1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
3
|
Schenone A, Massucco S, Schenone C, Venturi CB, Nozza P, Prada V, Pomili T, Di Patrizi I, Capodivento G, Nobbio L, Grandis M. Basic Pathological Mechanisms in Peripheral Nerve Diseases. Int J Mol Sci 2025; 26:3377. [PMID: 40244242 PMCID: PMC11989557 DOI: 10.3390/ijms26073377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies.
Collapse
Affiliation(s)
- Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Consuelo Barbara Venturi
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Paolo Nozza
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Valeria Prada
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149 Genoa, Italy;
| | - Tania Pomili
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Irene Di Patrizi
- IRCCS Ospedale Policlinico San Martino, UO Radiologia, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| |
Collapse
|
4
|
Zhang J, Brown EB, Lloyd E, Farhy-Tselnicker I, Keene AC. Sleep rescues age-associated loss of glial engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646667. [PMID: 40236052 PMCID: PMC11996563 DOI: 10.1101/2025.04.02.646667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neuronal injury due to trauma or neurodegeneration is a common feature of aging. The clearance of damaged neurons by glia is thought to be critical for maintenance of proper brain function. Sleep loss has been shown to inhibit the motility and function of glia that clear damaged axons while enhancement of sleep promotes clearance of damaged axons. Despite the potential role of glia in maintenance of brain function and protection against neurodegenerative disease, surprisingly little is known about how sleep loss impacts glial function in aged animals. Axotomy of the Drosophila antennae triggers Wallerian degeneration, where specialized olfactory ensheathing glia engulf damaged neurites. This glial response provides a robust model system to investigate the molecular basis for glial engulfment and neuron-glia communication. Glial engulfment is impaired in aged and sleep-deprived animals, raising the possibility that age-related sleep loss underlies deficits in glial function. To define the relationship between sleep- and age-dependent reductions in glial function, we restored sleep to aged animals and examined the effects on glial clearance of damaged axons. Both pharmacological and genetic induction of sleep restores clearance of damaged neurons in aged flies. Further analysis revealed that sleep restored post-injury induction of the engulfment protein Draper to aged flies, fortifying the notion that loss of sleep contributes to reduced glial-mediated debris clearance in aged animals. To identify age-related changes in the transcriptional response to neuronal injury, we used single-nucleus RNA-seq of the central brains from axotomized young and old flies. We identified broad transcriptional changes within the ensheathing glia of young flies, and the loss of transcriptional induction of autophagy-associated genes. We also identify age-dependent loss of transcriptional induction of 18 transcripts encoding for small and large ribosomal protein subunits following injury in old flies, suggesting dysregulation of ribosomal biogenesis contributes to loss of glial function. Together, these findings demonstrate a functional link between sleep loss, aging and Wallerian degeneration.
Collapse
|
5
|
Karnik A, Joshi A. SARM1: The Checkpoint of Axonal Degeneration in the Nervous System Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04835-3. [PMID: 40097763 DOI: 10.1007/s12035-025-04835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Axons are metabolically active neuronal segments with well-controlled axonal degeneration and regeneration. External stress or injury displaces this equilibrium toward degeneration leading to axonal dysfunction observed in the pathology of several diseases. The demand and supply matrix of energy at the synapses are maintained by the axonal transport. Nicotinamide adenine dinucleotide (NAD+) is a major energy-driving coenzyme of cells that controls mitochondrial, cytoplasmic, and other organellar energy cycles generating high amounts of adenosine triphosphate (ATP). NAD+ participates in various cellular cycles and is consumed by several enzymes. One of the key enzymes targeting NAD+ is Sterile alpha and TIR motif-containing protein 1 (SARM1) which gets activated in response to external noxious stimuli. SARM1 is an octamer consisting of multiple domains of which the TIR domain governs NAD+ hydrolysis which eventually leads to axonal deficits. Besides its localization in neurons, SARM1 is also present in astrocytes, microglia, and macrophages in which it regulates inflammatory responses associated with disease pathology. SARM1 localization in the outer mitochondrial membrane is responsible for its association with mitochondrial dynamics. SARM1-mediated mitochondrial dysfunction further drives the axonal degeneration associated with peripheral and central nervous system disorders. Several genetic and pharmacological studies highlight the role of SARM1 in axonal degeneration. SARM1 is thus becoming a popular target for preventing axonal degeneration. Several small molecules consisting of isoquinoline, isothiazole, pyridine, and tryptoline acrylamide moieties have been tested for their activity against SARM1 with a promising foundation for drug discovery in targeting SARM1. In our review, we highlight the role of SARM1 in axonal degeneration associated with several disease pathologies focusing on genetic and pharmacological evaluation.
