1
|
Fortier-Lebel N, Nakajima T. Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. Neuroscientist 2025; 31:279-295. [PMID: 39041460 PMCID: PMC12103638 DOI: 10.1177/10738584241263758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada
| | - Toshi Nakajima
- Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Khan AU, Hoy C, Anderson KL, Piai V, KingStephens D, Laxer KD, Weber P, Lin JJ, Knight RT, Bentley JN. Neural dynamics of proactive and reactive cognitive control in medial and lateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637987. [PMID: 39990315 PMCID: PMC11844492 DOI: 10.1101/2025.02.12.637987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gol-directed behavior requires adjusting cognitive control to both react to and prepare for conflict. Previous work indicates theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC) are critical for reactive control. However, the neural mechanisms supporting proactive control are less clear. Here, we investigated the neural basis of behavioral adaptations when control is prepared in anticipation of conflict using intracranial EEG (iEEG) in dmPFC and dlPFC during a Stroop task where conflict frequency was manipulated across blocks. We observed canonical conflict-driven increases in dmPFC theta and in dmPFC and dlPFC local population activity, as indexed by high frequency activity (HFA). Conflict also suppressed theta power in both regions after the response, accentuated a pre-response beta desynchronization selectively in dlPFC, and increased a post-response beta rebound in both regions. Importantly, we identified a pre-trial marker of proactive control where dmPFC theta power increased before trials when conflict was expected, and theta, beta, and HFA conflict signals in both regions were enhanced when conflict was rare and diminished when conflict was common. These findings reveal shared HFA but dissociable oscillatory dynamics in dmPFC and dlPFC during reactive conflict processing, highlight pre-trial dmPFC theta as a potential substrate for proactive control, and refine the roles of dmPFC and dlPFC in control adaptations.
Collapse
Affiliation(s)
- Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kristopher L. Anderson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Vitoria Piai
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, Netherlands
| | - David KingStephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Kenneth D. Laxer
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Peter Weber
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Departments of Psychology and Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Badre D. Cognitive Control. Annu Rev Psychol 2025; 76:167-195. [PMID: 39378283 DOI: 10.1146/annurev-psych-022024-103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Humans and other primates have a remarkable ability to perform a wide range of tasks and behaviors, even novel ones, in order to achieve their goals. Further, they are able to shift flexibly among these behaviors as the contexts demand. Cognitive control is the function at the base of this remarkable behavioral generativity and flexibility. The present review provides a survey of current research on cognitive control focusing on two of its primary features within a control systems framework: (a) the ability to select new behaviors based on context and (b) the ability to monitor ongoing behavior and adjust accordingly. Throughout, the review places an emphasis on how differences in the content and structure of task representations affect these core features of cognitive control.
Collapse
Affiliation(s)
- David Badre
- Department of Cognitive and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
4
|
Runyun ŞL, van Wassenhove V, Balci F. Altered temporal awareness during Covid-19 pandemic. PSYCHOLOGICAL RESEARCH 2024; 88:2335-2345. [PMID: 39034344 DOI: 10.1007/s00426-024-02004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Social isolation during the COVID-19 pandemic had profound effects on human well-being. A handful of studies have focused on how time perception was altered during the COVID-19 pandemic, while no study has tested whether temporal metacognition is also affected by the lockdown. We examined the impact of long-term social isolation during the COVID-19 pandemic on the ability to monitor errors in timing performance. We recruited 1232 participants from 12 countries during lockdown, 211 of which were retested "post-pandemic" for within-group comparisons. We also tested a new group of 331 participants during the "post-pandemic" period and compared their data to those of 1232 participants tested during the lockdown (between-group comparison). Participants produced a 3600 ms target interval and assessed the magnitude and direction of their time production error. Both within and between-group comparisons showed reduced metric error monitoring performance during the lockdown, even after controlling for government-imposed stringency indices. A higher level of reported social isolation also predicted reduced temporal error monitoring ability. Participants produced longer duration during lockdown compared to post-lockdown (again controlling for government stringency indices). We reason that these effects may be underlain by altered biological and behavioral rhythms during social isolation experienced during the COVID-19 pandemic. Understanding these effects is crucial for a more complete characterization of the cognitive consequences of long-term social isolation.
