1
|
Singh A, Rizzi M, Seo SS, Osterweil EK. Syngap+/- CA1 Pyramidal Neurons Exhibit Upregulated Translation of Long MRNAs Associated with LTP. eNeuro 2025; 12:ENEURO.0086-25.2025. [PMID: 40295099 PMCID: PMC12091090 DOI: 10.1523/eneuro.0086-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
In the Syngap+/- model of SYNGAP1-related intellectual disability (SRID), excessive neuronal protein synthesis is linked to deficits in synaptic plasticity. Here, we use Translating Ribosome Affinity Purification and RNA-seq (TRAP-seq) to identify mistranslating mRNAs in Syngap+/- CA1 pyramidal neurons that exhibit occluded long-term potentiation (LTP). We find the translation environment is significantly altered in a manner that is distinct from the Fmr1-/y model of fragile X syndrome (FXS), another monogenic model of autism and intellectual disability. The Syngap+/- translatome is enriched for regulators of DNA repair and mimics changes induced with chemical LTP (cLTP) in WT. This includes a striking upregulation in the translation of mRNAs with a longer-length (>2 kb) coding sequence (CDS). In contrast, long CDS transcripts are downregulated with induction of Gp1 metabotropic glutamate receptor-induced long-term depression (mGluR-LTD) in WT, and in the Fmr1-/y model that exhibits occluded mGluR-LTD. Together, our results show the Syngap+/- and Fmr1-/y models mimic the translation environments of LTP and LTD, respectively, consistent with the saturation of plasticity states in each model. Moreover, we show that translation of >2 kb mRNAs is a defining feature of LTP that is oppositely regulated during LTD, revealing a novel mRNA signature of plasticity.
Collapse
Affiliation(s)
- Aditi Singh
- Rosamund Stone Zander Translational Neuroscience Center, F. M. Kirby Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Manuela Rizzi
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Sang S Seo
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Emily K Osterweil
- Rosamund Stone Zander Translational Neuroscience Center, F. M. Kirby Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
2
|
Ichinose T, Tanimoto H. Profiling translation in the nervous system. J Biochem 2025; 177:239-246. [PMID: 39745834 DOI: 10.1093/jb/mvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Regulation at the level of translation is critical in the nervous system, such as for the formation of cell-type-specific proteomes or plastic changes in neural circuits. Whilst current knowledge of the translatome is relatively limited compared to transcriptome, a growing array of tools to analyse translation is becoming available. In this review, we discuss techniques for profiling translation on a genome-wide scale with a special emphasis on cell-type-specific analyses in the nervous system. This includes polysome-profiling-seq, Translating Ribosome Affinity Purification (TRAP)-seq and ribosome profiling (Ribo-seq). We review recent advances to achieve spatial resolution of translatome analysis, such as genetic labelling of the targeted cells and cell sorting, and discuss the biological implications of translational regulation in the brain and potential future extensions.
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-Aoba 6-3, 980-8578, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577, Sendai, Miyagi, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes. Cell Rep 2025; 44:115311. [PMID: 39983718 PMCID: PMC12006837 DOI: 10.1016/j.celrep.2025.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.
Collapse
Affiliation(s)
- Stephanie A Barnes
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell J Heinrich
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnold J Heynen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noburu H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; F.M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Jurado O, José MV, Frixione E. Fragile X mental retardation protein modulates translation of proteins with predicted tendencies for liquid-liquid phase separation. Biosystems 2025; 248:105405. [PMID: 39892695 DOI: 10.1016/j.biosystems.2025.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein and a key regulator of translation in neurons, hence crucial for neural development and plasticity. FMRP loss, resulting from mutations in the Fmr1 gene, leads to Fragile X Syndrome (FXS) and Autism Spectrum Disorder (ASD), the most common inherited intellectual disabilities. Ribosome profiling in neurons consistently reveals that FMRP-knockout (FK) significantly down-regulates the translation of numerous lengthy genes, many of which are FMRP-binding targets and associated with ASD. Despite these findings, the functional explanation for FMRP's translation regulation of large neuronal proteins remains elusive. Our present study compiles data from published ribosome profiling studies, to identify genes with significantly decreased translation in FK neurons. Using bioinformatic analysis and machine-learning sequence-based tools, PSPredictor and FuzDrop, we found that the proteins encoded by these genes are predicted to be enriched in intrinsically disordered regions and are prone to liquid-liquid phase separation. These findings suggest that FMRP modulates the translation of proteins involved in the formation of biomolecular condensates. Our results can have significant implications for understanding the molecular mechanisms of FXS and ASD, adding complexity to FMRP's regulatory functions, thus offering avenues for further exploration and targeted therapeutic interventions in intellectual disability disorders.
Collapse
Affiliation(s)
- Omar Jurado
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| | - Eugenio Frixione
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
5
|
Singer RA, Rajchin V, Park K, Heintz N, Darnell RB. Opto-CLIP reveals dynamic FMRP regulation of mRNAs upon CA1 neuronal activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.13.607210. [PMID: 39185177 PMCID: PMC11343148 DOI: 10.1101/2024.08.13.607210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neuronal diversity and function are intricately linked to the dynamic regulation of RNA metabolism. Electrophysiologic studies of synaptic plasticity, models for learning and memory, are disrupted in Fragile X Syndrome (FXS). FXS is characterized by the loss of FMRP, an RNA-binding protein (RBP) known to suppress translation of specific neuronal RNAs. Synaptic plasticity in CA1 excitatory hippocampal neurons is protein-synthesis dependent, suggesting a role for FMRP in FXS-related synaptic deficits. To explore this model, we developed Opto-CLIP, integrating optogenetics with cell-type specific FMRP-CLIP and RiboTag in CA1 neurons, allowing investigation of activity-induced FMRP regulation. We tracked changes in FMRP binding and ribosome-associated RNA profiles 30 minutes after neuronal activation. Our findings reveal distinct temporal dynamics for FMRP transcript regulation in the cell body versus the synapse. In the cell body, FMRP binding to transcripts encoding nuclear functions is relieved, potentially allowing rapid transcriptional responses to neuronal activation. At the synapse, FMRP binding to transcripts encoding synaptic targets was relatively stable, with variability in translational control across target categories. These results offer fresh insights into the dynamic regulation of RNA by FMRP in response to neuronal activation and provide a foundation for future research into the mechanisms of RBP-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Ruth A. Singer
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Veronika Rajchin
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Kwanghoon Park
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Lead Contact
| |
Collapse
|
6
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy terminal domain drives morphological plasticity of dendritic spines and reverses fragile X phenotypes in mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628559. [PMID: 39764032 PMCID: PMC11703159 DOI: 10.1101/2024.12.15.628559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission. By using selective pharmacological and genetic tools, we find that structural plasticity is dependent on the ligand binding domain (LBD) of GluN2B-containing NMDA receptors and that metabotropic signaling occurs via the GluN2B carboxyterminal domain (CTD). Disruption of signaling by replacing the GluN2B CTD with the GluN2A CTD leads to increased spine density, dysregulated basal protein synthesis, and epileptiform activity in area CA3 reminiscent of phenotypes observed in the Fmr1 -/y model of fragile X syndrome. By crossing the Fmr1 -/y mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for treatment of fragile X and related causes of intellectual disability and autism.