Collapse
Affiliation(s)
- Aaditi Karnik
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India.
| |
Collapse
|
6
|
Meraner P, Avetisyan A, Swift K, Cheng YC, Barria R, Freeman MR. Hypoxia-inducible factor 1 protects neurons from Sarm1-mediated neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633664. [PMID: 39868134 PMCID: PMC11761811 DOI: 10.1101/2025.01.17.633664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Sarm1 NAD + hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O 2 -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression. We observed neuroprotection after depletion of VHL or other factors required for HIF-1 degradation, and expression of a non-ubiquitinated HIF-1 variant led to even stronger blockade of axon degeneration in mammals and Drosophila . Neuroprotection required HIF-1 DNA binding, prolonged expression, and resulted in broad gene expression changes. Unexpectedly, stabilized HIF-1 prevented the precipitous NAD + loss driven by Sarm1 activation in neurons, despite NAD + hydrolase activity being intrinsic to the Sarm1 TIR domain. Our work argues hypoxia inhibits Sarm1 activity through HIF-1 driven transcriptional changes, rendering neurons less sensitive to Sarm1-mediated neurodegeneration when in a hypoxic state. Competing interests Marc Freeman is co-founder of Nura Bio, a biotech startup pursuing novel neuroprotective therapies including SARM1 inhibition. The remaining authors declare no competing interests.
Collapse
|
7
|
Paglione M, Restivo L, Zakhia S, Llobet Rosell A, Terenzio M, Neukomm LJ. Local translatome sustains synaptic function in impaired Wallerian degeneration. EMBO Rep 2025; 26:61-83. [PMID: 39482489 PMCID: PMC11724096 DOI: 10.1038/s44319-024-00301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
After injury, severed axons separated from their somas activate programmed axon degeneration, a conserved pathway to initiate their degeneration within a day. Conversely, severed projections deficient in programmed axon degeneration remain morphologically preserved with functional synapses for weeks to months after axotomy. How this synaptic function is sustained remains currently unknown. Here, we show that dNmnat overexpression attenuates programmed axon degeneration in distinct neuronal populations. Severed projections remain morphologically preserved for weeks. When evoked, they elicit a postsynaptic behavior, a readout for preserved synaptic function. We used ribosomal pulldown to isolate the translatome from these projections 1 week after axotomy. Translatome candidates of enriched biological classes identified by transcriptional profiling are validated in a screen using a novel automated system to detect evoked antennal grooming as a proxy for preserved synaptic function. RNAi-mediated knockdown reveals that transcripts of the mTORC1 pathway, a mediator of protein synthesis, and of candidate genes involved in protein ubiquitination and Ca2+ homeostasis are required for preserved synaptic function. Our translatome dataset also uncovers several uncharacterized Drosophila genes associated with human disease. It may offer insights into novel avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Maria Paglione
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Lemanic Neuroscience Doctoral School (LNDS), Lausanne, Switzerland
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Sarah Zakhia
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
| |
Collapse
|
8
|
Avetisyan A, Barria R, Sheehan A, Freeman MR. An Ionic Sensor acts in Parallel to dSarm to Promote Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620922. [PMID: 39651259 PMCID: PMC11623519 DOI: 10.1101/2024.10.29.620922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
How neurons to sense when they are terminally dysfunctional and activate neurodegeneration remains poorly defined. The pro-degenerative NAD + hydrolase dSarm/SARM1 can act as a metabolic sensor by detecting pathological changes in NAD + /NMN and subsequently induce catastrophic axon degeneration. Here we show Drosophila with-no-lysine kinase (dWnk), which can directly sense Cl - , K + and osmotic pressure, is required for neurodegeneration induced by depletion of the NAD + biosynthetic enzyme dNmnat. dWnk functions in parallel to dSarm and acts through the downstream kinase Frayed to promote axon degeneration and neuronal cell death. dWnk and dSarm ultimately converge on the BTB-Back domain molecule Axundead (Axed) to execute neurodegeneration. Our work argues that neurons use direct sensors of both metabolism (dSarm/SARM1) and ionic/osmotic status (dWnk) to evaluate cellular health and, when dysfunctional, promote neurodegeneration though a common axon death signaling molecule, Axundead.
Collapse
|
9
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
10
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
11
|
Garb J, Amitai G, Lu A, Ofir G, Brandis A, Mehlman T, Kranzusch PJ, Sorek R. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. PLoS One 2024; 19:e0302251. [PMID: 38635746 PMCID: PMC11025887 DOI: 10.1371/journal.pone.0302251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.