Collapse
Affiliation(s)
- Şerife Leman Runyun
- Department of Psychology, Koç University, Istanbul, Turkey
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA, 02115, USA
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA, INSERM, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, 91191, France
| | - Fuat Balci
- Department of Psychology, Koç University, Istanbul, Turkey.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2M5, Canada.
| |
Collapse
|
5
|
Grabowska A, Sondej F, Senderecka M. A network analysis of affective and motivational individual differences and error monitoring in a non-clinical sample. Cereb Cortex 2024; 34:bhae397. [PMID: 39462813 PMCID: PMC11513196 DOI: 10.1093/cercor/bhae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024] Open
Abstract
Error monitoring, which plays a crucial role in shaping adaptive behavior, is influenced by a complex interplay of affective and motivational factors. Understanding these associations often proves challenging due to the intricate nature of these variables. With the aim of addressing previous inconsistencies and methodological gaps, in this study, we utilized network analysis to investigate the relationship between affective and motivational individual differences and error monitoring. We employed six Gaussian Graphical Models on a non-clinical population ($N$ = 236) to examine the conditional dependence between the amplitude of response-related potentials (error-related negativity; correct-related negativity) and 29 self-report measures related to anxiety, depression, obsessive thoughts, compulsive behavior, and motivation while adjusting for covariates: age, handedness, and latency of error-related negativity and correct-related negativity. We then validated our results on an independent sample of 107 participants. Our findings revealed unique associations between error-related negativity amplitudes and specific traits. Notably, more pronounced error-related negativity amplitudes were associated with increased rumination and obsessing, and decreased reward sensitivity. Importantly, in our non-clinical sample, error-related negativity was not directly associated with trait anxiety. These results underscore the nuanced effects of affective and motivational traits on error processing in healthy population.
Collapse
Affiliation(s)
- Anna Grabowska
- Doctoral School in the Social Sciences, Jagiellonian University, Main Square 34, 31-110 Krakow, Poland
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Filip Sondej
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Magdalena Senderecka
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
6
|
Laquitaine M, Polosan M, Kahane P, Chabardes S, Yelnik J, Fernandez-Vidal S, Domenech P, Bastin J. Optimal level of human intracranial theta activity for behavioral switching in the subthalamo-medio-prefrontal circuit. Nat Commun 2024; 15:7827. [PMID: 39244544 PMCID: PMC11380695 DOI: 10.1038/s41467-024-52290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
The ability to switch between rules associating stimuli and responses depend on a circuit including the dorsomedial prefrontal cortex (dmPFC) and the subthalamic nucleus (STN). However, the precise neural implementations of switching remain unclear. To address this issue, we recorded local field potentials from the STN and from the dmPFC of neuropsychiatric patients during behavioral switching. Drift-diffusion modeling revealed that switching is associated with a shift in the starting point of evidence accumulation. Theta activity increases in dmPFC and STN during successful switch trials, while temporally delayed and excessive levels of theta lead to premature switch errors. This seemingly opposing impact of increased theta in successful and unsuccessful switching is explained by a negative correlation between theta activity and the starting point. Together, these results shed a new light on the neural mechanisms underlying the rapid reconfiguration of stimulus-response associations, revealing a Goldilocks' effect of theta activity on switching behavior.
Collapse
Affiliation(s)
- Maëva Laquitaine
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, F-38000, Grenoble, France
| | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Jérôme Yelnik
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France
| | - Sara Fernandez-Vidal
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France
| | - Philippe Domenech
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France.
- Institut de Neuromodulation, Pole Hospitalo-Universitaire 15, Groupe Hospitalo-Universitaire Paris, Psychiatrie et Neurosciences, Université Paris Cité, Paris, France.
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, F-38000, Grenoble, France.
| |
Collapse
|
7
|
Chung RS, Cavaleri J, Sundaram S, Gilbert ZD, Del Campo-Vera RM, Leonor A, Tang AM, Chen KH, Sebastian R, Shao A, Kammen A, Tabarsi E, Gogia AS, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Understanding the human conflict processing network: A review of the literature on direct neural recordings during performance of a modified stroop task. Neurosci Res 2024; 206:1-19. [PMID: 38582242 DOI: 10.1016/j.neures.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
8
|
Ai S. STN-PFC circuit related to attentional fluctuations during non-movement decision-making. Neuroscience 2024; 553:110-120. [PMID: 38972448 DOI: 10.1016/j.neuroscience.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. The subthalamic nucleus (STN), a part of basal ganglia, is traditionally considered a critical node in the cortico-basal ganglia-thalamus-cortico network. Given the location of the STN and its widespread connections with cortical and subcortical brain regions, the STN plays an important role in motor and non-motor cognitive processing. We would like to know if STN is also related to fluctuations in attentional task performance, and how the STN interacts with prefrontal cortical regions during the process. We examined neural activities within STN covaried with lapses of attention (defined as behavior error). We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
Collapse
Affiliation(s)
- Shengnan Ai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Courellis HS, Minxha J, Cardenas AR, Kimmel DL, Reed CM, Valiante TA, Salzman CD, Mamelak AN, Fusi S, Rutishauser U. Abstract representations emerge in human hippocampal neurons during inference. Nature 2024; 632:841-849. [PMID: 39143207 PMCID: PMC11338822 DOI: 10.1038/s41586-024-07799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization1. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour2,3. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.