Collapse
|
7
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
8
|
Goebel S, Cordova-Martinez D, Verselis VK, Francesconi A. Dampened α7 nAChR activity contributes to audiogenic seizures and hyperactivity in a mouse model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621616. [PMID: 39553953 PMCID: PMC11566027 DOI: 10.1101/2024.11.01.621616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and often accompanied with debilitating pathologies including seizures and hyperactivity. FXS arises from a trinucleotide repeat expansion in the 5' UTR of the FMR1 gene that silences expression of the RNA-binding protein FMRP. Despite progress in understanding FMRP functions, the identification of effective therapeutic targets has lagged and at present there are no viable treatment options. Here we identify the α7 nicotinic acetylcholine receptor (nAChR) as candidate target for intervention in FXS. In the early postnatal hippocampus of Fmr1 knockout (KO) mice, an established pre-clinical model of FXS, the α7 nAChR accessory protein Ly6H is abnormally enriched at the neuronal surface and mislocalized in dendrites. Ly6H, a GPI-anchored protein, binds α7 nAChRs with high affinity and can limit α7 nAChR surface expression and signaling. We find that α7 nAChR-evoked Ca2+ responses are dampened in immature glutamatergic and GABAergic Fmr1 KO neurons compared to wild type. Knockdown of endogenous Ly6H in Fmr1 KO neurons is sufficient to rescue dampened α7 nAChR Ca2+ responses in vitro, providing evidence of a cell-autonomous role for Ly6H aberrant expression in α7 nAChR hypofunction. In line with intrinsic deficits in α7 nAChR activity in Fmr1 KO neurons, in vivo administration of the α7 nAChR-selective positive allosteric modulator PNU-120596 reduced hyperactivity and seizure severity in adolescent Fmr1 KO mice. Our mechanistic studies together with evidence of the in vivo efficacy of α7 nAChR augmentation implicate α7 nAChR hypofunction in FXS pathology.
Collapse
Affiliation(s)
- Sarah Goebel
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| | | | - Vytas K. Verselis
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| | - Anna Francesconi
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| |
Collapse
|
9
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Salmerón AM, Pérez-Fernández C, Abreu AC, Fernández S, Tristán AI, Ruiz-Sobremazas D, Cabré M, Guardia-Escote L, Fernández I, Sánchez-Santed F. Exploring microbiota-gut-brain axis biomarkers linked to autism spectrum disorder in prenatally chlorpyrifos-exposed Fmr1 knock-out and wild-type male rats. Toxicology 2024; 506:153871. [PMID: 38925359 DOI: 10.1016/j.tox.2024.153871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Fmr1 (fragile X messenger ribonucleoprotein 1)-knockout (KO) rats, modeling the human Fragile X Syndrome (FXS), are of particular interest for exploring the ASD-like phenotype in preclinical studies. Gestational exposure to chlorpyrifos (CPF) has been associated with ASD diagnosis in humans and ASD-like behaviors in rodents and linked to the microbiota-gut-brain axis. In this study, we have used both Fmr1-KO and wild-type male rats (F2 generation) at postnatal days (PND) 7 and 40 obtained after F1 pregnant females were randomly exposed to 1 mg/kg/mL/day of CPF or vehicle. A nuclear magnetic resonance (NMR) metabolomics approach together with gene expression profiles of these F2 generation rats were employed to analyze different brain regions (such as prefrontal cortex, hippocampus, and cerebellum), whole large intestine (at PND7) and gut content (PND40). The statistical comparison of each matrix spectral profile unveiled tissue-specific metabolic fingerprints. Significant variations in some biomarker levels were detected among brain tissues of different genotypes, including taurine, myo-inositol, and 3-hydroxybutyric acid, and exposure to CPF induced distinct metabolic alterations, particularly in serine and myo-inositol. Additionally, this study provides a set of metabolites associated with gastrointestinal dysfunction in ASD, encompassing several amino acids, choline-derived compounds, bile acids, and sterol molecules. In terms of gene expression, genotype and gestational exposure to CPF had only minimal effects on decarboxylase 2 (gad2) and cholinergic receptor muscarinic 2 (chrm2) genes.
Collapse
Affiliation(s)
- Ana M Salmerón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain
| | - Ana C Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain.
| | - Silvia Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Ana I Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain
| | - María Cabré
- Research Group in Neurobehavior and Health (NEUROLAB) and Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laia Guardia-Escote
- Research Group in Neurobehavior and Health (NEUROLAB) and Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
11
|
Coulson RL, Frattini V, Moyer CE, Hodges J, Walter P, Mourrain P, Zuo Y, Wang GX. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome. iScience 2024; 27:109259. [PMID: 38510125 PMCID: PMC10951902 DOI: 10.1016/j.isci.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Rochelle L. Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Valentina Frattini
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caitlin E. Moyer
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Hodges
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Burton CL, Longaretti A, Zlatanovic A, Gomes GM, Tonini R. Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology. Front Cell Neurosci 2024; 18:1386715. [PMID: 38601025 PMCID: PMC11004256 DOI: 10.3389/fncel.2024.1386715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Animals often behave repetitively and predictably. These repetitive behaviors can have a component that is learned and ingrained as habits, which can be evolutionarily advantageous as they reduce cognitive load and the expenditure of attentional resources. Repetitive behaviors can also be conscious and deliberate, and may occur in the absence of habit formation, typically when they are a feature of normal development in children, or neuropsychiatric disorders. They can be considered pathological when they interfere with social relationships and daily activities. For instance, people affected by obsessive-compulsive disorder, autism spectrum disorder, Huntington's disease and Gilles de la Tourette syndrome can display a wide range of symptoms like compulsive, stereotyped and ritualistic behaviors. The striatum nucleus of the basal ganglia is proposed to act as a master regulator of these repetitive behaviors through its circuit connections with sensorimotor, associative, and limbic areas of the cortex. However, the precise mechanisms within the striatum, detailing its compartmental organization, cellular specificity, and the intricacies of its downstream connections, remain an area of active research. In this review, we summarize evidence across multiple scales, including circuit-level, cellular, and molecular dimensions, to elucidate the striatal mechanisms underpinning repetitive behaviors and offer perspectives on the implicated disorders. We consider the close relationship between behavioral output and transcriptional changes, and thereby structural and circuit alterations, including those occurring through epigenetic processes.