Collapse
Affiliation(s)
- Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Montoro-Gámez C, Nolte H, Molinié T, Evangelista G, Tröder SE, Barth E, Popovic M, Trifunovic A, Zevnik B, Langer T, Rugarli EI. SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency. Brain 2023; 146:4117-4131. [PMID: 37086482 DOI: 10.1093/brain/awad136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
Hereditary spastic paraplegia is a neurological condition characterized by predominant axonal degeneration in long spinal tracts, leading to weakness and spasticity in the lower limbs. The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme SARM1 has emerged as a key executioner of axonal degeneration upon nerve transection and in some neuropathies. An increase in the nicotinamide mononucleotide/NAD+ ratio activates SARM1, causing catastrophic NAD+ depletion and axonal degeneration. However, the role of SARM1 in the pathogenesis of hereditary spastic paraplegia has not been investigated. Here, we report an enhanced mouse model for hereditary spastic paraplegia caused by mutations in SPG7. The eSpg7 knockout mouse carries a deletion in both Spg7 and Afg3l1, a redundant homologue expressed in mice but not in humans. The eSpg7 knockout mice recapitulate the phenotypic features of human patients, showing progressive symptoms of spastic-ataxia and degeneration of axons in the spinal cord as well as the cerebellum. We show that the lack of SPG7 rewires the mitochondrial proteome in both tissues, leading to an early onset decrease in mito-ribosomal subunits and a remodelling of mitochondrial solute carriers and transporters. To interrogate mechanisms leading to axonal degeneration in this mouse model, we explored the involvement of SARM1. Deletion of SARM1 delays the appearance of ataxic signs, rescues mitochondrial swelling and axonal degeneration of cerebellar granule cells and dampens neuroinflammation in the cerebellum. The loss of SARM1 also prevents endoplasmic reticulum abnormalities in long spinal cord axons, but does not halt the degeneration of these axons. Our data thus reveal a neuron-specific interplay between SARM1 and mitochondrial dysfunction caused by lack of SPG7 in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Carolina Montoro-Gámez
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thibaut Molinié
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Giovanna Evangelista
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Simon E Tröder
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Milica Popovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Aleksandra Trifunovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
15
|
Townsend LN, Clarke H, Maddison D, Jones KM, Amadio L, Jefferson A, Chughtai U, Bis DM, Züchner S, Allen ND, Van der Goes van Naters W, Peters OM, Smith GA. Cdk12 maintains the integrity of adult axons by suppressing actin remodeling. Cell Death Discov 2023; 9:348. [PMID: 37730761 PMCID: PMC10511712 DOI: 10.1038/s41420-023-01642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The role of cyclin-dependent kinases (CDKs) that are ubiquitously expressed in the adult nervous system remains unclear. Cdk12 is enriched in terminally differentiated neurons where its conical role in the cell cycle progression is redundant. We find that in adult neurons Cdk12 acts a negative regulator of actin formation, mitochondrial dynamics and neuronal physiology. Cdk12 maintains the size of the axon at sites proximal to the cell body through the transcription of homeostatic enzymes in the 1-carbon by folate pathway which utilize the amino acid homocysteine. Loss of Cdk12 leads to elevated homocysteine and in turn leads to uncontrolled F-actin formation and axonal swelling. Actin remodeling further induces Drp1-dependent fission of mitochondria and the breakdown of axon-soma filtration barrier allowing soma restricted cargos to enter the axon. We demonstrate that Cdk12 is also an essential gene for long-term neuronal survival and loss of this gene causes age-dependent neurodegeneration. Hyperhomocysteinemia, actin changes, and mitochondrial fragmentation are associated with several neurodegenerative conditions such as Alzheimer's disease and we provide a candidate molecular pathway to link together such pathological events.
Collapse
Affiliation(s)
- L N Townsend
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Clarke
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D Maddison
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K M Jones
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - L Amadio
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - A Jefferson
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - U Chughtai
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D M Bis
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - S Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - N D Allen
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - O M Peters
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - G A Smith
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
16
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
17
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
18
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
19
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
20
|
Choi B, Kim H, Jang J, Park S, Jung H. Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis. Mol Cells 2022; 45:846-854. [PMID: 36380734 PMCID: PMC9676988 DOI: 10.14348/molcells.2022.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.
Collapse
Affiliation(s)
- Boyoon Choi
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyeyoung Kim
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jungim Jang
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sihyeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
21
|
Eastman S, Bayless A, Guo M. The Nucleotide Revolution: Immunity at the Intersection of Toll/Interleukin-1 Receptor Domains, Nucleotides, and Ca 2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:964-976. [PMID: 35881867 DOI: 10.1094/mpmi-06-22-0132-cr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of the enzymatic activity of the toll/interleukin-1 receptor (TIR) domain protein SARM1 five years ago preceded a flood of discoveries regarding the nucleotide substrates and products of TIR domains in plants, animals, bacteria, and archaea. These discoveries into the activity of TIR domains coincide with major advances in understanding the structure and mechanisms of NOD-like receptors and the mutual dependence of pattern recognition receptor- and effector-triggered immunity (PTI and ETI, respectively) in plants. It is quickly becoming clear that TIR domains and TIR-produced nucleotides are ancestral signaling molecules that modulate immunity and that their activity is closely associated with Ca2+ signaling. TIR domain research now bridges the separate disciplines of molecular plant- and animal-microbe interactions, neurology, and prokaryotic immunity. A cohesive framework for understanding the role of enzymatic TIR domains in diverse organisms will help unite the research of these disparate fields. Here, we review known products of TIR domains in plants, animals, bacteria, and archaea and use context gained from animal and prokaryotic TIR domain systems to present a model for TIR domains, nucleotides, and Ca2+ at the intersection of PTI and ETI in plant immunity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Adam Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80521, U.S.A
| | - Ming Guo
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
22
|
Waller TJ, Collins CA. Multifaceted roles of SARM1 in axon degeneration and signaling. Front Cell Neurosci 2022; 16:958900. [PMID: 36090788 PMCID: PMC9453223 DOI: 10.3389/fncel.2022.958900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Axons are considered to be particularly vulnerable components of the nervous system; impairments to a neuron’s axon leads to an effective silencing of a neuron’s ability to communicate with other cells. Nervous systems have therefore evolved plasticity mechanisms for adapting to axonal damage. These include acute mechanisms that promote the degeneration and clearance of damaged axons and, in some cases, the initiation of new axonal growth and synapse formation to rebuild lost connections. Here we review how these diverse processes are influenced by the therapeutically targetable enzyme SARM1. SARM1 catalyzes the breakdown of NAD+, which, when unmitigated, can lead to rundown of this essential metabolite and axonal degeneration. SARM1’s enzymatic activity also triggers the activation of downstream signaling pathways, which manifest numerous functions for SARM1 in development, innate immunity and responses to injury. Here we will consider the multiple intersections between SARM1 and the injury signaling pathways that coordinate cellular adaptations to nervous system damage.