Collapse
Affiliation(s)
- Hristos S Courellis
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Juri Minxha
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Araceli R Cardenas
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Daniel L Kimmel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - C Daniel Salzman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefano Fusi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Ullsperger M. Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG. Psychophysiology 2024; 61:e14553. [PMID: 38415791 DOI: 10.1111/psyp.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
With the discovery of event-related potentials elicited by errors more than 30 years ago, a new avenue of research on performance monitoring, cognitive control, and decision making emerged. Since then, the field has developed and expanded fulminantly. After a brief overview on the EEG correlates of performance monitoring, this article reviews recent advancements based on single-trial analyses using independent component analysis, multiple regression, and multivariate pattern classification. Given the close interconnection between performance monitoring and reinforcement learning, computational modeling and model-based EEG analyses have made a particularly strong impact. The reviewed findings demonstrate that error- and feedback-related EEG dynamics represent variables reflecting how performance-monitoring signals are weighted and transformed into an adaptation signal that guides future decisions and actions. The model-based single-trial analysis approach goes far beyond conventional peak-and-trough analyses of event-related potentials and enables testing mechanistic theories of performance monitoring, cognitive control, and decision making.
Collapse
Affiliation(s)
- Markus Ullsperger
- Department of Neuropsychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| |
Collapse
|
12
|
Wang F, Liu Z, Yang J, Sun F, Cheng P, Pan Y, Cheng Y, Tan W, Huang D, Zhang J, Li J, Zhang W, Yang J. The neural compensation phenomenon in schizophrenia with mild attention deficits during working memory task. Asian J Psychiatr 2024; 97:104077. [PMID: 38781692 DOI: 10.1016/j.ajp.2024.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Working memory (WM) and attention are essential cognitive processes, and their interplay is critical for efficient information processing. Schizophrenia often exhibits deficits in both WM and attention, contributing to function impairments. This study aims to investigate the neural mechanisms underlying the relationship between WM impairments and attention deficits in schizophrenia. METHODS We assessed the functional-MRI scans of the 184 schizophrenias with different attention deficits (mild=133; severe=51) and 146 controls during an N-back WM task. We explored their whole-brain functional connectome profile by adopting the voxel-wise degree centrality (DC). Linear analysis was conducted to explore the associations among attention deficit severity, altered DC, and WM performance in patients. RESULTS We observed that all patients showed decreased DC in the pre-supplementary area (pre-SMA), and posterior cerebellum compared to the controls, and schizophrenia patients with mild attention deficits showed decreased DC in the supramarginal gyrus, insula, and precuneus compared with the other 2 groups. DC values of the detected brain regions displayed U-shaped or inverted U-shaped curves, rather than a linear pattern, in response to increasing attention deficits. The linear analysis indicated that altered DC of the pre-SMA can modulate the relationship between attention deficits and WM performance. CONCLUSION The U-shaped or inverted U-shaped pattern in response to increasing attention deficits may reflect a compensation mechanism in schizophrenia with mild attention deficits. This notion is also supported by the linear analysis that schizophrenia patients with mild attention deficits can improve their WM performance by increasing the DC value of the pre-SMA.
Collapse
Affiliation(s)
- Feiwen Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhening Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jun Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fuping Sun
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Peng Cheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yunzhi Pan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yixin Cheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjian Tan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Danqing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiamei Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jinyue Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wen Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Ritz H, Shenhav A. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. Nat Hum Behav 2024; 8:945-961. [PMID: 38459265 PMCID: PMC11219097 DOI: 10.1038/s41562-024-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/15/2024] [Indexed: 03/10/2024]
Abstract
The complex challenges of our mental life require us to coordinate multiple forms of neural information processing. Recent behavioural studies have found that people can coordinate multiple forms of attention, but the underlying neural control process remains obscure. We hypothesized that the brain implements multivariate control by independently monitoring feature-specific difficulty and independently prioritizing feature-specific processing. During functional MRI, participants performed a parametric conflict task that separately tags target and distractor processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially segregated encoding of target and distractor difficulty in the dorsal anterior cingulate cortex. Consistent with feature-specific attentional priority, our encoding geometry analysis revealed overlapping but orthogonal representations of target and distractor coherence in the intraparietal sulcus. Coherence representations were mediated by control demands and aligned with both performance and frontoparietal activity, consistent with top-down attention. Together, these findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive control.