Collapse
Affiliation(s)
| | | | | | | | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
13
|
Zito A, Lee JT. Variable expression of MECP2, CDKL5, and FMR1 in the human brain: Implications for gene restorative therapies. Proc Natl Acad Sci U S A 2024; 121:e2312757121. [PMID: 38386709 PMCID: PMC10907246 DOI: 10.1073/pnas.2312757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.
Collapse
Affiliation(s)
- Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| |
Collapse
|
14
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Balla H, Borsodi K, Őrsy P, Horváth B, Molnár PJ, Lénárt Á, Kosztelnik M, Ruisanchez É, Wess J, Offermanns S, Nyirády P, Benyó Z. Intracellular signaling pathways of muscarinic acetylcholine receptor-mediated detrusor muscle contractions. Am J Physiol Renal Physiol 2023; 325:F618-F628. [PMID: 37675459 PMCID: PMC11905796 DOI: 10.1152/ajprenal.00261.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Acetylcholine plays an essential role in the regulation of detrusor muscle contractions, and antimuscarinics are widely used in the management of overactive bladder syndrome. However, several adverse effects limit their application and patients' compliance. Thus, this study aimed to further analyze the signal transduction of M2 and M3 receptors in the murine urinary bladder to eventually find more specific therapeutic targets. Experiments were performed on adult male wild-type, M2, M3, M2/M3, or Gαq/11 knockout (KO), and pertussis toxin (PTX)-treated mice. Contraction force and RhoA activity were measured in the urinary bladder smooth muscle (UBSM). Our results indicate that carbamoylcholine (CCh)-induced contractions were associated with increased activity of RhoA and were reduced in the presence of the Rho-associated kinase (ROCK) inhibitor Y-27632 in UBSM. CCh-evoked contractile responses and RhoA activation were markedly reduced in detrusor strips lacking either M2 or M3 receptors and abolished in M2/M3 KO mice. Inhibition of Gαi-coupled signaling by PTX treatment shifted the concentration-response curve of CCh to the right and diminished RhoA activation. CCh-induced contractile responses were markedly decreased in Gαq/11 KO mice; however, RhoA activation was unaffected. In conclusion, cholinergic detrusor contraction and RhoA activation are mediated by both M2 and M3 receptors. Furthermore, whereas both Gαi and Gαq/11 proteins mediate UBSM contraction, the activation at the RhoA-ROCK pathway appears to be linked specifically to Gαi. These findings may aid the identification of more specific therapeutic targets for bladder dysfunctions.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are of utmost importance in physiological regulation of micturition and also in the development of voiding disorders. We demonstrate that the RhoA-Rho-associated kinase (ROCK) pathway plays a crucial role in contractions induced by cholinergic stimulation in detrusor muscle. Activation of RhoA is mediated by both M2 and M3 receptors as well as by Gi but not Gq/11 proteins. The Gi-RhoA-ROCK pathway may provide a novel therapeutic target for overactive voiding disorders.
Collapse
MESH Headings
- Animals
- Muscle Contraction/drug effects
- Signal Transduction/drug effects
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Male
- Mice, Knockout
- Receptor, Muscarinic M3/metabolism
- Receptor, Muscarinic M3/genetics
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- rhoA GTP-Binding Protein/metabolism
- rho-Associated Kinases/metabolism
- rho-Associated Kinases/antagonists & inhibitors
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M2/genetics
- Mice
- Mice, Inbred C57BL
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Carbachol/pharmacology
Collapse
Affiliation(s)
- Helga Balla
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Borsodi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Őrsy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Horváth
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Ádám Lénárt
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mónika Kosztelnik
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Cerebrosvascular and Neurodegenerative Disease Research Group, Budapest, Hungary
| |
Collapse
|
16
|
Hooshmandi M, Sharma V, Thörn Perez C, Sood R, Krimbacher K, Wong C, Lister KC, Ureña Guzmán A, Bartley TD, Rocha C, Maussion G, Nadler E, Roque PM, Gantois I, Popic J, Lévesque M, Kaufman RJ, Avoli M, Sanz E, Nader K, Hagerman RJ, Durcan TM, Costa-Mattioli M, Prager-Khoutorsky M, Lacaille JC, Martinez-Cerdeno V, Gibson JR, Huber KM, Sonenberg N, Gkogkas CG, Khoutorsky A. Excitatory neuron-specific suppression of the integrated stress response contributes to autism-related phenotypes in fragile X syndrome. Neuron 2023; 111:3028-3040.e6. [PMID: 37473758 PMCID: PMC10592416 DOI: 10.1016/j.neuron.2023.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Vijendra Sharma
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Carolina Thörn Perez
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Rapita Sood
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alba Ureña Guzmán
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Trevor D Bartley
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, MIND Institute, UC Davis Medical Center, Sacramento, CA, USA
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emma Nadler
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Patricia Margarita Roque
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, QC, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, QC, Canada
| | - Elisenda Sanz
- Department of Cell Biology, Physiology and Immunology, and Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Karim Nader
- Department of Psychology, Faculty of Science, McGill University, Montréal, QC, Canada
| | - Randi Jenssen Hagerman
- MIND Institute and Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | | | | | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, and Research Group on Neural Signaling and Circuitry, Université de Montréal, Montréal, QC, Canada
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, MIND Institute, UC Davis Medical Center, Sacramento, CA, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QC, Canada.