Collapse
Affiliation(s)
- Thomas J. Waller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Catherine A. Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Catherine A. Collins,
| |
Collapse
|
23
|
Ledahawsky LM, Terzenidou ME, Edwards R, Kline RA, Graham LC, Eaton SL, van der Hoorn D, Chaytow H, Huang YT, Groen EJN, Motyl AAL, Lamont DJ, Tokatlidis K, Wishart TM, Gillingwater TH. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J 2022; 289:3894-3914. [PMID: 35092170 PMCID: PMC9542548 DOI: 10.1111/febs.16377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Synapses are a primary pathological target in neurodegenerative diseases. Identifying therapeutic targets at the synapse could delay progression of numerous conditions. The mitochondrial protein SFXN3 is a neuronally enriched protein expressed in synaptic terminals and regulated by key synaptic proteins, including α-synuclein. We first show that SFXN3 uses the carrier import pathway to insert into the inner mitochondrial membrane. Using high-resolution proteomics on Sfxn3-KO mice synapses, we then demonstrate that SFXN3 influences proteins and pathways associated with neurodegeneration and cell death (including CSPα and Caspase-3), as well as neurological conditions (including Parkinson's disease and Alzheimer's disease). Overexpression of SFXN3 orthologues in Drosophila models of Parkinson's disease significantly reduced dopaminergic neuron loss. In contrast, the loss of SFXN3 was insufficient to trigger neurodegeneration in mice, indicating an anti- rather than pro-neurodegeneration role for SFXN3. Taken together, these results suggest a potential role for SFXN3 in the regulation of neurodegeneration pathways.
Collapse
Affiliation(s)
- Leire M Ledahawsky
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Maria Eirini Terzenidou
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Rachel A Kline
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Laura C Graham
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Samantha L Eaton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, The Netherlands
| | - Anna A L Motyl
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | | | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| |
Collapse
|
24
|
Brace EJ, Essuman K, Mao X, Palucki J, Sasaki Y, Milbrandt J, DiAntonio A. Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity. PLoS Genet 2022; 18:e1010246. [PMID: 35737728 PMCID: PMC9223315 DOI: 10.1371/journal.pgen.1010246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions. SARM1 is the central executioner of axon loss, and inhibition of SARM1 is a therapeutic target for many devastating neurodegenerative disorders. SARM1 is the founding member of the TIR-domain family of NAD+ cleaving enzymes, destroying the essential metabolite NAD+ and inducing an energetic crisis in the axon. This was a surprising finding, as previously studied TIR-domain proteins were characterized as scaffolds that bind signaling proteins to coordinate signal transduction cascades. Indeed, before the discovery of the role of SARM1 in axon degeneration, SARM1 was studied as a regulator of intracellular signaling in immunity and neurodevelopment where it was assumed to act as a scaffold. Here we investigate whether the recently described SARM1 enzymatic activity also regulates such signal transduction pathways. Indeed, we show that a developmental signaling pathway scales with the amount of NADase activity, suggesting an instructive role for NAD+ cleavage. While degenerative and developmental SARM1 signaling share a requirement for NAD+ cleavage, they utilize distinct upstream and downstream mechanisms. With these findings, SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kow Essuman
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Palucki
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeff Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
26
|
Ji H, Sapar ML, Sarkar A, Wang B, Han C. Phagocytosis and self-destruction break down dendrites of Drosophila sensory neurons at distinct steps of Wallerian degeneration. Proc Natl Acad Sci U S A 2022; 119:e2111818119. [PMID: 35058357 PMCID: PMC8795528 DOI: 10.1073/pnas.2111818119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
After injury, severed dendrites and axons expose the "eat-me" signal phosphatidylserine (PS) on their surface while they break down. The degeneration of injured axons is controlled by a conserved Wallerian degeneration (WD) pathway, which is thought to activate neurite self-destruction through Sarm-mediated nicotinamide adenine dinucleotide (NAD+) depletion. While neurite PS exposure is known to be affected by genetic manipulations of NAD+, how the WD pathway coordinates both neurite PS exposure and self-destruction and whether PS-induced phagocytosis contributes to neurite breakdown in vivo remain unknown. Here, we show that in Drosophila sensory dendrites, PS exposure and self-destruction are two sequential steps of WD resulting from Sarm activation. Surprisingly, phagocytosis is the main driver of dendrite degeneration induced by both genetic NAD+ disruptions and injury. However, unlike neuronal Nmnat loss, which triggers PS exposure only and results in phagocytosis-dependent dendrite degeneration, injury activates both PS exposure and self-destruction as two redundant means of dendrite degeneration. Furthermore, the axon-death factor Axed is only partially required for self-destruction of injured dendrites, acting in parallel with PS-induced phagocytosis. Lastly, injured dendrites exhibit a unique rhythmic calcium-flashing that correlates with WD. Therefore, both NAD+-related general mechanisms and dendrite-specific programs govern PS exposure and self-destruction in injury-induced dendrite degeneration in vivo.