Collapse
Affiliation(s)
- Harrison Ritz
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - Amitai Shenhav
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Aquino TG, Courellis H, Mamelak AN, Rutishauser U, O Doherty JP. Encoding of Predictive Associations in Human Prefrontal and Medial Temporal Neurons During Pavlovian Appetitive Conditioning. J Neurosci 2024; 44:e1628232024. [PMID: 38423764 PMCID: PMC11044193 DOI: 10.1523/jneurosci.1628-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Pavlovian conditioning is thought to involve the formation of learned associations between stimuli and values, and between stimuli and specific features of outcomes. Here, we leveraged human single neuron recordings in ventromedial prefrontal, dorsomedial frontal, hippocampus, and amygdala while patients of both sexes performed an appetitive Pavlovian conditioning task probing both stimulus-value and stimulus-stimulus associations. Ventromedial prefrontal cortex encoded predictive value along with the amygdala, and also encoded predictions about the identity of stimuli that would subsequently be presented, suggesting a role for neurons in this region in encoding predictive information beyond value. Unsigned error signals were found in dorsomedial frontal areas and hippocampus, potentially supporting learning of non-value related outcome features. Our findings implicate distinct human prefrontal and medial temporal neuronal populations in mediating predictive associations which could partially support model-based mechanisms during Pavlovian conditioning.
Collapse
Affiliation(s)
- Tomas G Aquino
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Hristos Courellis
- Biological Engineering, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - John P O Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
15
|
Xu B, Wu J, Xiao H, Münte TF, Ye Z. Inferior parietal cortex represents relational structures for explicit transitive inference. Cereb Cortex 2024; 34:bhae137. [PMID: 38584088 PMCID: PMC10999362 DOI: 10.1093/cercor/bhae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
The human brain is distinguished by its ability to perform explicit logical reasoning like transitive inference. This study investigated the functional role of the inferior parietal cortex in transitive inference with functional MRI. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, the inferior parietal cortex, but not the hippocampus or lateral prefrontal cortex, was associated with transitive inference. The inferior parietal activity and functional connectivity were modulated by inference (new versus old pairs) and discrimination (true versus false pairs). Moreover, the new/old and true/false pairs were decodable from the inferior parietal representation. Second, the inferior parietal cortex represented an integrated relational structure (ordered and directed series). The inferior parietal activity was modulated by serial position (larger end versus center pairs). The inferior parietal representation was modulated by symbolic distance (adjacent versus distant pairs) and direction (preceding versus following pairs). It suggests that the inferior parietal cortex may flexibly integrate observed relations into a relational structure and use the relational structure to infer unobserved relations and discriminate between true and false relations.
Collapse
Affiliation(s)
- Biman Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing 101408, China
| | - Jing Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing 101408, China
| | - Haoyun Xiao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing 101408, China
| | - Thomas F Münte
- Center for Brain, Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| |
Collapse
|
16
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard Iii MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. Nat Commun 2024; 15:2162. [PMID: 38461343 PMCID: PMC10924934 DOI: 10.1038/s41467-024-46094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024] Open
Abstract
The value and uncertainty associated with choice alternatives constitute critical features relevant for decisions. However, the manner in which reward and risk representations are temporally organized in the brain remains elusive. Here we leverage the spatiotemporal precision of intracranial electroencephalography, along with a simple card game designed to elicit the unfolding computation of a set of reward and risk variables, to uncover this temporal organization. Reward outcome representations across wide-spread regions follow a sequential order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We further highlight the role of the anterior insula in generalizing between reward prediction error and risk prediction error codes. Together our results emphasize the importance of neural dynamics for understanding value-based decisions under uncertainty.
