1
|
Filchenko I, Eberhard-Moscicka AK, Picard JL, Schmidt MH, Aktan Süzgün M, Wiest R, Bernasconi C, Gutierrez Herrera C, Bassetti CLA. Thalamic Stroke and Sleep Study: Sleep-Wake, Autonomic Regulation, and Cognition. Stroke 2025; 56:1528-1541. [PMID: 40135332 DOI: 10.1161/strokeaha.124.049156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Thalamic stroke (TS) often presents with complex clinical manifestations, including sleep-wake disturbances, cognitive deficits, and autonomic dysregulation, yet the interaction between these functional alterations remains poorly understood. We aimed to investigate these interactions in a case-control lesion study. METHODS Patients with acute TS and no-stroke controls were included prospectively in this study. The data were collected from June 2020 to September 2022 at the stroke unit or sleep laboratory of the Inselspital (Bern). Sleep-wake variables (questionnaires, actigraphy, polysomnography including electroencephalography-based sleep macroarchitecture and microarchitecture, and analysis of electroencephalography spectral power), nocturnal heart rate variability, and cognition (5 tests: processing speed, attention, working memory, visual memory, and verbal memory) were assessed at study inclusion (within 5 days poststroke for patients with stroke). RESULTS Data from 16 patients with TS and 32 control volunteers were analyzed. All patients with stroke had lesions of the ventral nuclei, while 9 of 16 patients with stroke also had lesions in the mediodorsal nucleus (1 bilateral). TS was characterized by long sleep duration and high nocturnal heart rate variability with parasympathetic dominance. The alterations in sleep electroencephalography included a decrease in cyclic alternating pattern index, slow spindle density, the quantity of isolated sawtooth wave segments, and electroencephalography spectral power predominantly affecting the alpha band. The mediodorsal lesions were associated with a decrease in sleep spindle amplitude and slow wave amplitude and with an increase in phasic rapid eye movement sleep. Furthermore, patients with TS had deficits in processing speed, working memory, and verbal memory, mostly pronounced in patients with mediodorsal lesions. In a combined data set, multiple correlations were observed between sleep-wake, autonomic, and cognitive parameters, many of which depended on the presence of a TS. CONCLUSIONS These findings emphasize the role of the thalamus in the regulation of sleep-wake, autonomic, and cognitive functions and their interactions and provide the theoretical basis for the therapies targeting the thalamus.
Collapse
Affiliation(s)
- Irina Filchenko
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Graduate School for Health Sciences (I.F.), University of Bern, Switzerland
| | - Aleksandra Katarzyna Eberhard-Moscicka
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Department of Psychology (A.K.E.-M.), University of Bern, Switzerland
| | - Jasmine Lea Picard
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Markus Helmut Schmidt
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Merve Aktan Süzgün
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Center for Sleep Medicine, Department of Neurology, Medical University of Innsbruck, Austria (M.A.S.)
| | - Roland Wiest
- Department of Neuroradiology (R.W.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Corrado Bernasconi
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| | - Carolina Gutierrez Herrera
- Center of Experimental Neurology (C.G.H.), Bern University Hospital, University of Bern, Switzerland
- Department of Biomedical Research (C.G.H.), Bern University Hospital, University of Bern, Switzerland
| | - Claudio Lino Alberto Bassetti
- Department of Neurology (I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
- Interdisciplinary Sleep-Wake-Epilepsy Center (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.), Bern University Hospital (Inselspital) and University of Bern, Switzerland
| |
Collapse
|
2
|
Wei T, Zhou J, Wang Z, Liu X, Mi Y, Zhao Y, Xing Y, Zhao B, Zhou S, Liu Y, Liu Y, Tang Y. Coupled sleep rhythm disruption predicts cognitive decline in Alzheimer's disease. Sci Bull (Beijing) 2025; 70:1491-1503. [PMID: 40175177 DOI: 10.1016/j.scib.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
The effect of sleep on memory consolidation depends on the precise interaction of slow oscillations (SOs), theta bursts, and spindles. Disruption in coupling of these sleep rhythms has been reported for individuals with Alzheimer's disease (AD). However, it is unknown how the sleep rhythms evolve during AD progression and whether disrupted sleep rhythms facilitate cognitive decline in AD. Here, we analyze data of 93 individuals from sleep electroencephalography (EEG), MRI, cerebrospinal fluid (CSF) AD biomarkers, and two-year cognitive assessments among three populations: AD dementia (n = 33), mild cognitive impairment (MCI) due to AD (n = 38), and cognitively normal (CN, n = 22). Our study identifies the evolving pattern of coupled sleep rhythm disruption with advancing cognitive stages in AD. Specifically, the frequency of SO-theta burst coupling and SO-spindle coupling decreases from CN to MCI; SO-theta burst coupling and SO-spindle coupling further misalign from MCI to AD dementia. The APOE ε4 allele and elevated amyloid and tau burden are associated with coupled sleep rhythm disruption. Hippocampal and medial prefrontal cortex atrophy are respectively linked to disruption of SO-theta burst coupling and SO-spindle coupling. Notably, coupled sleep rhythm disruption predicts accelerated cognitive decline over a two-year follow-up period. Our study presents that integrating sleep EEG with CSF and MRI biomarkers enhances the predictive ability for AD progression, which unravels the potential of sleep rhythms as monitoring and interventional targets for AD.
Collapse
Affiliation(s)
- Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Jianyang Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhibin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China.
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yingxin Mi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yiwei Zhao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Bo Zhao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Shaojiong Zhou
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yufei Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China.
| |
Collapse
|
3
|
Krone LB, Song SH, Jaramillo V, Violante IR. The Future of Non-Invasive Brain Stimulation in Sleep Medicine. J Sleep Res 2025:e70071. [PMID: 40370279 DOI: 10.1111/jsr.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
Non-invasive brain stimulation (NIBS) methods carry particular appeal as non-pharmacological approaches to inducing or improving sleep. However, intense research efforts to use transcranial magnetic stimulation (TMS) and electrical stimulation (tES) for sleep modulation have not yet delivered evidence-based NIBS treatments in sleep medicine. The main obstacles lie in insufficiently robust stimulation protocols that affect neurophysiological and self-reported sleep parameters, inadequately controlled-and explained-placebo effects, and heterogeneity in patient populations and outcome parameters. Recent technological advances, e.g., transcranial ultrasound stimulation (TUS) and temporal interference stimulation (TIS), make deep brain structures feasible targets. Real-time approaches, e.g., closed-loop auditory stimulation (CLAS), demonstrate efficacious modulation of different sleep oscillations by tuning stimulation to ongoing brain activity. The identification of sleep-regulatory regions and cell types in the cerebral cortex and thalamus provides new specific targets. To turn this neuroscientific progress into therapeutic advancement, conceptual reframing is warranted. Chronic insomnia may not be optimally suited to demonstrate NIBS efficacy due to the mismatch between self-reported symptoms and polysomnographic sleep parameters. More feasible initial approaches could be to (1) modulate specific sleep oscillations to promote specific sleep functions, (2) modify nightmares and traumatic memories with targeted memory reactivation, (3) increase 'wake intensity' in patients with depression to improve daytime fatigue and elevate sleep pressure and (4) disrupt pathological activity in sleep-dependent epilepsies. Effective treatments in these areas of sleep medicine seem in reach but require rigorously designed clinical trials to identify which NIBS strategies bring real benefit in sleep medicine.