Collapse
Affiliation(s)
- Hui Ji
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L Sapar
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Ankita Sarkar
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853;
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
27
|
Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, Cialabrini L, Raffaelli N, Angeletti C, Orsomando G, Wu PH, Coleman MP, Loreto A, Neukomm LJ. The NAD + precursor NMN activates dSarm to trigger axon degeneration in Drosophila. eLife 2022; 11:80245. [PMID: 36476387 PMCID: PMC9788811 DOI: 10.7554/elife.80245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Maria Paglione
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Magdalena Kocia
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Giulia Perillo
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Carlo Angeletti
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Pei-Hsuan Wu
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Lukas Jakob Neukomm
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| |
Collapse
|
28
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
29
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
30
|
Peters OM, Smith GA. A nod and a Wnk to axon branching and destruction. Neuron 2021; 109:2799-2802. [PMID: 34534451 DOI: 10.1016/j.neuron.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this issue of Neuron, Izadifar et al. (2021) have identified a conserved molecule Wnk as a key regulator in both developmental axon branching and long-term survival of neurons, characterizing its interplay with axon destruction genes including Sarm. The discovery of Wnk will be important to our understanding of neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, CF24 4HQ, UK.
| |
Collapse
|
31
|
Metwally E, Zhao G, Zhang YQ. The calcium-dependent protease calpain in neuronal remodeling and neurodegeneration. Trends Neurosci 2021; 44:741-752. [PMID: 34417060 DOI: 10.1016/j.tins.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Guoli Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
32
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Izadifar A, Courchet J, Virga DM, Verreet T, Hamilton S, Ayaz D, Misbaer A, Vandenbogaerde S, Monteiro L, Petrovic M, Sachse S, Yan B, Erfurth ML, Dascenco D, Kise Y, Yan J, Edwards-Faret G, Lewis T, Polleux F, Schmucker D. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 2021; 109:2864-2883.e8. [PMID: 34384519 DOI: 10.1016/j.neuron.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.
Collapse
Affiliation(s)
- Azadeh Izadifar
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Daniel M Virga
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tine Verreet
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stevie Hamilton
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Derya Ayaz
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sofie Vandenbogaerde
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laloe Monteiro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France
| | - Milan Petrovic
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sonja Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bing Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jiekun Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriela Edwards-Faret
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tommy Lewis
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Peters OM, Weiss A, Metterville J, Song L, Logan R, Smith GA, Schwarzschild MA, Mueller C, Brown RH, Freeman M. Genetic diversity of axon degenerative mechanisms in models of Parkinson's disease. Neurobiol Dis 2021; 155:105368. [PMID: 33892050 PMCID: PMC8292971 DOI: 10.1016/j.nbd.2021.105368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.
Collapse
Affiliation(s)
- Owen M Peters
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lina Song
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Logan
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Eastern Nazarene College, Quincy, MA 02170, USA
| | - Gaynor A Smith
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michael A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marc Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
36
|
SARM1 signaling mechanisms in the injured nervous system. Curr Opin Neurobiol 2021; 69:247-255. [PMID: 34175654 DOI: 10.1016/j.conb.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
Axon degeneration is a prominent feature of the injured nervous system, occurs across neurological diseases, and drives functional loss in neural circuits. We have seen a paradigm shift in the last decade with the realization that injured axons are capable of actively driving their own destruction through the sterile-alpha and TIR motif containing 1 (SARM1) protein. Early studies of Wallerian degeneration highlighted a central role for NAD+ metabolites in axon survival, and this association has grown even stronger in recent years with a deeper understanding of SARM1 biology. Here, we review our current knowledge of SARM1 function in vivo and our evolving understanding of its complex architecture and regulation by injury-dependent changes in the local metabolic environment. The field is converging on a model whereby SARM1 acts as a sensor for metabolic changes that occur after injury and then drives catastrophic NAD+ loss to promote degeneration. However, a number of observations suggest that SARM1 biology is more complicated, and there remains much to learn about how SARM1 governs nervous system responses to injury or disease.
Collapse
|
37
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
38
|
Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 2021; 109:473-487.e5. [PMID: 33296670 PMCID: PMC7864878 DOI: 10.1016/j.neuron.2020.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.
