking in untrimmed mice.
Collapse
Affiliation(s)
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Zaid Al-Ars
- Department of Quantum & Computer Engineering, Delft University of Technology, Delft, Netherlands
| | | | - Christos Strydis
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Quantum & Computer Engineering, Delft University of Technology, Delft, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
20
|
Kim J, Erskine A, Cheung JA, Hires SA. Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice. Neuron 2020; 108:953-967.e8. [PMID: 33002411 DOI: 10.1016/j.neuron.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Tactile shape recognition requires the perception of object surface angles. We investigate how neural representations of object angles are constructed from sensory input and how they reorganize across learning. Head-fixed mice learned to discriminate object angles by active exploration with one whisker. Calcium imaging of layers 2-4 of the barrel cortex revealed maps of object-angle tuning before and after learning. Three-dimensional whisker tracking demonstrated that the sensory input components that best discriminate angles (vertical bending and slide distance) also have the greatest influence on object-angle tuning. Despite the high turnover in active ensemble membership across learning, the population distribution of object-angle tuning preferences remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. This was correlated with a selective increase in the influence of the most task-relevant sensory component on object-angle tuning. These results show how discrimination training enhances stimulus selectivity in the primary somatosensory cortex while maintaining perceptual stability.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Erskine
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
La Chioma A, Bonhoeffer T, Hübener M. Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex. Curr Biol 2019; 29:2954-2960.e5. [DOI: 10.1016/j.cub.2019.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
|
23
|
The Sensorimotor Basis of Whisker-Guided Anteroposterior Object Localization in Head-Fixed Mice. Curr Biol 2019; 29:3029-3040.e4. [PMID: 31474537 PMCID: PMC6771421 DOI: 10.1016/j.cub.2019.07.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
Active tactile perception combines directed motion with sensory signals to generate mental representations of objects in space. Competing models exist for how mice use these signals to determine the precise location of objects along their face. We tested six of these models using behavioral manipulations and statistical learning in head-fixed mice. Trained mice used a whisker to locate a pole in a continuous range of locations along the anteroposterior axis. Mice discriminated locations to ≤0.5 mm (<2°) resolution. Their motor program was noisy, adaptive to touch, and directed to the rewarded range. This exploration produced several sets of sensorimotor features that could discriminate location. Integration of two features, touch count and whisking midpoint at touch, was the simplest model that explained behavior best. These results show how mice locate objects at hyperacute resolution using a learned motor strategy and minimal set of mentally accessible sensorimotor features.
Collapse
|
24
|
Katz Y, Sokoletsky M, Lampl I. Stereotactic system for accurately targeting deep brain structures in awake head-fixed mice. J Neurophysiol 2019; 122:975-983. [PMID: 31291134 DOI: 10.1152/jn.00218.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain nuclei, such as the amygdala, nucleus basalis, and locus coeruleus, play a crucial role in cognition and behavior. Nonetheless, acutely recording electrical activity from these structures in head-fixed awake rodents has been very challenging due to the fact that head-fixed preparations are not designed for stereotactic accuracy. We overcome this issue by designing the DeepTarget, a system for stereotactic head fixation and recording, which allows for accurately directing recording electrodes or other probes into any desired location in the brain. We then validated it by performing intracellular recordings from optogenetically tagged amygdalar neurons followed by histological reconstruction, which revealed that it is accurate and precise to within ~100 μm. Moreover, in another group of mice we were able to target both the mammillothalamic tract and subthalamic nucleus. This approach can be adapted to any type of extracellular electrode, fiber optic, or other probe in cases where high accuracy is needed in awake, head-fixed rodents.NEW & NOTEWORTHY Accurate targeting of recording electrodes in awake head-restrained rodents is currently beyond our reach. We developed a device for stereotactic implantation of a custom head bar and a recording system that together allow the accurate and precise targeting of any brain structure, including deep and small nuclei. We demonstrated this by performing histology and intracellular recordings in the amygdala of awake mice. The system enables the targeting of any probe to any location in the awake brain.