Collapse
Affiliation(s)
- Lukas B Krone
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valeria Jaramillo
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ines R Violante
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Kajiya R, Miyawaki H, Nakahara H, Mizuseki K. Firing Activities of REM- and NREM-Preferring Neurons Are Differently Modulated by Fast Network Oscillations and Behavior in the Hippocampus, Prelimbic Cortex, and Amygdala. eNeuro 2025; 12:ENEURO.0575-24.2025. [PMID: 40374559 PMCID: PMC12118951 DOI: 10.1523/eneuro.0575-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025] Open
Abstract
Sleep consists of two alternating states-rapid eye movement (REM) and non-REM (NREM) sleep. Neurons adjust their firing activity based on brain state, however, the extent to which this modulation varies across neurons and brain regions remains poorly understood. This study analyzed previously acquired 17-h continuous recordings of single-unit activity and local field potentials in the ventral hippocampal CA1 region, prelimbic cortex layer 5, and basolateral nucleus of the amygdala of fear-conditioned rats. The findings indicate that more than half of the neurons fired faster during REM sleep than during NREM sleep, although a notable subset of neurons exhibited the opposite preference, firing preferentially during NREM sleep. During sleep, the overall firing activity of both REM- and NREM-preferring neurons decreased. However, fast network oscillations, including hippocampal sharp-wave ripples (SWRs), amygdalar high-frequency oscillations, cortical ripples, and cortical spindles, differentially modulated REM- versus NREM-preferring neurons. During wakefulness, REM-preferring neurons fired more slowly but were more intensely activated by SWRs and shock presentations than NREM-preferring neurons. Moreover, during fast network oscillations in sleep, neurons with similar REM/NREM preferences exhibited stronger within- and cross-regional coactivation than those with differing preferences. Conversely, during awake SWRs in fear conditioning sessions, neurons with different REM/NREM preferences showed stronger interregional coactivation than those with similar preferences. These findings suggest that the distinct activity patterns of REM- and NREM-preferring neurons, potentially reflecting different roles in memory, affect local and global networks differently, thereby balancing experience-dependent network modifications with sleep-dependent homeostatic regulation of neuronal excitability.
Collapse
Affiliation(s)
- Risa Kajiya
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroyuki Miyawaki
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hirokazu Nakahara
- Department of Oral and Maxillofacial Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Oral and Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
5
|
Daida A, Ding Y, Zhang Y, Oana S, Panchavati S, Edmonds BD, Ahn SS, Salamon N, Sankar R, Fallah A, Staba RJ, Engel J, Speier W, Roychowdhury V, Nariai H. Fast ripple band high-frequency activity associated with thalamic sleep spindles in pediatric epilepsy. Clin Neurophysiol 2025; 173:241-251. [PMID: 39915224 DOI: 10.1016/j.clinph.2025.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 01/22/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE To investigate high-frequency activities (HFA) associated with thalamic sleep spindles. METHODS We studied a cohort of ten pediatric patients with medication resistant epilepsy who were identified as potential candidates for thalamic neuromodulation. These patients had thalamic sampling as well as presumed epileptogenic zones, using stereotactic EEG (SEEG) with a sampling frequency of 2,000 Hz. We quantified the summated high-frequency activity (HFA) in the fast ripple band associated with sleep spindles using 20-minute scalp EEG and SEEG recordings during non-REM sleep and analyzed its correlation with spindle characteristics. RESULTS HFA, with a median peak frequency of 330 Hz, was distinctively observed in the thalamus and temporally correlated with thalamic sleep spindles. Such HFA demonstrated significant coupling with the sleep spindle range of 11-16 Hz. The duration of HFA positively correlated with higher density and longer duration of accompanying thalamic spindles. Thalamic HFA's duration negatively correlated with the presence of cortical interictal epileptiform discharges. Thalamic spindles generated in channels with HFA often coincided with sleep spindles in various brain regions. CONCLUSION Fast ripple band HFA associated with sleep spindles was observed exclusively in the thalamus. SIGNIFICANCE Thalamic HFA associated with thalamic spindles may represent a thalamus-specific physiological phenomenon.
Collapse
Affiliation(s)
- Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA.
| | - Yuanyi Ding
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Saarang Panchavati
- Department of Radiological Sciences, University of California Los Angeles CA USA; Department of Bioengineering, University of California Los Angeles CA USA
| | - Benjamin D Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Samuel S Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California Los Angeles CA USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA; The UCLA Children's Discovery and Innovation Institute Los Angeles CA USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA
| | - Richard J Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA; Department of Neurobiology, University of California Los Angeles CA USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles CA USA; The Brain Research Institute, University of California Los Angeles CA USA
| | - William Speier
- Department of Radiological Sciences, University of California Los Angeles CA USA; Department of Bioengineering, University of California Los Angeles CA USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA; The UCLA Children's Discovery and Innovation Institute Los Angeles CA USA.
| |
Collapse
|
6
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Chauvin RJ, Newbold DJ, Nielsen AN, Miller RL, Krimmel SR, Metoki A, Wang A, Van AN, Montez DF, Marek S, Suljic V, Baden NJ, Ramirez-Perez N, Scheidter KM, Monk JS, Whiting FI, Adeyemo B, Roland JL, Snyder AZ, Kay BP, Raichle ME, Laumann TO, Gordon EM, Dosenbach NUF. Disuse-driven plasticity in the human thalamus and putamen. Cell Rep 2025; 44:115570. [PMID: 40220292 PMCID: PMC12120925 DOI: 10.1016/j.celrep.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/24/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Subcortical plasticity has mainly been studied using invasive electrophysiology in animals. Here, we leverage precision functional mapping (PFM) to study motor plasticity in the human subcortex during 2 weeks of upper-extremity immobilization with daily resting-state and motor task fMRI. We found previously that, in the cortex, limb disuse drastically impacts disused primary motor cortex functional connectivity (FC) and is associated with spontaneous fMRI pulses. It remains unknown whether disuse-driven plasticity pulses and FC changes are cortex specific or whether they could also affect movement-critical nodes in the thalamus and striatum. Tailored analysis methods now show spontaneous disuse pulses and FC changes in the dorsal posterior putamen and central thalamus (centromedian [CM], ventral-intermediate [VIM], and ventroposterior-lateral nuclei), representing a motor circuit-wide plasticity phenomenon. The posterior putamen effects suggest plasticity in stimulus-driven habit circuitry. Importantly, thalamic plasticity effects are focal to nuclei used as deep brain stimulation targets for essential tremor/Parkinson's disease (VIM) and epilepsy/coma (CM).
Collapse
Affiliation(s)
- Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Dillan J Newbold
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryland L Miller
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
| | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anxu Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Computation and Data Science, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vahdeta Suljic
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Noah J Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia S Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jarod L Roland
- Taylor Family Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Coelho J, Degros H, Micoulaud-Franchi JA, Sagaspe P, d'Incau E, Galvez P, Berthomier C, Philip P, Taillard J. Threshold Values of Sleep Spindles Features in Healthy Adults Using Scalp-EEG and Associations With Sleep Parameters. Ann Clin Transl Neurol 2025. [PMID: 40256915 DOI: 10.1002/acn3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
OBJECTIVE Sleep spindles are an electrophysiological fingerprint of the sleeping human brain. They can be described in terms of duration, frequency, amplitude, and density, and vary widely according to age and sex. Spindles play a role in sleep and wake functions and are altered in several neurological and psychiatric disorders. This study established the first threshold values for sleep spindles in healthy adults using scalp-EEG and explored their associations with other sleep parameters. METHODS This observational prospective study was conducted with 80 healthy participants stratified by age and sex (40.9 years, range 19-74, 50% females). All participants underwent in-laboratory polysomnography. Sleep spindles during N2 were analyzed using an automated procedure and categorized as fast (> 13 Hz) or slow (≤ 13 Hz). RESULTS For fast spindles, the threshold values were duration (0.80-1.11 s), frequency (13.4-14.3 Hz), amplitude (5.2-15.2 μV), and density (1.0-5.8 spindles/min). For slow spindles, the values were duration (0.79-1.17 s), frequency (12.3-12.9 Hz), amplitude (4.1-13.2 μV), and density (0.03-3.15 spindles/min). From age 40 onwards, the density, amplitude, and duration of both types of spindles decreased; the amplitudes of both types of spindles were higher in females. Higher amplitude in fast spindles was associated with increased excessive daytime sleepiness and an increased proportion of slow-wave sleep. INTERPRETATION This study provides the first threshold values for sleep spindle characteristics in healthy adults. The findings emphasize the importance of investigating spindles to develop innovative biomarkers for neurological and psychiatric disorders and to gain deeper insights into the functioning of the sleeping brain.