Collapse
Affiliation(s)
- Jiun-Min Hsu
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Megan M Corty
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle Mathieson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen M Peters
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
39
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
40
|
Yong Y, Gamage K, Cushman C, Spano A, Deppmann C. Regulation of degenerative spheroids after injury. Sci Rep 2020; 10:15472. [PMID: 32963272 PMCID: PMC7508847 DOI: 10.1038/s41598-020-71906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Kanchana Gamage
- Amgen, Massachusetts and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Courtny Cushman
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Anthony Spano
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
| |
Collapse
|
41
|
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD + metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 2020; 63:59-66. [PMID: 32311648 PMCID: PMC7483800 DOI: 10.1016/j.conb.2020.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Axons are essential for nervous system function and axonal pathology is a common hallmark of many neurodegenerative diseases. Over a century and a half after the original description of Wallerian axon degeneration, advances over the past five years have heralded the emergence of a comprehensive, mechanistic model of an endogenous axon degenerative process that can be activated by both injury and disease. Axonal integrity is maintained by the opposing actions of the survival factors NMNAT2 and STMN2 and pro-degenerative molecules DLK and SARM1. The balance between axon survival and self-destruction is intimately tied to axonal NAD+ metabolism. These mechanistic insights may enable axon-protective therapies for a variety of human neurodegenerative diseases including peripheral neuropathy, traumatic brain injury and potentially ALS and Parkinson's.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Diffuse or traumatic axonal injury is one of the principal pathologies encountered in traumatic brain injury (TBI) and the resulting axonal loss, disconnection, and brain atrophy contribute significantly to clinical morbidity and disability. The seminal discovery of the slow Wallerian degeneration mice (Wld) in which transected axons do not degenerate but survive and function independently for weeks has transformed concepts on axonal biology and raised hopes that axonopathies may be amenable to specific therapeutic interventions. Here we review mechanisms of axonal degeneration and also describe how these mechanisms may inform biological therapies of traumatic axonopathy in the context of TBI. RECENT FINDINGS In the last decade, SARM1 [sterile a and Toll/interleukin-1 receptor (TIR) motif containing 1] and the DLK (dual leucine zipper bearing kinase) and LZK (leucine zipper kinase) MAPK (mitogen-activated protein kinases) cascade have been established as the key drivers of Wallerian degeneration, a complex program of axonal self-destruction which is activated by a wide range of injurious insults, including insults that may otherwise leave axons structurally robust and potentially salvageable. Detailed studies on animal models and postmortem human brains indicate that this type of partial disruption is the main initial pathology in traumatic axonopathy. At the same time, the molecular dissection of Wallerian degeneration has revealed that the decision that commits axons to degeneration is temporally separated from the time of injury, a window that allows potentially effective pharmacological interventions. SUMMARY Molecular signals initiating and triggering Wallerian degeneration appear to be playing an important role in traumatic axonopathy and recent advances in understanding their nature and significance is opening up new therapeutic opportunities for TBI.
Collapse
|
43
|
Hill CS, Sreedharan J, Loreto A, Menon DK, Coleman MP. Loss of highwire Protects Against the Deleterious Effects of Traumatic Brain Injury in Drosophila Melanogaster. Front Neurol 2020; 11:401. [PMID: 32477254 PMCID: PMC7235382 DOI: 10.3389/fneur.2020.00401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury is a major global cause of death and disability. Axonal injury is a major underlying mechanism of TBI and could represent a major therapeutic target. We provide evidence that targeting the axonal death pathway known as Wallerian degeneration improves outcome in a Drosophila Melanogaster model of high impact trauma. This cell-autonomous neurodegenerative pathway is initiated following axon injury, and in Drosophila, involves activity of the E3 ubiquitin ligase highwire. We demonstrate that a loss-of-function mutation in the highwire gene rescues deleterious effects of a traumatic injury, including-improved functional outcomes, lifespan, survival of dopaminergic neurons, and retention of synaptic proteins. This data suggests that highwire represents a potential therapeutic target in traumatic injury.
Collapse
Affiliation(s)
- Ciaran S. Hill
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- The Babraham Institute, Cambridge, United Kingdom
| | - Jemeen Sreedharan
- The Babraham Institute, Cambridge, United Kingdom
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
44
|
Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends Pharmacol Sci 2020; 41:281-293. [DOI: 10.1016/j.tips.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
|
45
|
Stanhope BA, Jaggard JB, Gratton M, Brown EB, Keene AC. Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury. Curr Biol 2020; 30:1092-1101.e3. [PMID: 32142708 DOI: 10.1016/j.cub.2020.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chronic sleep disturbance is associated with numerous health consequences, including neurodegenerative disease and cognitive decline [1]. Neurite damage due to apoptosis, trauma, or genetic factors is a common feature of aging, and clearance of damaged neurons is essential for maintenance of brain function. In the central nervous system, damaged neurites are cleared by Wallerian degeneration, in which activated microglia and macrophages engulf damaged neurons [2]. The fruit fly Drosophila melanogaster provides a powerful model for investigating the relationship between sleep and Wallerian degeneration [3]. Several lines of evidence suggest that glia influence sleep duration, sleep-mediated neuronal homeostasis, and clearance of toxic substances during sleep, raising the possibility that glial engulfment of damaged axons is regulated by sleep [4]. To explore this possibility, we axotomized olfactory receptor neurons and measured the effects of sleep loss or gain on the clearance of damaged neurites. Mechanical and genetic sleep deprivation impaired the clearance of damaged neurites. Conversely, treatment with the sleep-promoting drug gaboxadol accelerated clearance, while genetic induction of sleep promotes Draper expression. In sleep-deprived animals, multiple markers of glial activation were delayed, including activation of the JAK-STAT pathway, upregulation of the cell corpse engulfment receptor Draper, and innervation of the antennal lobe by glial membranes. These markers were all enhanced following genetic and pharmacological sleep induction. Taken together, these findings reveal a critical association between sleep and glial activation following neural injury, providing a platform for further investigations of the molecular mechanisms underlying sleep-dependent modulation of glial function and neurite clearance.