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal MJ, Martínez-Cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-Cailliau C. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron 2023; 111:2863-2880.e6. [PMID: 37451263 PMCID: PMC10529373 DOI: 10.1016/j.neuron.2023.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Collapse
Affiliation(s)
| | - Anand Suresh
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Benjamin Liu
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Pablo Juarez
- Department of Pathology, UC Davis, Davis, CA, USA
| | - Ashley Lin
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Dean V Buonomano
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | - Carlos Portera-Cailliau
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Neurobiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Winden KD, Pham TT, Teaney NA, Ruiz J, Chen R, Chen C, Sahin M. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex. Cell Rep 2023; 42:112838. [PMID: 37494191 PMCID: PMC10529098 DOI: 10.1016/j.celrep.2023.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, but new therapies have been impeded by a lack of understanding of the pathological mechanisms. Tuberous sclerosis complex (TSC) and fragile X syndrome are associated with alterations in the mechanistic target of rapamycin (mTOR) and fragile X messenger ribonucleoprotein 1 (FMRP), which have been implicated in the development of ASD. Previously, we observed that transcripts associated with FMRP were down-regulated in TSC2-deficient neurons. In this study, we find that FMRP turnover is dysregulated in TSC2-deficient rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons and is dependent on the E3 ubiquitin ligase anaphase-promoting complex. We also demonstrate that overexpression of FMRP can partially rescue hyperexcitability in TSC2-deficient iPSC-derived neurons. These data indicate that FMRP dysregulation represents an important pathological mechanism in the development of abnormal neuronal activity in TSC and illustrate a molecular convergence between these two neurogenetic disorders.
Collapse
Affiliation(s)
- Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Truc T Pham
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Teaney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Ruiz
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Longo F, Aryal S, Anastasiades PG, Maltese M, Baimel C, Albanese F, Tabor J, Zhu JD, Oliveira MM, Gastaldo D, Bagni C, Santini E, Tritsch NX, Carter AG, Klann E. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice. Cell Rep 2023; 42:112901. [PMID: 37505982 PMCID: PMC10552611 DOI: 10.1016/j.celrep.2023.112901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.
Collapse
Affiliation(s)
- Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA; Institute for Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Sameer Aryal
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Marta Maltese
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Corey Baimel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Federica Albanese
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Joanna Tabor
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jeffrey D Zhu
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Denise Gastaldo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Nicolas X Tritsch
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Adam G Carter
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Jung J, Ohk J, Kim H, Holt CE, Park HJ, Jung H. mRNA transport, translation, and decay in adult mammalian central nervous system axons. Neuron 2023; 111:650-668.e4. [PMID: 36584679 DOI: 10.1016/j.neuron.2022.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022]
Abstract
Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knockout mice validate FMRP's role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the adult axonal transcriptome is stably maintained by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, Verity NC, Wills JC, Li KW, Nolan MF, Osterweil EK. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron 2023; 111:508-525.e7. [PMID: 36495869 DOI: 10.1016/j.neuron.2022.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melania Muscas
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nick C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jimi C Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
22
|
Chakraborty A, Grageda A, Kuznetsov VA, Feng W. A Double Jeopardy: Loss of FMRP Results in DSB and Down-regulated DNA Repair. 21ST CENTURY PATHOLOGY 2022; 2:125. [PMID: 36688938 PMCID: PMC9850805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our understanding of the molecular functions of the nucleocytoplasmic FMRP protein, which, if absent or dysfunctional, causes the fragile X syndrome (FXS), largely revolves around its involvement in protein translation regulation in the cytoplasm. Recent studies have begun honing in on the nuclear and genomic functions of FMRP. We have shown that during DNA replication stress, cells derived from FXS patients sustain increased level of R-loop formation and DNA double strand breaks. Here, we describe a transcriptomic analysis of these cells in order to identify those genes most impacted by the loss of FMRP with and without replication stress. We show that FMRP loss causes transcriptomic changes previously reported in untreated conditions. Importantly, we also show that replication stress, in addition to causing excess of DSB, results in down-regulation of transcription in virtually all DNA repair pathways. This finding suggests that despite normal DNA damage response, FXS patient-derived cells experience R-loop-induced DNA breakage as well as impaired DNA repair functions, effectively a double jeopardy. We suggest that it is imperative to deepen the understanding of the nuclear functions, particularly a genome protective function, of FMRP, which will lead to discoveries of novel therapeutic interventions for the FXS.
Collapse
Affiliation(s)
- Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Tessera Therapeutics, Somerville, Massachusetts, USA
| | - Andre Grageda
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
23
|
Seo SS, Louros SR, Anstey N, Gonzalez-Lozano MA, Harper CB, Verity NC, Dando O, Thomson SR, Darnell JC, Kind PC, Li KW, Osterweil EK. Excess ribosomal protein production unbalances translation in a model of Fragile X Syndrome. Nat Commun 2022; 13:3236. [PMID: 35688821 PMCID: PMC9187743 DOI: 10.1038/s41467-022-30979-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated protein synthesis is a core pathogenic mechanism in Fragile X Syndrome (FX). The mGluR Theory of FX predicts that pathological synaptic changes arise from the excessive translation of mRNAs downstream of mGlu1/5 activation. Here, we use a combination of CA1 pyramidal neuron-specific TRAP-seq and proteomics to identify the overtranslating mRNAs supporting exaggerated mGlu1/5 -induced long-term synaptic depression (mGluR-LTD) in the FX mouse model (Fmr1−/y). Our results identify a significant increase in the translation of ribosomal proteins (RPs) upon mGlu1/5 stimulation that coincides with a reduced translation of long mRNAs encoding synaptic proteins. These changes are mimicked and occluded in Fmr1−/y neurons. Inhibiting RP translation significantly impairs mGluR-LTD and prevents the length-dependent shift in the translating population. Together, these results suggest that pathological changes in FX result from a length-dependent alteration in the translating population that is supported by excessive RP translation. Dysregulated protein synthesis is key contributor to Fragile X syndrome. Here the authors identify a relationship between ribosome expression and the translation of long mRNAs that contributes to synaptic weakening in a model of Fragile X syndrome.