Collapse
Affiliation(s)
- Julien Coelho
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | | | - Jean-Arthur Micoulaud-Franchi
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | - Patricia Sagaspe
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | - Emmanuel d'Incau
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | - Paul Galvez
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | | | - Pierre Philip
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
- Service Universitaire de Médecine du Sommeil, CHU de Bordeaux, Bordeaux, France
| | - Jacques Taillard
- SANPSY, CNRS, UMR 6033, Hôpital Pellegrin, Univ Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Deng Z, Fei X, Zhang S, Xu M. A time window for memory consolidation during NREM sleep revealed by cAMP oscillation. Neuron 2025:S0896-6273(25)00220-X. [PMID: 40233747 DOI: 10.1016/j.neuron.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Memory formation requires specific neural activity in coordination with intracellular signaling mediated by second messengers such as cyclic adenosine monophosphate (cAMP). However, the real-time dynamics of cAMP remain largely unknown. Here, using a genetically encoded cAMP sensor with high temporal resolution, we found neural-activity-dependent rapid cAMP elevation during learning. Interestingly, in slow-wave sleep, during which memory consolidation occurs, the cAMP level in mice was anti-correlated with neural activity and exhibited norepinephrine β1 receptor-dependent infra-slow oscillations that were synchronized across the hippocampus and cortex. Furthermore, the hippocampal-cortical interactions increased during the narrow time-window of the peak cAMP level; suppressing hippocampal activity specifically during this window impaired spatial memory consolidation. Thus, hippocampal-dependent memory consolidation occurs within a specific time window of high cAMP activity during slow-wave sleep.
Collapse
Affiliation(s)
- Ziru Deng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Fei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Lucey BP. Sleep Alterations and Cognitive Decline. Semin Neurol 2025. [PMID: 40081821 DOI: 10.1055/a-2557-8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Sleep disturbances and cognitive decline are intricately connected, and both are prevalent in aging populations and individuals with neurodegenerative disorders such as Alzheimer's disease (AD) and other dementias. Sleep is vital for cognitive functions including memory consolidation, executive function, and attention. Disruption in these processes is associated with cognitive decline, although causal evidence is mixed. This review delves into the bidirectional relationship between alterations in sleep and cognitive impairment, exploring key mechanisms such as amyloid-β accumulation, tau pathology, synaptic homeostasis, neurotransmitter dysregulation, oxidative stress, and vascular contributions. Evidence from both experimental research and population-based studies underscores the necessity of early interventions targeting sleep to mitigate risks of neurodegenerative diseases. A deeper understanding of the interplay between sleep and cognitive health may pave the way for innovative strategies to prevent or reduce cognitive decline through improved sleep management.
Collapse
Affiliation(s)
- Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
- Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
11
|
Opalka AN, Dougherty KJ, Wang DV. A Distinct Down-to-Up Transition Assembly in the Retrosplenial Cortex during Slow-Wave Sleep. J Neurosci 2025; 45:e1484242025. [PMID: 39952672 PMCID: PMC11968548 DOI: 10.1523/jneurosci.1484-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the intricate mechanisms underlying slow-wave sleep (SWS) is crucial for deciphering the brain's role in memory consolidation and cognitive functions. It is well established that cortical delta oscillations (0.5-4 Hz) coordinate communications among cortical, hippocampal, and thalamic regions during SWS. These delta oscillations feature periods of Up and Down states, with the latter previously thought to represent complete cortical silence; however, new evidence suggests that Down states serve important functions for information exchange during memory consolidation. The retrosplenial cortex (RSC) is pivotal for memory consolidation due to its extensive connectivity with memory-associated regions, although it remains unclear how RSC neurons engage in delta-associated consolidation processes. Here, we employed multichannel in vivo electrophysiology to study RSC neuronal activity in ad libitum behaving male mice during natural SWS. We discovered a discrete assembly of putative excitatory RSC neurons (∼20%) that initiated firing at SWS Down states and reached maximal firing at the Down-to-Up transitions. Therefore, we termed these RSC neurons the Down-to-Up transition assembly (DUA) and the remaining RSC excitatory neurons as non-DUA. Compared with non-DUA, DUA neurons appear to exhibit higher firing rates and larger cell body size and lack monosynaptic connectivity with nearby RSC neurons. Furthermore, optogenetics combined with electrophysiology revealed differential innervation of RSC excitatory neurons by memory-associated inputs. Collectively, these findings provide insight into the distinct activity patterns of RSC neuronal subpopulations during sleep and their potential role in memory processes.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
12
|
Moyne M, Durand-Ruel M, Park CH, Salamanca-Giron R, Sterpenich V, Schwartz S, Hummel FC, Morishita T. Impact of spindle-inspired transcranial alternating current stimulation during a nap on sleep-dependent motor memory consolidation in healthy older adults. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf022. [PMID: 40365529 PMCID: PMC12070486 DOI: 10.1093/sleepadvances/zpaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/10/2025] [Indexed: 05/15/2025]
Abstract
With the increase in life expectancy and the rapid evolution of daily life technologies, older adults must constantly learn new skills to adapt to society. Sleep reinforces skills acquired during the day and is associated with the occurrence of specific oscillations such as spindles. However, with age, spindles deteriorate and thus likely contribute to memory impairments observed in older adults. The application of electric currents by means of transcranial alternating current stimulation (tACS) with spindle-like waveform, applied during the night, was found to enhance spindles and motor memory consolidation in young adults. Here, we tested whether tACS bursts inspired by spindles applied during daytime naps may (i) increase spindle density and (ii) foster motor memory consolidation in older adults. Twenty-six healthy older participants performed a force modulation task at 10:00, were retested at 16:30, and the day after the initial training. They had 90-minute opportunity to take a nap while verum or placebo spindle-inspired tACS bursts were applied with similar temporal parameters to those observed in young adults and independently of natural spindles, which are reduced in the elderly. We show that the density of natural spindles correlates with the magnitude of memory consolidation, thus confirming that spindles are promising physiological targets for enhancing memory consolidation in older adults. However, spindle-inspired tACS, as used in the present study, did not enhance either spindles or memory consolidation. We therefore suggest that applying tACS time-locked to natural spindles might be required to entrain them and improve their related functions.
Collapse
Affiliation(s)
- Maëva Moyne
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Manon Durand-Ruel
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberto Salamanca-Giron
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Virgine Sterpenich
- Fondation Campus Biotech Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland and
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Sophie Schwartz
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland and
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| |
Collapse
|
13
|
Alexis EAC, Janeth MZ, Daniel RMJ, Martha GR, Eliezer CM. Muscimol injection in the thalamic reticular nucleus reverts the effect of dopaminergic lesion on short-term memory in the rat globus pallidus externus. Brain Res 2025; 1852:149495. [PMID: 39923954 DOI: 10.1016/j.brainres.2025.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
The thalamic reticular nucleus (TRN) is a GABAergic nucleus essential for regulating information flow between the thalamus and cortex. It is involved in various cognitive processes, such as memory and attention, and receives GABAergic input from the external globus pallidus (GPe). The GPe is part of the indirect pathway of the basal ganglia, which is involved in the modulation of motor, limbic, and cognitive functions. Dopaminergic denervation in the GPe (DDGPe) has been linked to a decrease in short-term memory, which reflects the cognitive deficits often observed in the early stages of Parkinson's disease. We hypothesize that DDGPe might disrupt GABAergic modulation in the TRN, impacting memory. To test this, rats with DDGPe were injected with varying concentrations of muscimol into the TRN and underwent an object recognition test. Results showed that muscimol restored the discrimination index (DI) values reduced by DDGPe, with recovery blocked by bicuculline. These findings suggest that a reduction in the GABAergic influence from the GPe on the TRN compromises the TRN's functionality during memory processing.