Collapse
Affiliation(s)
- Yonatan Katz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Sokoletsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Superficial Layers Suppress the Deep Layers to Fine-tune Cortical Coding. J Neurosci 2019; 39:2052-2064. [PMID: 30651326 DOI: 10.1523/jneurosci.1459-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
The descending microcircuit from layer 2/3 (L2/3) to layer 5 (L5) is one of the strongest excitatory pathways in the cortex, presumably forming a core component of its feedforward hierarchy. To date, however, no experiments have selectively tested the impact of L2/3 activity on L5 during active sensation. We used optogenetic, cell-type-specific manipulation of L2/3 neurons in the barrel cortex of actively sensing mice (of either sex) to elucidate the significance of this pathway to sensory coding in L5. Contrary to standard models, activating L2/3 predominantly suppressed spontaneous activity in L5, whereas deactivating L2/3 mainly facilitated touch responses in L5. Somatostatin interneurons are likely important to this suppression because their optogenetic deactivation significantly altered the functional impact of L2/3 onto L5. The net effect of L2/3 was to enhance the stimulus selectivity and expand the range of L5 output. These data imply that the core cortical pathway increases the selectivity and expands the range of cortical output through feedforward inhibition.SIGNIFICANCE STATEMENT The primary sensory cortex contains six distinct layers that interact to form the basis of our perception. While rudimentary patterns of connectivity between the layers have been outlined quite extensively in vitro, functional relationships in vivo, particularly during active sensation, remain poorly understood. We used cell-type-specific optogenetics to test the functional relationship between layer 2/3 and layer 5. Surprisingly, we discovered that L2/3 primarily suppresses cortical output from L5. The recruitment of somatostatin-positive interneurons is likely fundamental to this relationship. The net effect of this translaminar suppression is to enhance the selectivity and expand the range of receptive fields, therefore potentially sharpening the perception of space.
Collapse
|
26
|
Layer 3 Dynamically Coordinates Columnar Activity According to Spatial Context. J Neurosci 2019; 39:281-294. [PMID: 30459226 DOI: 10.1523/jneurosci.1568-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To reduce statistical redundancy of natural inputs and increase the sparseness of coding, neurons in primary visual cortex (V1) show tuning for stimulus size and surround suppression. This integration of spatial information is a fundamental, context-dependent neural operation involving extensive neural circuits that span across all cortical layers of a V1 column, and reflects both feedforward and feedback processing. However, how spatial integration is dynamically coordinated across cortical layers remains poorly understood. We recorded single- and multiunit activity and local field potentials across V1 layers of awake mice (both sexes) while they viewed stimuli of varying size and used dynamic Bayesian model comparisons to identify when laminar activity and interlaminar functional interactions showed surround suppression, the hallmark of spatial integration. We found that surround suppression is strongest in layer 3 (L3) and L4 activity, where suppression is established within ∼10 ms after response onset, and receptive fields dynamically sharpen while suppression strength increases. Importantly, we also found that specific directed functional connections were strongest for intermediate stimulus sizes and suppressed for larger ones, particularly for connections from L3 targeting L5 and L1. Together, the results shed light on the different functional roles of cortical layers in spatial integration and on how L3 dynamically coordinates activity across a cortical column depending on spatial context.SIGNIFICANCE STATEMENT Neurons in primary visual cortex (V1) show tuning for stimulus size, where responses to stimuli exceeding the receptive field can be suppressed (surround suppression). We demonstrate that functional connectivity between V1 layers can also have a surround-suppressed profile. A particularly prominent role seems to have layer 3, the functional connections to layers 5 and 1 of which are strongest for stimuli of optimal size and decreased for large stimuli. Our results therefore point toward a key role of layer 3 in coordinating activity across the cortical column according to spatial context.