Collapse
Affiliation(s)
- Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Natasha Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nicholas C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sophie R Thomson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Jennifer C Darnell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Donnard E, Shu H, Garber M. Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model. PLoS Genet 2022; 18:e1010221. [PMID: 35675353 PMCID: PMC9212148 DOI: 10.1371/journal.pgen.1010221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder. Fragile X syndrome is a leading genetic cause of inherited intellectual disability and autism spectrum disorder. It results from the inactivation of a single gene, FMR1 and hence the loss of its encoded protein FMRP. Despite decades of intensive research, we still lack an overview of the molecular and biological consequences of the disease. Using single cell RNA sequencing, we profiled cells from the brain of healthy mice and of knock-out mice lacking the FMRP protein, a common model for this disease, to identify molecular changes that happen across different cell types. We find neurons are the most impacted cell type, where genes in multiple pathways are similarly impacted. This includes transcripts known to be bound by FMRP, which are collectively decreased only in neurons but not in other cell types. Our results show how the loss of FMRP affects the intricate interactions between different brain cell types, which could provide new perspectives to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| |
Collapse
|
25
|
Oliveira MM, Klann E. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Semin Cell Dev Biol 2022; 125:101-109. [PMID: 34304995 PMCID: PMC8782933 DOI: 10.1016/j.semcdb.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Di Bartolomei G, Scheiffele P. An Optimized Protocol for the Mapping of Cell Type-Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions. Methods Mol Biol 2022; 2537:37-49. [PMID: 35895257 DOI: 10.1007/978-1-0716-2521-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past years, technological advances in transcriptomics provided deep insights into gene expression programs and their role in tissue organization and cellular functions. The isolation of ribosome-associated transcripts is a powerful approach for deep profiling of cell type-specific transcripts, and particularly well-suited for quantitative analysis of transcript isoforms. This method employs conditional ribosome epitope-tagging in genetically defined cell types, followed by affinity-isolation of ribosome-associated mRNAs. Advantages of this approach are twofold: first, the method enables rapid retrieval of mRNAs without tissue dissociation and cell sorting steps. Second, capturing of ribosome-associated mRNAs, enriches for transcripts recruited for active translation, therefore providing an approximation to the cellular translatome. Here, we describe one application of this method for the identification of the transcriptome of excitatory neuronal cells (mitral and tufted cells) of the mouse olfactory bulb, through RiboTag isolation from the vGlut2-IRES-cre mouse line as genetic driver of endogenously tagged ribosome expression.
Collapse
|
27
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
28
|
Ma T, Huang Z, Xie X, Cheng Y, Zhuang X, Childs MJ, Gangal H, Wang X, Smith LN, Smith RJ, Zhou Y, Wang J. Chronic alcohol drinking persistently suppresses thalamostriatal excitation of cholinergic neurons to impair cognitive flexibility. J Clin Invest 2021; 132:154969. [PMID: 34941575 PMCID: PMC8843706 DOI: 10.1172/jci154969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure to addictive substances impairs flexible decision making. Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs). However, how chronic alcohol drinking alters cognitive flexibility through CINs remains unclear. Here, we report that chronic alcohol consumption and withdrawal impaired reversal of instrumental learning. Chronic alcohol consumption and withdrawal also caused a long-lasting (21 days) reduction of excitatory thalamic inputs onto CINs and reduced pause responses of CINs in the dorsomedial striatum (DMS). CINs are known to inhibit glutamatergic transmission in dopamine D1 receptor–expressing medium spiny neurons (D1-MSNs) but facilitate this transmission in D2-MSNs, which may contribute to flexible behavior. We discovered that chronic alcohol drinking impaired CIN-mediated inhibition in D1-MSNs and facilitation in D2-MSNs. Importantly, in vivo optogenetic induction of long-term potentiation of thalamostriatal transmission in DMS CINs rescued alcohol-induced reversal learning deficits. These results demonstrate that chronic alcohol drinking reduces thalamic excitation of DMS CINs, compromising their regulation of glutamatergic transmission in MSNs, which may contribute to alcohol-induced impairment of cognitive flexibility. These findings provide a neural mechanism underlying inflexible drinking in alcohol use disorder.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Zhenbo Huang
- Texas A&M University Health Science Center, Bryan, United States of America
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Matthew J Childs
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| | - Rachel J Smith
- Department of Psychology, Texas A&M University, College Station, United States of America
| | - Yubin Zhou
- Department of Translational Medical Sciences, Texas A&M University, Houston, United States of America
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, United States of America
| |
Collapse
|
29
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
30
|
Bengani H, Grozeva D, Moyon L, Bhatia S, Louros SR, Hope J, Jackson A, Prendergast JG, Owen LJ, Naville M, Rainger J, Grimes G, Halachev M, Murphy LC, Spasic-Boskovic O, van Heyningen V, Kind P, Abbott CM, Osterweil E, Raymond FL, Roest Crollius H, FitzPatrick DR. Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability. PLoS One 2021; 16:e0256181. [PMID: 34388204 PMCID: PMC8362966 DOI: 10.1371/journal.pone.0256181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Institute of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Lambert Moyon
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Shipra Bhatia
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Susana R. Louros
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Jilly Hope
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Jackson
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Liusaidh J. Owen
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Magali Naville
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Jacqueline Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Graeme Grimes
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mihail Halachev
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura C. Murphy
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivera Spasic-Boskovic
- East Midlands and East of England NHS Genomic Laboratory Hub, Molecular Genetics, Adden brooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge, Cambridge, United Kingdom
| | | | - Peter Kind
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine M. Abbott
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Osterweil
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Dalal JS, Winden KD, Salussolia CL, Sundberg M, Singh A, Pham TT, Zhou P, Pu WT, Miller MT, Sahin M. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. eLife 2021; 10:e67399. [PMID: 34259631 PMCID: PMC8279760 DOI: 10.7554/elife.67399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.
Collapse
Affiliation(s)
- Jasbir Singh Dalal
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Kellen Diamond Winden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Catherine Lourdes Salussolia
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Maria Sundberg
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Achint Singh
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Truc Thanh Pham
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children’s HospitalBostonUnited States
| | - William T Pu
- Department of Cardiology, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Meghan T Miller
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center BaselBaselSwitzerland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| |
Collapse
|
32
|
Booker SA, Kind PC. Mechanisms regulating input-output function and plasticity of neurons in the absence of FMRP. Brain Res Bull 2021; 175:69-80. [PMID: 34245842 DOI: 10.1016/j.brainresbull.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The function of brain circuits relies on high-fidelity information transfer within neurons. Synaptic inputs arrive primarily at dendrites, where they undergo integration and summation throughout the somatodendritic domain, ultimately leading to the generation of precise patterns of action potentials. Emerging evidence suggests that the ability of neurons to transfer synaptic information and modulate their output is impaired in a number of neurodevelopmental disorders including Fragile X Syndrome. In this review we summarise recent findings that have revealed the pathophysiological and plasticity mechanisms that alter the ability of neurons in sensory and limbic circuits to reliably code information in the absence of FMRP. We examine which aspects of this transform may result directly from the loss of FMRP and those that a result from compensatory or homeostatic alterations to neuronal function. Dissection of the mechanisms leading to altered input-output function of neurons in the absence of FMRP and their effects on regulating neuronal plasticity throughout development could have important implications for potential therapies for Fragile X Syndrome, including directing the timing and duration of different treatment options.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Peter C Kind
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; National Centre for Biological Sciences (NCBS), Bangalore, India.