Collapse
Affiliation(s)
- Evangelista-Arzate Christian Alexis
- Physiology Department Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Wilfrido Massieu 399 Nueva Industrial Vallejo G.A.M. ZIP Code 07700 Ciudad de México CDMX Mexico.
| | - Mora-Zenil Janeth
- Physiology Department Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Wilfrido Massieu 399 Nueva Industrial Vallejo G.A.M. ZIP Code 07700 Ciudad de México CDMX Mexico.
| | - Reyes-Mendoza Julio Daniel
- Physiology Department Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Wilfrido Massieu 399 Nueva Industrial Vallejo G.A.M. ZIP Code 07700 Ciudad de México CDMX Mexico.
| | - García-Ramirez Martha
- Physiology Department Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Wilfrido Massieu 399 Nueva Industrial Vallejo G.A.M. ZIP Code 07700 Ciudad de México CDMX Mexico.
| | - Chuc-Meza Eliezer
- Physiology Department Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Wilfrido Massieu 399 Nueva Industrial Vallejo G.A.M. ZIP Code 07700 Ciudad de México CDMX Mexico.
| |
Collapse
|
14
|
Alipour M, Rausch J, Mednick SC, Cook JD, Plante DT, Malerba P. The Space-Time Organisation of Sleep Slow Oscillations as Potential Biomarker for Hypersomnolence. J Sleep Res 2025:e70059. [PMID: 40170232 DOI: 10.1111/jsr.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Research suggests that the spatial profile of slow wave activity (SWA) could be altered in hypersomnolence. Slow oscillations (SOs; 0.5-1.5 Hz), single waveform events contributing to SWA, can be labelled as Global, Frontal, or Local depending on their presentation on the scalp. We showed that SO space-time types differentiate in their amplitudes, coordination with sleep spindles, and propagation patterns. This study applies our data-driven analysis to the nocturnal sleep of adults with and without hypersomnolence and major depressive disorder (MDD) to explore the potential relevance of SO space-time patterns as hypersomnolence signatures in the sleep EEG. We leverage an existing dataset of nocturnal polysomnography with high-density EEG in 83 adults, organised in four groups depending on the presence/absence of hypersomnolence and on the presence/absence of MDD. Group comparisons were conducted considering either two groups (hypersomnolence status) or the four groups separately. Data shows enhanced Frontal SO activity compared with Global activity in hypersomnolence, with or without MDD, and a loss of Global SO amplitude at central regions in hypersomnolence without MDD compared to controls. As Global SOs travel fronto-parietally, we interpret these results as likely driven by a loss of coordination of Global SO activity in hypersomnolence without MDD, resulting in an overabundance of Frontal SOs. This study suggests that characteristics of Frontal SO and Global SOs may have the potential to differentiate individuals with hypersomnolence without MDD, and that the space-time organisation of SOs could be a mechanistically relevant indicator of changes in sleep brain dynamics related to hypersomnolence.
Collapse
Affiliation(s)
- Mahmoud Alipour
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph Rausch
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, California, USA
| | - Jesse D Cook
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
15
|
Cross N, O'Byrne J, Weiner O, Giraud J, Perrault A, Dang‐Vu T. Phase-Amplitude Coupling of NREM Sleep Oscillations Shows Between-Night Stability and is Related to Overnight Memory Gains. Eur J Neurosci 2025; 61:e70108. [PMID: 40214027 PMCID: PMC11987483 DOI: 10.1111/ejn.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
There is growing evidence in humans linking the temporal coupling between spindles and slow oscillations during NREM sleep with the overnight stabilization of memories encoded from daytime experiences in humans. However, whether the type and strength of learning influence that relationship is still unknown. Here we tested whether the amount or type of verbal word-pair learning prior to sleep affects subsequent phase-amplitude coupling (PAC) between spindles and slow oscillations (SO). We measured the strength and preferred timing of such coupling in the EEG of 41 healthy human participants over a post-learning and control night to compare intra-individual changes with inter-individual differences. We leveraged learning paradigms of varying word-pair (WP) load: 40 WP learned to a minimum criterion of 60% correct (n = 11); 40 WP presented twice (n = 15); 120 WP presented twice (n = 15). There were no significant differences in the preferred phase or strength between the control and post-learning nights, in all learning conditions. We observed an overnight consolidation effect (improved performance at delayed recall) for the criterion learning condition only, and only in this condition was the overnight change in memory performance significantly positively correlated with the phase of SO-spindle coupling. These results suggest that the coupling of brain oscillations during human NREM sleep is stable traits that are not modulated by the amount of pre-sleep learning, yet are implicated in the sleep-dependent consolidation of memory-especially when overnight gains in memory are observed.
Collapse
Affiliation(s)
- Nathan Cross
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- School of PsychologyThe University of SydneyCamperdownAustralia
| | - Jordan O'Byrne
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyUniversité de MontréalMontrealQCCanada
| | - Oren M. Weiner
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| | - Julia Giraud
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
- Department of NeurosciencesUniversité de MontréalMontrealQCCanada
| | - Aurore A. Perrault
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
| | - Thien Thanh Dang‐Vu
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| |
Collapse
|
16
|
Parhizkar S, Holtzman DM. The night's watch: Exploring how sleep protects against neurodegeneration. Neuron 2025; 113:817-837. [PMID: 40054454 PMCID: PMC11925672 DOI: 10.1016/j.neuron.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 03/21/2025]
Abstract
Sleep loss is often regarded as an early manifestation of neurodegenerative diseases given its common occurrence and link to cognitive dysfunction. However, the precise mechanisms by which sleep disturbances contribute to neurodegeneration are not fully understood, nor is it clear why some individuals are more susceptible to these effects than others. This review addresses critical unanswered questions in the field, including whether sleep disturbances precede or result from neurodegenerative diseases, the functional significance of sleep changes during the preclinical disease phase, and the potential role of sleep homeostasis as an adaptive mechanism enhancing resilience against cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2025; 51:513-521. [PMID: 38713085 PMCID: PMC11908868 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
18
|
Basha D, Azarmehri A, Proulx E, Chauvette S, Ghorbani M, Timofeev I. The reuniens nucleus of the thalamus facilitates hippocampo-cortical dialogue during sleep. eLife 2025; 12:RP90826. [PMID: 40047245 PMCID: PMC11884783 DOI: 10.7554/elife.90826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.
Collapse
Affiliation(s)
- Diellor Basha
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| | - Amirmohammad Azarmehri
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Elian Proulx
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
| | | | - Maryam Ghorbani
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Igor Timofeev
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| |
Collapse
|
19
|
Swanson RA, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bi-directional interaction between hippocampal sharp-wave ripples and neocortical slow oscillations. Neuron 2025; 113:754-768.e9. [PMID: 39874961 DOI: 10.1016/j.neuron.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability were correlated with UP/DOWN states in the default mode network (DMN), with the highest modulation by the RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN → UP transitions, whereas large-amplitude SWRs were often followed by DOWN states originating in the RSC. We explain these electrophysiological results with a model in which the HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest that the RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel A Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University Montreal, QC, Canada; Mila - The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
20
|
Hassan U, Okyere P, Masouleh MA, Zrenner C, Ziemann U, Bergmann TO. Pulsed inhibition of corticospinal excitability by the thalamocortical sleep spindle. Brain Stimul 2025; 18:265-275. [PMID: 39986374 DOI: 10.1016/j.brs.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Thalamocortical sleep spindles, i.e., oscillatory bursts at ∼12-15 Hz of waxing and waning amplitude, are a hallmark feature of non-rapid eye movement (NREM) sleep and believed to play a key role in memory reactivation and consolidation. Generated in the thalamus and projecting to neocortex and hippocampus, they are phasically modulated by neocortical slow oscillations (<1 Hz) and in turn phasically modulate hippocampal sharp-wave ripples (>80 Hz). This hierarchical cross-frequency nesting, where slower oscillations group faster ones into certain excitability phases, may enable phase-dependent plasticity in the neocortex, and spindles have thus been considered windows of plasticity in the sleeping brain. However, the assumed phasic excitability modulation had not yet been demonstrated for spindles. Utilizing a recently developed real-time spindle detection algorithm, we applied spindle phase-triggered transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) hand area to characterize the corticospinal excitability profile of spindles via motor evoked potentials (MEP). MEPs showed net suppression during spindles, driven by a "pulse of inhibition" during its falling flank with no inhibition or facilitation during its peak, rising flank, or trough. This unidirectional ("asymmetric") modulation occurred on top of the general sleep-related inhibition during spindle-free NREM sleep and did not extend into the refractory post-spindle periods. We conclude that spindles exert "asymmetric pulsed inhibition" on corticospinal excitability. These findings and the developed real-time spindle targeting methods enable future studies to investigate the causal role of spindles in phase-dependent synaptic plasticity and systems memory consolidation during sleep by repetitively targeting relevant spindle phases.