Collapse
Affiliation(s)
- Vincent Man
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Jeffrey Cockburn
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33606, USA
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Masahiro Sawada
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Matthew A Howard Iii
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - John P O'Doherty
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
17
|
Korolczuk I, Burle B, Coull JT, Ogińska H, Ociepka M, Senderecka M, Śmigasiewicz K. Temporal unpredictability increases error monitoring as revealed by EEG-EMG investigation. Psychophysiology 2024; 61:e14442. [PMID: 37724801 DOI: 10.1111/psyp.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Reacting in an unpredictable context increases error monitoring as evidenced by greater error-related negativity (ERN), an electrophysiological marker linked to an evaluation of response outcomes. We investigated whether ERN also increased when participants evaluated their responses to events that appeared in unpredictable versus predictable moments in time. We complemented electroencephalographic (EEG) analysis of cortical activity by measuring performance monitoring processes at the peripheral level using electromyography (EMG). Specifically, we used EMG data to quantify how temporal unpredictability would affect motor time (MT), the interval between the onset of muscle activity, and the mechanical response. MT increases following errors, indexing online error detection, and an attempt to stop incorrect actions. In our temporally cued version of the stop-signal task, symbolic cues predicted (temporally predictable condition) or not (temporally unpredictable condition) the onset of a target. In 25% of trials, an auditory signal occurred shortly after the target presentation, informing participants that they should inhibit their response completely. Response times were slower, and fewer inhibitory errors were made during temporally unpredictable than predictable trials, indicating enhanced control of unwanted actions when target onset time was unknown. Importantly, the ERN to inhibitory errors was greater in temporally unpredictable relative to temporally predictable conditions. Similarly, EMG data revealed prolonged MT when reactions to temporally unpredictable targets had not been stopped. Taken together, our results show that a temporally unpredictable environment increases the control of unwanted actions, both at cortical and peripheral levels, suggesting a higher subjective cost of maladaptive responses to temporally uncertain events.
Collapse
Affiliation(s)
- I Korolczuk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University & CNRS, Marseille, France
| | - B Burle
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University & CNRS, Marseille, France
| | - J T Coull
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University & CNRS, Marseille, France
| | - H Ogińska
- Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - M Ociepka
- Institute of Philosophy, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - M Senderecka
- Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | - K Śmigasiewicz
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University & CNRS, Marseille, France
| |
Collapse
|
18
|
Di Gregorio F, Steinhauser M, Maier ME, Thayer JF, Battaglia S. Error-related cardiac deceleration: Functional interplay between error-related brain activity and autonomic nervous system in performance monitoring. Neurosci Biobehav Rev 2024; 157:105542. [PMID: 38215803 DOI: 10.1016/j.neubiorev.2024.105542] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Coordinated interactions between the central and autonomic nervous systems are crucial for survival due to the inherent propensity for human behavior to make errors. In our ever-changing environment, when individuals make mistakes, these errors can have life-threatening consequences. In response to errors, specific reactions occur in both brain activity and heart rate to detect and correct errors. Specifically, there are two brain-related indicators of error detection and awareness known as error-related negativity and error positivity. Conversely, error-related cardiac deceleration denotes a momentary slowing of heart rate following an error, signaling an autonomic response. However, what is the connection between the brain and the heart during error processing? In this review, we discuss the functional and neuroanatomical connections between the brain and heart markers of error processing, exploring the experimental conditions in which they covary. Given the current limitations of available data, future research will continue to investigate the neurobiological factors governing the brain-heart interaction, aiming to utilize them as combined markers for assessing cognitive control in healthy and pathological conditions.
Collapse
Affiliation(s)
- Francesco Di Gregorio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Universita di Bologna, 47521 Cesena, Italy.
| | - Marco Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
| | - Martin E Maier
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
| | - Julian F Thayer
- Department of Psychological Science, 4334 Social and Behavioral Sciences Gateway, University of California, Irvine, CA 92697, USA; Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Universita di Bologna, 47521 Cesena, Italy; Department of Psychology, University of Torino, 10124 Torino, Italy.
| |
Collapse
|
19
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
20
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing. Neurosci Biobehav Rev 2024; 156:105468. [PMID: 37979735 PMCID: PMC10976187 DOI: 10.1016/j.neubiorev.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
21
|
Courellis HS, Mixha J, Cardenas AR, Kimmel D, Reed CM, Valiante TA, Salzman CD, Mamelak AN, Fusi S, Rutishauser U. Abstract representations emerge in human hippocampal neurons during inference behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566490. [PMID: 37986878 PMCID: PMC10659400 DOI: 10.1101/2023.11.10.566490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization 1 . However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning, and how they relate to behavior 2,3 . Here we characterized the representational geometry of populations of neurons (single-units) recorded in the hippocampus, amygdala, medial frontal cortex, and ventral temporal cortex of neurosurgical patients who are performing an inferential reasoning task. We find that only the neural representations formed in the hippocampus simultaneously encode multiple task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consisted of disentangled directly observable and discovered latent task variables. Interestingly, learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behavior suggests that abstract/disentangled representational geometries are important for complex cognition.