| |
Collapse
|
33
|
Birsa N, Ule AM, Garone MG, Tsang B, Mattedi F, Chong PA, Humphrey J, Jarvis S, Pisiren M, Wilkins OG, Nosella ML, Devoy A, Bodo C, de la Fuente RF, Fisher EMC, Rosa A, Viero G, Forman-Kay JD, Schiavo G, Fratta P. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. SCIENCE ADVANCES 2021; 7:7/30/eabf8660. [PMID: 34290090 PMCID: PMC8294762 DOI: 10.1126/sciadv.abf8660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.
Collapse
Affiliation(s)
- Nicol Birsa
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Agnieszka M Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Giovanna Garone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Francesca Mattedi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Institute of Biophysics, CNR, Trento, Italy
| | - P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jack Humphrey
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Seth Jarvis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Melis Pisiren
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Oscar G Wilkins
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Micheal L Nosella
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anny Devoy
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RT, UK
| | - Cristian Bodo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
- MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
34
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 PMCID: PMC8183409 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkNYUSA
| |
Collapse
|
35
|
Genetic removal of p70 S6K1 corrects coding sequence length-dependent alterations in mRNA translation in fragile X syndrome mice. Proc Natl Acad Sci U S A 2021; 118:2001681118. [PMID: 33906942 DOI: 10.1073/pnas.2001681118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Loss of the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS). FMRP is widely thought to repress protein synthesis, but its translational targets and modes of control remain in dispute. We previously showed that genetic removal of p70 S6 kinase 1 (S6K1) corrects altered protein synthesis as well as synaptic and behavioral phenotypes in FXS mice. In this study, we examined the gene specificity of altered messenger RNA (mRNA) translation in FXS and the mechanism of rescue with genetic reduction of S6K1 by carrying out ribosome profiling and RNA sequencing on cortical lysates from wild-type, FXS, S6K1 knockout, and double knockout mice. We observed reduced ribosome footprint (RF) abundance in the majority of differentially translated genes in the cortices of FXS mice. We used molecular assays to discover evidence that the reduction in RF abundance reflects an increased rate of ribosome translocation, which is captured as a decrease in the number of translating ribosomes at steady state and is normalized by inhibition of S6K1. We also found that genetic removal of S6K1 prevented a positive-to-negative gradation of alterations in translation efficiencies (RF/mRNA) with coding sequence length across mRNAs in FXS mouse cortices. Our findings reveal the identities of dysregulated mRNAs and a molecular mechanism by which reduction of S6K1 prevents altered translation in FXS.
Collapse
|
36
|
Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci 2021; 22:209-222. [PMID: 33608673 PMCID: PMC8094212 DOI: 10.1038/s41583-021-00432-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Fragile X mental retardation protein (FMRP) is the product of the fragile X mental retardation 1 gene (FMR1), a gene that - when epigenetically inactivated by a triplet nucleotide repeat expansion - causes the neurodevelopmental disorder fragile X syndrome (FXS). FMRP is a widely expressed RNA-binding protein with activity that is essential for proper synaptic plasticity and architecture, aspects of neural function that are known to go awry in FXS. Although the neurophysiology of FXS has been described in remarkable detail, research focusing on the molecular biology of FMRP has only scratched the surface. For more than two decades, FMRP has been well established as a translational repressor; however, recent whole transcriptome and translatome analyses in mouse and human models of FXS have shown that FMRP is involved in the regulation of nearly all aspects of gene expression. The emerging mechanistic details of the mechanisms by which FMRP regulates gene expression may offer ways to design new therapies for FXS.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Falk EN, Norman KJ, Garkun Y, Demars MP, Im S, Taccheri G, Short J, Caro K, McCraney SE, Cho C, Smith MR, Lin HM, Koike H, Bateh J, Maccario P, Waltrip L, Janis M, Morishita H. Nicotinic regulation of local and long-range input balance drives top-down attentional circuit maturation. SCIENCE ADVANCES 2021; 7:eabe1527. [PMID: 33674307 PMCID: PMC7935362 DOI: 10.1126/sciadv.abe1527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cognitive function depends on frontal cortex development; however, the mechanisms driving this process are poorly understood. Here, we identify that dynamic regulation of the nicotinic cholinergic system is a key driver of attentional circuit maturation associated with top-down frontal neurons projecting to visual cortex. The top-down neurons receive robust cholinergic inputs, but their nicotinic tone decreases following adolescence by increasing expression of a nicotinic brake, Lynx1 Lynx1 shifts a balance between local and long-range inputs onto top-down frontal neurons following adolescence and promotes the establishment of attentional behavior in adulthood. This key maturational process is disrupted in a mouse model of fragile X syndrome but was rescued by a suppression of nicotinic tone through the introduction of Lynx1 in top-down projections. Nicotinic signaling may serve as a target to rebalance local/long-range balance and treat cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa N Falk
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kevin J Norman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Susanna Im
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Giulia Taccheri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jenna Short
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Keaven Caro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarah E McCraney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Christina Cho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Milo R Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hiroyuki Koike
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Bateh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Priscilla Maccario
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Leah Waltrip
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Meaghan Janis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
38
|
Sahasrabudhe A, Begum F, Guevara CA, Morrison C, Hsiao K, Kezunovic N, Bozdagi-Gunal O, Benson DL. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci 2021; 12:581714. [PMID: 33613257 PMCID: PMC7892963 DOI: 10.3389/fnsyn.2020.581714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, copy number variations in CYFIP1 appear to have sweeping physiological and structural consequences in the brain, either producing or altering the severity of intellectual disability, autism, and schizophrenia. Independently, SynGAP1 haploinsufficiency produces intellectual disability and, frequently, autism. Cyfip1 inhibits protein translation and promotes actin polymerization, and SynGAP1 is a synaptically localized Ras/Rap GAP. While these proteins are clearly distinct, studies investigating their functions in mice have shown that each regulates the maturation of synapses in the hippocampus and haploinsufficiency for either produces an exaggerated form of mGluR-dependent long-term depression, suggesting that some signaling pathways converge. In this study, we examined how Cyfip1 haploinsufficiency impacts SynGAP1 levels and localization, as well as potential sites for mechanistic interaction in mouse hippocampus. The data show that synaptic, but not total, levels of SynGAP1 in Cyfip1 +/- mice were abnormally low during early postnatal development and in adults. This may be in response to a shift in the balance of kinases that activate SynGAP1 as levels of Cdk5 were reduced and those of activated CaMKII were maintained in Cyfip1 +/- mice compared to wild-type mice. Alternatively, this could reflect altered actin dynamics as Rac1 activity in Cyfip1 +/- hippocampus was boosted significantly compared to wild-type mice, and levels of synaptic F-actin were generally enhanced due in part to an increase in the activity of the WAVE regulatory complex. Decreased synaptic SynGAP1 coupled with a CaMKII-mediated bias toward Rap1 inactivation at synapses is also consistent with increased levels of synaptic GluA2, increased AMPA receptor-mediated responses to stimulation, and increased levels of synaptic mGluR1/5 compared to wild-type mice. Collectively, our data suggest that Cyfip1 regulates SynGAP1 and the two proteins work coordinately at synapses to appropriately direct actin polymerization and GAP activity.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Fatema Begum