Collapse
Affiliation(s)
- Umair Hassan
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, USA; Wu-Tsai Neurosciences Institute, Stanford University, USA.
| | - Prince Okyere
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; School of Psychology, University of Surrey, Guildford, UK
| | - Milad Amini Masouleh
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, Dortmund, Germany; Psychology Department, Ruhr University Bochum, Bochum, Germany
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, And Institute for Biomedical Engineering, And Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
21
|
Pathmanathan J, Westover MB, Sivakumaran S, Donoghue J, Puryear CB. The role of sleep in Alzheimer's disease: a mini review. Front Neurosci 2025; 19:1428733. [PMID: 39975973 PMCID: PMC11835855 DOI: 10.3389/fnins.2025.1428733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Sleep is a stereotyped and well-preserved series of neurophysiological states that are essential for overall health and brain functioning. Emerging research suggests that sleep disturbances are not only associated with but also causally contribute to neurodegenerative disease onset and progression. This mini-review examines some of the current knowledge and evidence for relationships between sleep abnormalities and Alzheimer's disease within context of possible uses and limitations of sleep biomarkers for evaluation of Alzheimer's disease. Understanding these relationships could lead to readily accessible and easily quantifiable biomarkers of Alzheimer's dementia.
Collapse
|
22
|
Bolló H, Carreiro C, Iotchev IB, Gombos F, Gácsi M, Topál J, Kis A. The Effect of Targeted Memory Reactivation on Dogs' Visuospatial Memory. eNeuro 2025; 12:ENEURO.0304-20.2024. [PMID: 39933919 PMCID: PMC11827548 DOI: 10.1523/eneuro.0304-20.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
The role of sleep in memory consolidation is a widely discussed but still debated area of research. In light of the fact that memory consolidation during sleep is an evolutionary adaptive function, investigating the same phenomenon in nonhuman model species is highly relevant for its understanding. One such species, which has acquired human-analog sociocognitive skills through convergent evolution, is the domestic dog. Family dogs have surfaced as an outstanding animal model in sleep research, and their learning skills (in a social context) are subject to sleep-dependent memory consolidation. These results, however, are correlational, and the next challenge is to establish causality. In the present study, we aimed to adapt a TMR (targeted memory reactivation) paradigm in dogs and investigate its effect on sleep parameters. Dogs (N = 16) learned new commands associated with different locations and afterward took part in a sleep polysomnography recording when they were re-exposed to one of the previously learned commands. The results did not indicate a cueing benefit on choice performance. However, there was evidence for a decrease in choice latency after sleep, while the density (occurrence/minute) of fast sleep spindles was also notably higher during TMR recordings than adaptation recordings from the same animals and even compared with a larger reference sample from a previous work. Our study provides empirical evidence that TMR is feasible with family dogs, even during a daytime nap. Furthermore, the present study highlights several methodological and conceptual challenges for future research.
Collapse
Affiliation(s)
- Henrietta Bolló
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Cecília Carreiro
- Department of Ethology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | | | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, Budapest 1088, Hungary
- HUN-REN-ELTE-PPKE Adolescent Development Research Group Budapest, Budapest 1075, Hungary
| | - Márta Gácsi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest 1117, Hungary
| | - József Topál
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
23
|
Denis D, Bottary R, Cunningham TJ, Davidson P, Yuksel C, Milad MR, Pace-Schott EF. Slow oscillation-sleep spindle coupling is associated with fear extinction retention in trauma-exposed individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634866. [PMID: 39974936 PMCID: PMC11838212 DOI: 10.1101/2025.01.27.634866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Posttraumatic stress disorder (PTSD) can be characterized as a disorder of fear learning and memory, in which there is a failure to retain memory for the extinction of conditioned fear. Sleep has been implicated in successful extinction retention. The coupling of sleep spindles to slow oscillations (SOs) during non-rapid eye movement sleep has been shown to broadly underpin sleep's beneficial effect on memory consolidation. However, the role of this oscillatory coupling in the retention of extinction memories is unknown. In a large sample of 124 trauma-exposed individuals, we investigated SO-spindle coupling in relation to fear extinction memory. We found that participants with a PTSD diagnosis, relative to trauma-exposed controls, showed significantly altered SO-spindle timing, such that PTSD participants exhibited spindle coupling further away from the peak of the SO. Across participants, the amount of coupling significantly predicted extinction retention, with coupled spindles uniquely predicting successful extinction retention compared to uncoupled spindles. These results suggest that SO-spindle coupling is critical for successful retention of extinguished fear, and that SO-spindle coupling dynamics are altered in PTSD. These alterations in the mechanics of sleep may have substantial clinical implications, meriting further investigation.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, PA, USA
| | - Tony J. Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Per Davidson
- Department of Psychology, Kristianstad University, Kristianstad, Sweden
| | - Cagri Yuksel
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Edward F. Pace-Schott
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Mass General Brigham, Charlestown, MA, USA
| |
Collapse
|
24
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
25
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
26
|
Mylonas D, Patel R, Larson O, Zhu L, Vangel M, Baxter B, Manoach DS. Does fragmented sleep mediate the relationship between deficits in sleep spindles and memory consolidation in schizophrenia? SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 6:zpae090. [PMID: 39811395 PMCID: PMC11725649 DOI: 10.1093/sleepadvances/zpae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Study Objectives Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC. We investigated whether this relationship is mediated by sleep fragmentation. Methods We detected spindles (12-15 Hz) during N2 at central electrodes in overnight polysomnography records from 56 participants with chronic schizophrenia and 59 healthy controls. Our primary measures of sleep continuity were the sleep fragmentation index and, in a subset of the data, visually scored arousals. SDMC was measured as overnight improvement on the finger-tapping motor sequence task. Results Participants with schizophrenia showed reductions of both spindle density (#/min) and SDMC in the context of normal sleep continuity and architecture. Spindle density predicted SDMC in both groups. In contrast, neither increased sleep fragmentation nor arousals predicted lower spindle density or worse SDMC in either group. Conclusions Our findings fail to support the hypothesis that sleep fragmentation accounts for spindle deficits, impaired SDMC, or their relationship in individuals with chronic schizophrenia. Instead, our findings are consistent with the hypothesis that spindle deficits directly impair memory consolidation in schizophrenia. Since sleep continuity and architecture are intact in this population, research aimed at developing interventions should instead focus on understanding dysfunction within the thalamocortical-hippocampal circuitry that both generates spindles and synchronizes them with other NREM oscillations to mediate SDMC.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Larson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
27
|
Iotchev IB, Szabó D, Turcsán B, Bognár Z, Kubinyi E. Sleep-spindles as a marker of attention and intelligence in dogs. Neuroimage 2024; 303:120916. [PMID: 39505225 DOI: 10.1016/j.neuroimage.2024.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
The sleep spindle-generating thalamo-cortical circuitry supports attention capacity in awake humans and animals, but using sleep spindles to predict differences in attention has not been tried in either. Of the more commonly examined cognitive correlates of spindle occurrence and amplitude, post-sleep recall, and general intelligence, only post-sleep recall had been studied in dogs, rats and mice. Here, we examined a sample of companion dogs (N = 58) for whom polysomnographic recordings and several cognitive tests were performed on two occasions each, with a three-month break in-between. Five of the tests were used to extract a factor analogous to human g (general mental ability). A sixth test in the battery measured sustained attention. Both attention and g-factor scores were linked to higher slow spindle occurrence and absolute sigma power detected in polysomnographic recordings over the central electrode. These effects persisted across measurement occasions. Higher intrinsic spindle frequency was, in turn, linked to lower g-factor scores but displayed no relationship with attention scores. The overlap in localization and direction for the effects of slow spindle density (spindles/minute) and sigma power supports that they tap into the same underlying cognition-relevant aspects of spindling. Given earlier large sample and meta-analysis validations of sigma power as a reliable predictor of cognitive performance in humans, we thus conclude that the currently handled method for quantifying spindle density in dogs indeed measures cognition-relevant spindle activity by virtue of its agreement with the sigma power alternative.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary.
| | - Dóra Szabó
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary
| | - Borbála Turcsán
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary
| | - Zsófia Bognár
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary; ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
28
|
Jacob LPL, Bailes SM, Williams SD, Stringer C, Lewis LD. Brainwide hemodynamics predict neural rhythms across sleep and wakefulness in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577429. [PMID: 38352426 PMCID: PMC10862763 DOI: 10.1101/2024.01.29.577429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the brainwide dynamics underlying these oscillations are unknown. Using simultaneous EEG and fast fMRI in humans drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI networks predict alpha (8-12 Hz) and delta (1-4 Hz) fluctuations. We predicted moment-to-moment EEG power variations from fMRI activity in held-out subjects, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify the large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal, brainwide dynamics.