Collapse
Affiliation(s)
- Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Melanie Gratton
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458.
| |
Collapse
|
46
|
Axon degeneration: mechanistic insights lead to therapeutic opportunities for the prevention and treatment of peripheral neuropathy. Pain 2020; 160 Suppl 1:S17-S22. [PMID: 31008845 DOI: 10.1097/j.pain.0000000000001528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral neuropathy is the most common neurodegenerative disease affecting hundreds of millions of patients worldwide and is an important cause of chronic pain. Typical peripheral neuropathies are characterized by dysesthesias including numbness, crawling skin, a sensation of "pins and needles," and burning and stabbing pain. In addition, peripheral neuropathy can affect the motor and autonomic systems leading to symptoms such as weakness, constipation, and dysregulation of blood pressure. Peripheral neuropathies can be either hereditary or acquired and are a common consequence of diabetes and treatment with chemotherapy agents. Many neuropathies are due to degeneration of long axons; however, the mechanisms driving axon loss were unknown, and so no therapies are available to preserve vulnerable axons and prevent the development of peripheral neuropathy. With the recent identification of SARM1 as an injury-activated NADase enzyme that triggers axon degeneration, there is now a coherent picture emerging for the mechanism of axonal self-destruction. Here, we will present evidence that inhibiting the SARM1 pathway can prevent the development of peripheral neuropathy, describe the emerging mechanistic understanding of the axon degeneration program, and discuss how these mechanistic insights may be translated to the clinic for the prevention and treatment of peripheral neuropathy and other neurodegenerative disorders.
Collapse
|
47
|
Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 2020; 21:183-196. [PMID: 32152523 DOI: 10.1038/s41583-020-0269-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Wallerian degeneration is a widespread mechanism of programmed axon degeneration. In the three decades since the discovery of the Wallerian degeneration slow (WldS) mouse, research has generated extensive knowledge of the molecular mechanisms underlying Wallerian degeneration, demonstrated its involvement in non-injury disorders and found multiple ways to block it. Recent developments have included: the detection of NMNAT2 mutations that implicate Wallerian degeneration in rare human diseases; the capacity for lifelong rescue of a lethal condition related to Wallerian degeneration in mice; the discovery of 'druggable' enzymes, including SARM1 and MYCBP2 (also known as PHR1), in Wallerian pathways; and the elucidation of protein structures to drive further understanding of the underlying mechanisms and drug development. Additionally, new data have indicated the potential of these advances to alleviate a number of common disorders, including chemotherapy-induced and diabetic peripheral neuropathies, traumatic brain injury, and amyotrophic lateral sclerosis.
Collapse
|
48
|
Singh P, Donlea JM. Bidirectional Regulation of Sleep and Synapse Pruning after Neural Injury. Curr Biol 2020; 30:1063-1076.e3. [PMID: 32142703 DOI: 10.1016/j.cub.2019.12.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Following acute neural injury, severed axons undergo programmed Wallerian degeneration over several following days. While sleep has been linked with synaptic reorganization under other conditions, the role of sleep in responses to neural injuries remains poorly understood. To study the relationship between sleep and neural injury responses, we examined Drosophila melanogaster following the removal of antennae or other sensory tissues. Daytime sleep is elevated after antennal or wing injury, but sleep returns to baseline levels within 24 h after injury. Similar increases in sleep are not observed when olfactory receptor neurons are silenced or when other sensory organs are severed, suggesting that increased sleep after injury is not attributed to sensory deprivation, nociception, or generalized inflammatory responses. Neuroprotective disruptions of the E3 ubiquitin ligase highwire and c-Jun N-terminal kinase basket in olfactory receptor neurons weaken the sleep-promoting effects of antennal injury, suggesting that post-injury sleep may be influenced by the clearance of damaged neurons. Finally, we show that pre-synaptic active zones are preferentially removed from severed axons within hours after injury and that depriving recently injured flies of sleep slows the removal of both active zones and damaged axons. These data support a bidirectional interaction between sleep and synapse pruning after antennal injury: locally increasing the need to clear neural debris is associated with increased sleep, which is required for efficient active zone removal after injury.