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Christopher A Guevara
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States.,Graduate School of Biomedical Sciences, New York, NY, United States
| | - Chenel Morrison
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Kuangfu Hsiao
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Nebojsa Kezunovic
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Deanna L Benson
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| |
Collapse
|
39
|
Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD. FMRP links optimal codons to mRNA stability in neurons. Proc Natl Acad Sci U S A 2020; 117:30400-30411. [PMID: 33199649 PMCID: PMC7720238 DOI: 10.1073/pnas.2009161117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
Collapse
Affiliation(s)
- Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Elisa Donnard
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
40
|
Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. eLife 2020; 9:59711. [PMID: 33228848 PMCID: PMC7685709 DOI: 10.7554/elife.59711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ottavia Palazzo
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Declan King
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie I Stefan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,ZJU-UoE Institute, Zhejiang University, Haining, China
| | - Karl Emanuel Busch
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
42
|
Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol 2020; 3:565. [PMID: 33037292 PMCID: PMC7547664 DOI: 10.1038/s42003-020-01247-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
The field of spatial transcriptomics is rapidly expanding, and with it the repertoire of available technologies. However, several of the transcriptome-wide spatial assays do not operate on a single cell level, but rather produce data comprised of contributions from a – potentially heterogeneous – mixture of cells. Still, these techniques are attractive to use when examining complex tissue specimens with diverse cell populations, where complete expression profiles are required to properly capture their richness. Motivated by an interest to put gene expression into context and delineate the spatial arrangement of cell types within a tissue, we here present a model-based probabilistic method that uses single cell data to deconvolve the cell mixtures in spatial data. To illustrate the capacity of our method, we use data from different experimental platforms and spatially map cell types from the mouse brain and developmental heart, which arrange as expected. Alma Andersson et al. present a probabilistic framework that integrates single-cell and bulk spatial transcriptomics in order to spatially map cell types onto their respective tissues. They apply their method to the developing human heart and mouse brain to demonstrate the power of the technique.
Collapse
|
43
|
Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling. Proc Natl Acad Sci U S A 2020; 117:25092-25103. [PMID: 32958647 DOI: 10.1073/pnas.2014080117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common inherited intellectual disability. How the loss of FMRP alters protein expression and astroglial functions remains essentially unknown. Here we showed that selective loss of astroglial FMRP in vivo up-regulates a brain-enriched miRNA, miR-128-3p, in mouse and human FMRP-deficient astroglia, which suppresses developmental expression of astroglial metabotropic glutamate receptor 5 (mGluR5), a major receptor in mediating developmental astroglia to neuron communication. Selective in vivo inhibition of miR-128-3p in FMRP-deficient astroglia sufficiently rescues decreased mGluR5 function, while astroglial overexpression of miR-128-3p strongly and selectively diminishes developmental astroglial mGluR5 signaling. Subsequent transcriptome and proteome profiling further suggests that FMRP commonly and preferentially regulates protein expression through posttranscriptional, but not transcriptional, mechanisms in astroglia. Overall, our study defines an FMRP-dependent cell-autonomous miR pathway that selectively alters developmental astroglial mGluR5 signaling, unveiling astroglial molecular mechanisms involved in FXS pathogenesis.
Collapse
|
44
|
A Differential Effect of Lovastatin versus Simvastatin in Neurodevelopmental Disorders. eNeuro 2020; 7:ENEURO.0162-20.2020. [PMID: 32651266 PMCID: PMC7433894 DOI: 10.1523/eneuro.0162-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
|
45
|
Asiminas A, Jackson AD, Louros SR, Till SM, Spano T, Dando O, Bear MF, Chattarji S, Hardingham GE, Osterweil EK, Wyllie DJA, Wood ER, Kind PC. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci Transl Med 2020; 11:11/494/eaao0498. [PMID: 31142675 DOI: 10.1126/scitranslmed.aao0498] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/19/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Fragile X Syndrome (FXS) is one of the most common monogenic forms of autism and intellectual disability. Preclinical studies in animal models have highlighted the potential of pharmaceutical intervention strategies for alleviating the symptoms of FXS. However, whether treatment strategies can be tailored to developmental time windows that define the emergence of particular phenotypes is unknown. Similarly, whether a brief, early intervention can have long-lasting beneficial effects, even after treatment cessation, is also unknown. To address these questions, we first examined the developmental profile for the acquisition of associative learning in a rat model of FXS. Associative memory was tested using a range of behavioral paradigms that rely on an animal's innate tendency to explore novelty. Fmr1 knockout (KO) rats showed a developmental delay in their acquisition of object-place recognition and did not demonstrate object-place-context recognition paradigm at any age tested (up to 23 weeks of age). Treatment of Fmr1 KO rats with lovastatin between 5 and 9 weeks of age, during the normal developmental period that this associative memory capability is established, prevents the emergence of deficits but has no effect in wild-type animals. Moreover, we observe no regression of cognitive performance in the FXS rats over several months after treatment. This restoration of the normal developmental trajectory of cognitive function is associated with the sustained rescue of both synaptic plasticity and altered protein synthesis. The findings provide proof of concept that the impaired emergence of the cognitive repertoire in neurodevelopmental disorders may be prevented by brief, early pharmacological intervention.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Adam D Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sally M Till
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Teresa Spano
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,UK Dementia Research Institute at the Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mark F Bear
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumantra Chattarji
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,UK Dementia Research Institute at the Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Emma R Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| |
Collapse
|
46
|
Wiebe S, Nagpal A, Sonenberg N. Dysregulated translational control in brain disorders: from genes to behavior. Curr Opin Genet Dev 2020; 65:34-41. [PMID: 32535350 DOI: 10.1016/j.gde.2020.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022]
Abstract
Control of protein synthesis (mRNA translation) is essential for proper brain development and function. Perturbations to the mechanisms governing mRNA translation have repeatedly been shown to constitute a neurodegenerative, neuropsychiatric, and neurodevelopmental disorder risk factor. Developing effective therapeutics for brain disorders will require a better understanding of the molecular mechanisms underlying the control of protein synthesis in brain function. Studies using transgenic animal models have been invaluable towards this end, providing exciting new insights into the genetic basis of brain disorders with hopeful prospects for new and effective treatment options.