Collapse
Affiliation(s)
- Leandro P. L. Jacob
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney M. Bailes
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | - Stephanie D. Williams
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | | | - Laura D. Lewis
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA USA
| |
Collapse
|
29
|
Lu Z, Zeng F, Ma D, Wan Q, Yu J, Pan F. Modulation of Phase-Locking Characteristics of NbO x Memristor by Ag Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60501-60510. [PMID: 39453027 DOI: 10.1021/acsami.4c12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Memristors based on niobium oxide have attracted wide interest due to their applications in artificial neural network. Phase-locking (PL) characteristics of NbOx newly explored roots in complex nonlinear dynamics and exhibits great potential in periodical signal handling because of its bioinspired nature. In this study, we fabricate a Pd/Nb/Ag-NbOx/Nb/Pd memristive structure and study the effects of Ag doping on the PL characteristics. We clearly see that the NbOx memristor responds to signal in three distinct patterns. For the low-frequency input, the memristor fires spike series and locks the phase near π 2 during the positive period of sinusoidal input, and it encodes the input features by the spike number per period. For the middle-frequency input, the memristor fires one spike per period at a definite phase. The output has the same frequency as the input. The locked phase is proportional to the input frequency. For the high-frequency input, the memristor transforms high frequency to low frequency signal and locks at a definite phase higher than 2π. We combined the microstructural analysis and chaos dynamics to know that Ag doping will lower the activation energy, enhance the responding rate, and enhance thermal conductivity, which extends the locked frequency to 1.7 times the value of the undoped NbOx memristor. We also obtained the locked frequency of even 40 MHz after modulating the elementary circuit configuration according to the material modification and chaos model. Our study proposes to handle a signal with high efficiency resembling auditory sense and inspires a novel artificial intelligent computation prototype.
Collapse
Affiliation(s)
- Ziao Lu
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Zeng
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Da Ma
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qin Wan
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junwei Yu
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Dickey CW, Verzhbinsky IA, Kajfez S, Rosen BQ, Gonzalez CE, Chauvel PY, Cash SS, Pati S, Halgren E. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. PLoS Biol 2024; 22:e3002855. [PMID: 39561183 PMCID: PMC11575773 DOI: 10.1371/journal.pbio.3002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
In the neocortex, ~90 Hz ripples couple to ~12 Hz sleep spindles on the ~1 Hz Down-to-Up state transition during non-rapid eye movement sleep. This conjunction of sleep waves is critical for the consolidation of memories into long-term storage. The widespread co-occurrences of ripples ("co-ripples") may integrate information across the neocortex and hippocampus to facilitate consolidation. While the thalamus synchronizes spindles and Up states in the cortex for memory, it is not known whether it may also organize co-ripples. Using human intracranial recordings during NREM sleep, we investigated whether cortico-cortical co-ripples and hippocampo-cortical co-ripples are either: (1) driven by directly projected thalamic ripples; or (2) coordinated by propagating thalamic spindles or Up states. We found ripples in the anterior and posterior thalamus, with similar characteristics as hippocampal and cortical ripples, including having a center frequency of ~90 Hz and coupling to local spindles on the Down-to-Up state transition. However, thalamic ripples rarely co-occur or phase-lock with cortical or hippocampal ripples. By contrast, spindles and Up states that propagate from the thalamus strongly coordinate co-ripples in the cortex and hippocampus. Thus, thalamo-cortical spindles and Up states, rather than thalamic ripples, may provide input facilitating spatially distributed co-rippling that integrates information for memory consolidation during sleep in humans.
Collapse
Affiliation(s)
- Charles W. Dickey
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Christopher E. Gonzalez
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Patrick Y. Chauvel
- Aix-Marseille Université, Marseille, France
- INSERM, Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
- APHM (Assistance Publique–Hôpitaux de Marseille), Timone Hospital, Marseille, France
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eric Halgren
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
31
|
Cai H, Xiao H, Tong C, Dong X, Chen S, Xu F. Influence of odor environments on cognitive efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174642. [PMID: 38992380 DOI: 10.1016/j.scitotenv.2024.174642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.
Collapse
Affiliation(s)
- Hao Cai
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Hanlin Xiao
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Chengxin Tong
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Xian Dong
- Army Engineering University of PLA, Nanjing 210007, China.
| | - Shilong Chen
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Feng Xu
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
32
|
Zheng Q, Huang Y, Mu C, Hu X, Lai CSW. Selective Modulation of Fear Memory in Non-Rapid Eye Movement Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400662. [PMID: 39382074 PMCID: PMC11600212 DOI: 10.1002/advs.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 10/10/2024]
Abstract
Sleep stabilizes memories for their consolidation, but how to modify specific fear memory during sleep remains unclear. Here, it is reported that using targeted memory reactivation (TMR) to reactivate prior fear learning experience in non-slow wave sleep (NS) inhibits fear memory consolidation, while TMR during slow wave sleep (SWS) enhances fear memory in mice. Replaying conditioned stimulus (CS) during sleep affects sleep spindle occurrence, leading to the reduction or enhancement of slow oscillation-spindle (SO-spindle) coupling in NS and SWS, respectively. Optogenetic inhibition of pyramidal neurons in the frontal association cortex (FrA) during TMR abolishes the behavioral effects of NS-TMR and SWS-TMR by modulating SO-spindle coupling. Notably, calcium imaging of the L2/3 pyramidal neurons in the FrA shows that CS during SWS selectively enhances the activity of neurons previously activated during fear conditioning (FC+ neurons), which significantly correlates with CS-elicited spindle power spectrum density. Intriguingly, these TMR-induced calcium activity changes of FC+ neurons further correlate with mice freezing behavior, suggesting their contributions to the consolidation of fear memories. The findings indicate that TMR can selectively weaken or strengthen fear memory, in correlation with modulating SO-spindle coupling and the reactivation of FC+ neurons during substages of non-rapid eye movement (NREM) sleep.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
| | - Yuhua Huang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Changrui Mu
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Xiaoqing Hu
- Department of PsychologyFaculty of Social SciencesThe University of Hong KongHong KongSARChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| | - Cora Sau Wan Lai
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
33
|
Bastian L, Kurz EM, Näher T, Zinke K, Friedrich M, Born J. Long-term memory formation for voices during sleep in three-month-old infants. Neurobiol Learn Mem 2024; 215:107987. [PMID: 39284413 DOI: 10.1016/j.nlm.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024]
Abstract
The ability to form long-term memories begins in early infancy. However, little is known about the specific mechanisms that guide memory formation during this developmental stage. We demonstrate the emergence of a long-term memory for a novel voice in three-month-old infants using the EEG mismatch response (MMR) to the word "baby". In an oddball-paradigm, a frequent standard, and two rare deviant voices (novel and mother) were presented before (baseline), and after (test) familiarizing the infants with the novel voice and a subsequent nap. Only the mother deviant but not the novel deviant elicited a late frontal MMR (∼850 ms) at baseline, possibly reflecting a long-term memory representation for the mother's voice. Yet, MMRs to the novel and mother deviant significantly increased in similarity after voice familiarization and sleep. Moreover, both MMRs showed an additional early (∼250 ms) frontal negative component that is potentially related to deviance processing in short-term memory. Enhanced spindle activity during the nap predicted an increase in late MMR amplitude to the novel deviant and increased MMR similarity between novel and mother deviant. Our findings indicate that the late positive MMR in infants might reflect emergent long-term memory that benefits from sleep spindles.