Collapse
Affiliation(s)
- Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
49
|
cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons. Exp Neurol 2020; 329:113252. [PMID: 32087251 DOI: 10.1016/j.expneurol.2020.113252] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023]
Abstract
SARM1 is the central executioner of pathological axon degeneration, promoting axonal demise in response to axotomy, traumatic brain injury, and neurotoxic chemotherapeutics that induce peripheral neuropathy. SARM1 is an injury-activated NAD+ cleavage enzyme, and this NADase activity is required for the pro-degenerative function of SARM1. At present, SARM1 function is assayed by either analysis of axonal loss, which is far downstream of SARM1 enzymatic activity, or via NAD+ levels, which are regulated by many competing pathways. Here we explored the utility of measuring cADPR, a product of SARM1-dependent cleavage of NAD+, as an in cell and in vivo biomarker of SARM1 enzymatic activity. We find that SARM1 is a major producer of cADPR in cultured dorsal root ganglion (DRG) neurons, sciatic nerve, and brain, demonstrating that SARM1 has basal activity in the absence of injury. Following injury, there is a dramatic SARM1-dependent increase in the levels of axonal cADPR that precedes morphological axon degeneration. In vivo, there is also a rapid and large injury-stimulated increase in cADPR in sciatic and optic nerves. The increase in cADPR after injury is proportional to SARM1 gene dosage, suggesting that SARM1 activity is the prime regulator of cADPR levels. The role of cADPR as an important calcium mobilizing agent prompted exploration of its functional contribution to axon degeneration. We used multiple bacterial and mammalian engineered enzymes to manipulate cADPR levels in neurons but found no changes in the time course of axonal degeneration, suggesting that cADPR is unlikely to be an important contributor to the degenerative mechanism. Using cADPR as a SARM1 biomarker, we find that SARM1 can be partially activated by a diverse array of mitochondrial toxins administered at doses that do not induce axon degeneration. Hence, the subcritical activation of SARM1 induced by mitochondrial dysfunction may contribute to the axonal vulnerability common to many neurodegenerative diseases. Finally, we assay levels of both nerve cADPR and plasma neurofilament light chain (NfL) following nerve injury in vivo, and demonstrate that both biomarkers are excellent readouts of SARM1 activity, with cADPR reporting the early molecular changes in the nerve and NfL reporting subsequent axonal breakdown. The identification and characterization of cADPR as a SARM1 biomarker will help identify neurodegenerative diseases in which SARM1 contributes to axonal loss and expedite target validation studies of SARM1-directed therapeutics.
Collapse
|
50
|
Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 2020; 16:e1008343. [PMID: 32069324 PMCID: PMC7048299 DOI: 10.1371/journal.ppat.1008343] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Neurotropic viral infections continue to pose a serious threat to human and animal wellbeing. Host responses combatting the invading virus in these infections often cause irreversible damage to the nervous system, resulting in poor prognosis. Rabies is the most lethal neurotropic virus, which specifically infects neurons and spreads through the host nervous system by retrograde axonal transport. The key pathogenic mechanisms associated with rabies infection and axonal transmission in neurons remains unclear. Here we studied the pathogenesis of different field isolates of lyssavirus including rabies using ex-vivo model systems generated with mouse primary neurons derived from the peripheral and central nervous systems. In this study, we show that neurons activate selective and compartmentalized degeneration of their axons and dendrites in response to infection with different field strains of lyssavirus. We further show that this axonal degeneration is mediated by the loss of NAD and calpain-mediated digestion of key structural proteins such as MAP2 and neurofilament. We then analysed the role of SARM1 gene in rabies infection, which has been shown to mediate axonal self-destruction during injury. We show that SARM1 is required for the accelerated execution of rabies induced axonal degeneration and the deletion of SARM1 gene significantly delayed axonal degeneration in rabies infected neurons. Using a microfluidic-based ex-vivo neuronal model, we show that SARM1-mediated axonal degeneration impedes the spread of rabies virus among interconnected neurons. However, this neuronal defense mechanism also results in the pathological loss of axons and dendrites. This study therefore identifies a potential host-directed mechanism behind neurological dysfunction in rabies infection. This study also implicates a novel role of SARM1 mediated axonal degeneration in neurotropic viral infection. Lyssaviruses including rabies, still causes devastating loss of human life every year and many victims are children under the age of 15. Rabies infection causes severe neurological dysfunction in the host resulting in paralysis, cognitive deficits and behavioural abnormalities. The mechanism of how rabies infection induces neurological dysfunction in the host remains unclear. This is because unlike other microbial infections, rabies infection rarely causes neuronal cell death and loss of neurons in the host nervous system. In this study, we show that neurons activate specific axonal self-destruction mechanism during rabies infection to prevent the spread of virus. However, this neuronal self-defense mechanism results in the loss of axons and dendrites, the structural components essential for the functioning of neurons. We further show that axonal degeneration in rabies infection is mediated by SARM1 gene, which has been previously shown to mediate defensive self-destruction of axons and dendrites in the event of neuronal injury. In summary, this study identifies a novel molecular mechanism behind neuronal dysfunction in rabies infection. This study also describes a novel intrinsic anti-viral defence mechanism in neurons, which could influence the pathogenesis of neurotropic viral infections.
Collapse
|