Collapse
|
27
|
Hayashi A, Yoshida T, Ohki K. Cell Type Specific Representation of Vibro-tactile Stimuli in the Mouse Primary Somatosensory Cortex. Front Neural Circuits 2018; 12:109. [PMID: 30618647 PMCID: PMC6307530 DOI: 10.3389/fncir.2018.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
Although the processing of whisker deflections in the barrel area of the rodent primary somatosensory cortex (S1) has been studied extensively, how cutaneous vibro-tactile stimuli are processed in the rodent S1 outside the barrel area has not been fully examined. Particularly, the cell-type specific representation of multiple vibration frequencies in genetically identified inhibitory cells in the S1 has not been examined. Using two-photon calcium imaging, we examined the responses to vibration stimuli of excitatory and inhibitory neurons in the S1 hind limb area of male and female mice. The excitatory cells showed relatively sharp selectivity to vibration stimuli, whereas the inhibitory cells exhibited less selectivity. The excitatory and inhibitory cells with different preferred stimuli were intermingled in a “salt and pepper” manner. Furthermore, the noise correlation tended to be especially strong in excitatory-inhibitory and inhibitory-inhibitory cell pairs that have similar stimulus selectivity. These results suggest that excitatory cells tend to represent specific stimulus information and work together with similarly tuned inhibitory cells as a functionally connected network.
Collapse
Affiliation(s)
- Ayako Hayashi
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Yoshida
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kenichi Ohki
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Studies (UTIAS), Tokyo, Japan
| |
Collapse
|
28
|
Michaelson SD, Ozkan ED, Aceti M, Maity S, Llamosas N, Weldon M, Mizrachi E, Vaissiere T, Gaffield MA, Christie JM, Holder JL, Miller CA, Rumbaugh G. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat Neurosci 2018; 21:1-13. [PMID: 30455457 PMCID: PMC6309426 DOI: 10.1038/s41593-018-0268-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
Abstract
In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing. In vivo neurophysiological analysis in Syngap1 mouse models revealed that upper-lamina neurons in somatosensory cortex weakly encode information related to touch. This was caused by reduced synaptic connectivity and impaired intrinsic excitability within upper-lamina somatosensory cortex neurons. These results were unexpected, given that Syngap1 heterozygosity is known to cause circuit hyperexcitability in brain areas more directly linked to cognitive functions. Thus, Syngap1 heterozygosity causes a range of circuit-specific pathologies, including reduced activity within cortical neurons required for touch processing, which may contribute to sensory phenotypes observed in patients.
Collapse
Affiliation(s)
| | - Emin D Ozkan
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Massimiliano Aceti
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Nerea Llamosas
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Monica Weldon
- Bridge-the-GAP Educational Research Foundation, Cyprus, TX, USA
| | - Elisa Mizrachi
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | | | | | | | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute and Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Courtney A Miller
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA.
| |
Collapse
|
29
|
Lee J, Barth AL. Constructing the External World. Neuron 2017. [PMID: 28641104 DOI: 10.1016/j.neuron.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Pluta et al. (2017) find a novel map of external space in primary somatosensory cortex, generated by multi-whisker interactions during active touch.
Collapse
Affiliation(s)
- Jiseok Lee
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Estebanez L, Férézou I, Ego-Stengel V, Shulz DE. Representation of tactile scenes in the rodent barrel cortex. Neuroscience 2017; 368:81-94. [PMID: 28843997 DOI: 10.1016/j.neuroscience.2017.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
After half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that take place during spontaneous rodent behavior - so called natural tactile scenes. Here we review the current knowledge regarding the coding of patterns of whisker stimuli by barrel cortex neurons, from responses to single-whisker deflections to the representation of complex tactile scenes. A number of multi-whisker tunings have already been identified, including center-surround feature extraction, angular tuning during edge-like multi-whisker deflections, and even tuning to specific statistical properties of the tactile scene such as the level of correlation across whiskers. However, a more general model of the representation of multi-whisker information in the barrel cortex is still missing. This is in part because of the lack of a human intuition regarding the perception emerging from a whisker system, but also because in contrast to other primary sensory cortices such as the visual cortex, the spatial feature selectivity of barrel cortex neurons rests on highly nonlinear interactions that remained hidden to classical receptive field approaches.
Collapse
Affiliation(s)
- Luc Estebanez
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Isabelle Férézou
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Valérie Ego-Stengel
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|