Collapse
Affiliation(s)
- Lisa Bastian
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, DE, Germany; Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, DE, Germany
| | - Eva-Maria Kurz
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, DE, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, DE, Germany
| | - Tim Näher
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, DE, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, DE, Germany
| | - Manuela Friedrich
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, DE, Germany; Department of Psychology, Humboldt-University, 12489 Berlin, DE, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, DE, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; German Center for Mental Health (DZPG), site Tübingen, Germany.
| |
Collapse
|
34
|
Okada M, Fukuyama K, Motomura E. Impacts of exposure to and subsequent discontinuation of clozapine on tripartite synaptic transmission. Br J Pharmacol 2024; 181:4571-4592. [PMID: 39091175 DOI: 10.1111/bph.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but its discontinuation leads to discontinuation syndrome/catatonia complicated by benzodiazepine-resistance and rhabdomyolysis. EXPERIMENTAL APPROACH This study determined time-dependent effects of exposure and subsequent discontinuation of clozapine on expression of connexin43, 5-HT receptors, intracellular L-β-aminoisobutyrate (L-BAIBA) and 2nd-messengers and signalling of AMPK, PP2A and Akt in cultured astrocytes and rat frontal cortex. KEY RESULTS Intracellular L-BAIBA levels increased during clozapine exposure but immediately recovered after discontinuation. Both exposure to clozapine and L-BAIBA increased connexin43 and signalling of AMPK/Akt time-dependently, but reduced PP2A signalling, 5-HT receptor expression and IP3 level. These changes recovered within 2 weeks after discontinuation, while 5-HT receptors and IP3 transiently increased during the recovery process. L-BAIBA activated AMPK signalling, leading to attenuated PP2A signalling. Astroglial D-serine release was increased by clozapine exposure but continued to increase within 1 week after discontinuation via activation of IP3 receptor function. CONCLUSION AND IMPLICATIONS Clozapine discontinuation restored PP2A signalling due to decreased L-BAIBA, increased 5-HT receptor expression via probably enhanced 5-HT receptor recycling, but increased astroglial D-serine release persisted by transiently activated IP3 receptors via transiently increased IP3 level. Decreased L-BAIBA caused by clozapine discontinuation is, at least partially, involved in the transiently increased 5-HT receptor and astroglial D-serine release.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
35
|
Hou R, Liu Z, Jin Z, Huang D, Hu Y, Du W, Zhu D, Yang L, Weng Y, Yuan T, Lu B, Wang Y, Ping Y, Xiao X. Coordinated Interactions between the Hippocampus and Retrosplenial Cortex in Spatial Memory. RESEARCH (WASHINGTON, D.C.) 2024; 7:0521. [PMID: 39483173 PMCID: PMC11525046 DOI: 10.34133/research.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
While a hippocampal-cortical dialogue is generally thought to mediate memory consolidation, which is crucial for engram function, how it works remains largely unknown. Here, we examined the interplay of neural signals from the retrosplenial cortex (RSC), a neocortical region, and from the hippocampus in memory consolidation by simultaneously recording sharp-wave ripples (SWRs) of dorsal hippocampal CA1 and neural signals of RSC in free-moving mice during the delayed spatial alternation task (DSAT) and subsequent sleep. Hippocampal-RSC coordination during SWRs was identified in nonrapid eye movement (NREM) sleep, reflecting neural reactivation of decision-making in the task, as shown by a peak reactivation strength within SWRs. Using modified generalized linear models (GLMs), we traced information flow through the RSC-CA1-RSC circuit around SWRs during sleep following DSAT. Our findings show that after spatial training, RSC excitatory neurons typically increase CA1 activity prior to hippocampal SWRs, potentially initiating hippocampal memory replay, while inhibitory neurons are activated by hippocampal outputs in post-SWRs. We further identified certain excitatory neurons in the RSC that encoded spatial information related to the DSAT. These neurons, classified as splitters and location-related cells, showed varied responses to hippocampal SWRs. Overall, our study highlights the complex dynamics between the RSC and hippocampal CA1 region during SWRs in NREM sleep, underscoring their critical interplay in spatial memory consolidation.
Collapse
Affiliation(s)
- Ruiqing Hou
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Ziyue Liu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Zichen Jin
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Dongxue Huang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yue Hu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Danyi Zhu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Leiting Yang
- School of Life Science,
Fudan University, Shanghai 200032, China
| | - Yuanfeng Weng
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huadong Hospital,
Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education),
Shanghai JiaoTong University, Shanghai 200240, China
| | - Xiao Xiao
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
37
|
Swanson R, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bidirectional interaction between hippocampal sharp wave ripples and neocortical slow oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619879. [PMID: 39484611 PMCID: PMC11526890 DOI: 10.1101/2024.10.23.619879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across neocortex and the mechanisms enabling it remain unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with widefield imaging of dorsal neocortex, we found spatially and temporally precise bidirectional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability was correlated with UP/DOWN states in mouse default mode network, with highest modulation by RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN→UP transitions, while large-amplitude SWRs were often followed by DOWN states originating in RSC. We explain these electrophysiological results with a model in which HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Mila – The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
38
|
Darevsky D, Kim J, Ganguly K. Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations. J Neurosci 2024; 44:e0621242024. [PMID: 39168655 PMCID: PMC11502226 DOI: 10.1523/jneurosci.0621-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024] Open
Abstract
Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep.
Collapse
Affiliation(s)
- David Darevsky
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, California 94143
- Medical Scientist Training Program, University of California San Francisco, San Francisco, California 94143
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
39
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
40
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
41
|
Li Z, Wang J, Tang C, Wang P, Ren P, Li S, Yi L, Liu Q, Sun L, Li K, Ding W, Bao H, Yao L, Na M, Luan G, Liang X. Coordinated NREM sleep oscillations among hippocampal subfields modulate synaptic plasticity in humans. Commun Biol 2024; 7:1236. [PMID: 39354050 PMCID: PMC11445409 DOI: 10.1038/s42003-024-06941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The integration of hippocampal oscillations during non-rapid eye movement (NREM) sleep is crucial for memory consolidation. However, how cardinal sleep oscillations bind across various subfields of the human hippocampus to promote information transfer and synaptic plasticity remains unclear. Using human intracranial recordings from 25 epilepsy patients, we find that hippocampal subfields, including DG/CA3, CA1, and SUB, all exhibit significant delta and spindle power during NREM sleep. The DG/CA3 displays strong coupling between delta and ripple oscillations with all the other hippocampal subfields. In contrast, the regions of CA1 and SUB exhibit more precise coordination, characterized by event-level triple coupling between delta, spindle, and ripple oscillations. Furthermore, we demonstrate that the synaptic plasticity within the hippocampal circuit, as indexed by delta-wave slope, is linearly modulated by spindle power. In contrast, ripples act as a binary switch that triggers a sudden increase in delta-wave slope. Overall, these results suggest that different subfields of the hippocampus regulate one another through diverse layers of sleep oscillation synchronization, collectively facilitating information processing and synaptic plasticity during NREM sleep.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Peng Ren
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Li
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| | - Liye Yi
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaizhou Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China
- Department of Neurosurgery, BeijingTiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Xia Liang
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
42
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Solano A, Lerner G, Griffa G, Deleglise A, Caffaro P, Riquelme L, Perez-Chada D, Della-Maggiore V. Sleep Consolidation Potentiates Sensorimotor Adaptation. J Neurosci 2024; 44:e0325242024. [PMID: 39074983 PMCID: PMC11376339 DOI: 10.1523/jneurosci.0325-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
Contrary to its well-established role in declarative learning, the impact of sleep on motor memory consolidation remains a subject of debate. Current literature suggests that while motor skill learning benefits from sleep, consolidation of sensorimotor adaptation (SMA) depends solely on the passage of time. This has led to the proposal that SMA may be an exception to other types of memories. Here, we addressed this ongoing controversy in humans through three comprehensive experiments using the visuomotor adaptation paradigm (N = 290, 150 females). In Experiment 1, we investigated the impact of sleep on memory retention when the temporal gap between training and sleep was not controlled. In line with the previous literature, we found that memory consolidates with the passage of time. In Experiment 2, we used an anterograde interference protocol to determine the time window during which SMA memory is most fragile and, thus, potentially most sensitive to sleep intervention. Our results show that memory is most vulnerable during the initial hour post-training. Building on this insight, in Experiment 3, we investigated the impact of sleep when it coincided with the critical first hour of memory consolidation. This manipulation unveiled a benefit of sleep (30% memory enhancement) alongside an increase in spindle density and spindle-SO coupling during NREM sleep, two well-established neural markers of sleep consolidation. Our findings reconcile seemingly conflicting perspectives on the active role of sleep in motor learning and point to common mechanisms at the basis of memory formation.