Collapse
Affiliation(s)
- Shane Wiebe
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | - Anmol Nagpal
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
47
|
Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder. Curr Opin Genet Dev 2020; 65:22-33. [PMID: 32535349 DOI: 10.1016/j.gde.2020.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The discovery and characterization of a network of highly conserved neuronal microexons has provided fundamental new insight into mechanisms underlying nervous system development and function, as well as an important basis for pathway convergence in autism spectrum disorder. In the past few years, considerable progress has been made in comprehensively determining the repertoires of factors that control neuronal microexons. These results have illuminated molecular mechanisms that activate the splicing of microexons, including those that control gene expression programs critical for neurogenesis, as well as synaptic protein translation and neuronal activity. Remarkably, individual disruption of specific microexons in these pathways results in autism-like phenotypes and cognitive impairment in mice. This review discusses these findings and their implications for delivering new therapeutic strategies for neurological disorders.
Collapse
|
48
|
Disrupted inhibitory plasticity and homeostasis in Fragile X syndrome. Neurobiol Dis 2020; 142:104959. [PMID: 32512151 PMCID: PMC7959200 DOI: 10.1016/j.nbd.2020.104959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder instigated by the absence of a key translation regulating protein, Fragile X Mental Retardation Protein (FMRP). The loss of FMRP in the CNS leads to abnormal synaptic development, disruption of critical periods of plasticity, and an overall deficiency in proper sensory circuit coding leading to hyperexcitable sensory networks. However, little is known about how this hyperexcitable environment affects inhibitory synaptic plasticity. Here, we show that in vivo layer 2/3 of the primary somatosensory cortex of the Fmr1 KO mouse exhibits basal hyperexcitability and an increase in neuronal firing rate suppression during whisker activation. This aligns with our in vitro data that indicate an increase in GABAergic spontaneous activity, a faulty mGluR-mediated inhibitory input and impaired inhibitory plasticity processes. Specifically, we find that mGluR activation sensitivity is overall diminished in the Fmr1 KO mouse leading to both a decreased spontaneous inhibitory postsynaptic input to principal cells and a disrupted form of inhibitory long-term depression (I-LTD). These data suggest an adaptive mechanism that acts to homeostatically counterbalance the cortical hyperexcitability observed in FXS.
Collapse
|
49
|
Koltun B, Ironi S, Gershoni-Emek N, Barrera I, Hleihil M, Nanguneri S, Sasmal R, Agasti SS, Nair D, Rosenblum K. Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Res 2020; 48:e32. [PMID: 31974573 PMCID: PMC7102941 DOI: 10.1093/nar/gkaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.
Collapse
Affiliation(s)
- Bella Koltun
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Sivan Ironi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Hleihil
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Ranjan Sasmal
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sarit S Agasti
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
50
|
McCamphill PK, Stoppel LJ, Senter RK, Lewis MC, Heynen AJ, Stoppel DC, Sridhar V, Collins KA, Shi X, Pan JQ, Madison J, Cottrell JR, Huber KM, Scolnick EM, Holson EB, Wagner FF, Bear MF. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Sci Transl Med 2020; 12:eaam8572. [PMID: 32434848 PMCID: PMC8095719 DOI: 10.1126/scitranslmed.aam8572] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/15/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Fragile X syndrome is caused by FMR1 gene silencing and loss of the encoded fragile X mental retardation protein (FMRP), which binds to mRNA and regulates translation. Studies in the Fmr1-/y mouse model of fragile X syndrome indicate that aberrant cerebral protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5) signaling contributes to disease pathogenesis, but clinical trials using mGluR5 inhibitors were not successful. Animal studies suggested that treatment with lithium might be an alternative approach. Targets of lithium include paralogs of glycogen synthase kinase 3 (GSK3), and nonselective small-molecule inhibitors of these enzymes improved disease phenotypes in a fragile X syndrome mouse model. However, the potential therapeutic use of GSK3 inhibitors has been hampered by toxicity arising from inhibition of both α and β paralogs. Recently, we developed GSK3 inhibitors with sufficient paralog selectivity to avoid a known toxic consequence of dual inhibition, that is, increased β-catenin stabilization. We show here that inhibition of GSK3α, but not GSK3β, corrected aberrant protein synthesis, audiogenic seizures, and sensory cortex hyperexcitability in Fmr1-/y mice. Although inhibiting either paralog prevented induction of NMDA receptor-dependent long-term depression (LTD) in the hippocampus, only inhibition of GSK3α impaired mGluR5-dependent and protein synthesis-dependent LTD. Inhibition of GSK3α additionally corrected deficits in learning and memory in Fmr1-/y mice; unlike mGluR5 inhibitors, there was no evidence of tachyphylaxis or enhanced psychotomimetic-induced hyperlocomotion. GSK3α selective inhibitors may have potential as a therapeutic approach for treating fragile X syndrome.
Collapse
Affiliation(s)
- Patrick K McCamphill
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura J Stoppel
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca K Senter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael C Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Arnold J Heynen
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David C Stoppel
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vinay Sridhar
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390, USA
| | - Katie A Collins
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jon Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390, USA
| | - Edward M Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|