Collapse
Affiliation(s)
- Agustin Solano
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Gonzalo Lerner
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Guillermina Griffa
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Alvaro Deleglise
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Pedro Caffaro
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Luis Riquelme
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Daniel Perez-Chada
- Departamento de Medicina Interna, Servicio de Medicina Pulmonar y Sueño, Hospital Universitario Austral, Pilar, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
- Department of Neurology and Neurosurgery, McGill University Montreal, Quebec H3A2B4, Canada
- Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martin, San Martin, Buenos Aires, CP 1650, Argentina
| |
Collapse
|
44
|
Ohki T, Chao ZC, Takei Y, Kato Y, Sunaga M, Suto T, Tagawa M, Fukuda M. Multivariate sharp-wave ripples in schizophrenia during awake state. Psychiatry Clin Neurosci 2024; 78:507-516. [PMID: 38923051 PMCID: PMC11488617 DOI: 10.1111/pcn.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
AIMS Schizophrenia (SZ) is a brain disorder characterized by psychotic symptoms and cognitive dysfunction. Recently, irregularities in sharp-wave ripples (SPW-Rs) have been reported in SZ. As SPW-Rs play a critical role in memory, their irregularities can cause psychotic symptoms and cognitive dysfunction in patients with SZ. In this study, we investigated the SPW-Rs in human SZ. METHODS We measured whole-brain activity using magnetoencephalography (MEG) in patients with SZ (n = 20) and sex- and age-matched healthy participants (n = 20) during open-eye rest. We identified SPW-Rs and analyzed their occurrence and time-frequency traits. Furthermore, we developed a novel multivariate analysis method, termed "ripple-gedMEG" to extract the global features of SPW-Rs. We also examined the association between SPW-Rs and brain state transitions. The outcomes of these analyses were modeled to predict the positive and negative syndrome scale (PANSS) scores of SZ. RESULTS We found that SPW-Rs in the SZ (1) occurred more frequently, (2) the delay of the coupling phase (3) appeared in different brain areas, (4) consisted of a less organized spatiotemporal pattern, and (5) were less involved in brain state transitions. Finally, some of the neural features associated with the SPW-Rs were found to be PANSS-positive, a pathological indicator of SZ. These results suggest that widespread but disorganized SPW-Rs underlies the symptoms of SZ. CONCLUSION We identified irregularities in SPW-Rs in SZ and confirmed that their alternations were strongly associated with SZ neuropathology. These results suggest a new direction for human SZ research.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI‐IRCN), The University of Tokyo Institutes for Advanced StudyThe University of TokyoTokyoJapan
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Zenas C. Chao
- International Research Center for Neurointelligence (WPI‐IRCN), The University of Tokyo Institutes for Advanced StudyThe University of TokyoTokyoJapan
| | - Yuichi Takei
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Yutaka Kato
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
- Tsutsuji Mental HospitalTatebayashiJapan
| | - Masakazu Sunaga
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Tomohiro Suto
- Gunma Prefectural Psychiatric Medical CenterIsesakiJapan
| | - Minami Tagawa
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
- Gunma Prefectural Psychiatric Medical CenterIsesakiJapan
| | - Masato Fukuda
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
45
|
Wodeyar A, Chinappen D, Mylonas D, Baxter B, Manoach DS, Eden UT, Kramer MA, Chu CJ. Thalamic epileptic spikes disrupt sleep spindles in patients with epileptic encephalopathy. Brain 2024; 147:2803-2816. [PMID: 38650060 PMCID: PMC11492493 DOI: 10.1093/brain/awae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dhinakaran Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Dimitris Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
47
|
Baena D, Toor B, van den Berg NH, Ray LB, Fogel SM. Spindle-slow wave coupling and problem-solving skills: impact of age. Sleep 2024; 47:zsae072. [PMID: 38477166 PMCID: PMC11236953 DOI: 10.1093/sleep/zsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting. The temporal co-occurrence between slow waves (SW) and sleep spindles (SP) during non-rapid eye movement sleep was examined as a function of age in relation to memory consolidation of problem-solving skills. We found that despite intact learning, older adults derived a reduced benefit of sleep for problem-solving skills relative to younger adults. As expected, the percentage of coupled spindles was lower in older compared to younger individuals from control to testing sessions. Furthermore, coupled spindles in young adults were more strongly coupled to the SW upstate compared to older individuals. Coupled spindles in older individuals were lower in amplitude (mean area under the curve; μV) compared to the young group. Lastly, there was a significant relationship between offline gains in accuracy on the ToH and percent change of spindles coupled to the upstate of the slow wave in older, but not younger adults. Multiple regression revealed that age accounted for differences in offline gains in accuracy, as did spindle coupling during the upstate. These results suggest that with aging, spindle-slow wave coupling decreases. However, the degree of the preservation of coupling with age correlates with the extent of problem-solving skill consolidation during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Balmeet Toor
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
48
|
Shin JD, Jadhav SP. Prefrontal cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. Curr Biol 2024; 34:2801-2811.e9. [PMID: 38834064 PMCID: PMC11233241 DOI: 10.1016/j.cub.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical slow and spindle oscillations during non-REM sleep. Recent evidence suggests that high-frequency cortical ripples can also coordinate with hippocampal SWRs in support of consolidation; however, the contribution of cortical ripples to reactivation remains unclear. We used high-density, continuous recordings in the hippocampus (area CA1) and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples dissociated from SWRs are prevalent in NREM sleep and predominantly suppress hippocampal activity. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation rather than coordination, and this suppression is stronger for assemblies that are reactivated during coordinated CA1-PFC ripples for consolidation of recent experiences. Further, we show non-canonical, serial coordination of independent cortical ripples with slow and spindle oscillations, which are known signatures of memory consolidation. These results establish a role for prefrontal cortical ripples in top-down regulation of behaviorally relevant hippocampal representations during consolidation.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
49
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Jiang S, Yang Z, Aton SJ. Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome. Cell Rep 2024; 43:114266. [PMID: 38787724 PMCID: PMC11910971 DOI: 10.1016/j.celrep.2024.114266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Caicedo Garzon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roxanne E Perez Tremble
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
Cushing SD, Moseley SC, Stimmell AC, Schatschneider C, Wilber AA. Rescuing impaired hippocampal-cortical interactions and spatial reorientation learning and memory during sleep in a mouse model of Alzheimer's disease using hippocampal 40 Hz stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599921. [PMID: 38979221 PMCID: PMC11230253 DOI: 10.1101/2024.06.20.599921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In preclinical Alzheimer's disease (AD), spatial learning and memory is impaired. We reported similar impairments in 3xTg-AD mice on a virtual maze (VM) spatial-reorientation-task that requires using landmarks to navigate. Hippocampal (HPC)-cortical dysfunction during sleep (important for memory consolidation) is a potential mechanism for memory impairments in AD. We previously found deficits in HPC-cortical coordination during sleep coinciding with VM impairments the next day. Some forms of 40 Hz stimulation seem to clear AD pathology in mice, and improve functional connectivity in AD patients. Thus, we implanted a recording array targeting parietal cortex (PC) and HPC to assess HPC-PC coordination, and an optical fiber targeting HPC for 40 Hz or sham optogenetic stimulation in 3xTg/PV cre mice. We assessed PC delta waves (DW) and HPC sharp wave ripples (SWRs). In sham mice, SWR-DW cross-correlations were reduced, similar to 3xTg-AD mice. In 40 Hz mice, this phase-locking was rescued, as was performance on the VM. However, rescued HPC-PC coupling no longer predicted performance as in NonTg animals. Instead, DWs and SWRs independently predicted performance in 40 Hz mice. Thus, 40 Hz stimulation of HPC rescued functional interactions in the HPC-PC network, and rescued impairments in spatial navigation, but did not rescue the correlation between HPC-PC coordination during sleep and learning and memory. Together this pattern of results could inform AD treatment timing by suggesting that despite applying 40 Hz stimulation before significant tau and amyloid aggregation, pathophysiological processes led to brain changes that were not fully reversed even though cognition was recovered. Significance Statement One of the earliest symptoms of Alzheimer's disease (AD) is getting lost in space or experiencing deficits in spatial navigation, which involve navigation computations as well as learning and memory. We investigated cross brain region interactions supporting memory formation as a potential causative factor of impaired spatial learning and memory in AD. To assess this relationship between AD pathophysiology, brain changes, and behavioral alterations, we used a targeted approach for clearing amyloid beta and tau to rescue functional interactions in the brain. This research strongly connects brain activity patterns during sleep to tau and amyloid accumulation, and will aid in understanding the mechanisms underlying cognitive dysfunction in AD. Furthermore, the results offer insight for improving early identification and treatment strategies.
Collapse
|