Collapse
|
22
|
Herrera B, Sajad A, Errington SP, Schall JD, Riera JJ. Cortical origin of theta error signals. Cereb Cortex 2023; 33:11300-11319. [PMID: 37804250 PMCID: PMC10690871 DOI: 10.1093/cercor/bhad367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
A multi-scale approach elucidated the origin of the error-related-negativity (ERN), with its associated theta-rhythm, and the post-error-positivity (Pe) in macaque supplementary eye field (SEF). Using biophysical modeling, synaptic inputs to a subpopulation of layer-3 (L3) and layer-5 (L5) pyramidal cells (PCs) were optimized to reproduce error-related spiking modulation and inter-spike intervals. The intrinsic dynamics of dendrites in L5 but not L3 error PCs generate theta rhythmicity with random phases. Saccades synchronized the phases of the theta-rhythm, which was magnified on errors. Contributions from error PCs to the laminar current source density (CSD) observed in SEF were negligible and could not explain the observed association between error-related spiking modulation in L3 PCs and scalp-EEG. CSD from recorded laminar field potentials in SEF was comprised of multipolar components, with monopoles indicating strong electro-diffusion, dendritic/axonal electrotonic current leakage outside SEF, or violations of the model assumptions. Our results also demonstrate the involvement of secondary cortical regions, in addition to SEF, particularly for the later Pe component. The dipolar component from the observed CSD paralleled the ERN dynamics, while the quadrupolar component paralleled the Pe. These results provide the most advanced explanation to date of the cellular mechanisms generating the ERN.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Amirsaman Sajad
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
| | - Steven P Errington
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Departments of Biology and Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| |
Collapse
|
23
|
Sun S, Yu H, Wang S, Yu R. Cognitive and neural bases of visual-context-guided decision-making. Neuroimage 2023; 275:120170. [PMID: 37192677 PMCID: PMC10868706 DOI: 10.1016/j.neuroimage.2023.120170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023] Open
Abstract
Humans adjust their behavioral strategies based on feedback, a process that may depend on intrinsic preferences and contextual factors such as visual salience. In this study, we hypothesized that decision-making based on visual salience is influenced by habitual and goal-directed processes, which can be evidenced by changes in attention and subjective valuation systems. To test this hypothesis, we conducted a series of studies to investigate the behavioral and neural mechanisms underlying visual salience-driven decision-making. We first established the baseline behavioral strategy without salience in Experiment 1 (n = 21). We then highlighted the utility or performance dimension of the chosen outcome using colors in Experiment 2 (n = 30). We demonstrated that the difference in staying frequency increased along the salient dimension, confirming a salience effect. Furthermore, the salience effect was abolished when directional information was removed in Experiment 3 (n = 28), suggesting that the salience effect is feedback-specific. To generalize our findings, we replicated the feedback-specific salience effects using eye-tracking and text emphasis. The fixation differences between the chosen and unchosen values were enhanced along the feedback-specific salient dimension in Experiment 4 (n = 48) but unchanged after removing feedback-specific information in Experiment 5 (n = 32). Moreover, the staying frequency was correlated with fixation properties, confirming that salience guides attention deployment. Lastly, our neuroimaging study (Experiment 6, n = 25) showed that the striatum subregions encoded salience-based outcome evaluation, while the vmPFC encoded salience-based behavioral adjustments. The connectivity of the vmPFC-ventral striatum accounted for individual differences in utility-driven, whereas the vmPFC-dmPFC for performance-driven behavioral adjustments. Together, our results provide a neurocognitive account of how task-irrelevant visual salience drives decision-making by involving attention and the frontal-striatal valuation systems. PUBLIC SIGNIFICANCE STATEMENT: Humans may use the current outcome to make behavior adjustments. How this occurs may depend on stable individual preferences and contextual factors, such as visual salience. Under the hypothesis that visual salience determines attention and subsequently modulates subjective valuation, we investigated the underlying behavioral and neural bases of visual-context-guided outcome evaluation and behavioral adjustments. Our findings suggest that the reward system is orchestrated by visual context and highlight the critical role of attention and the frontal-striatal neural circuit in visual-context-guided decision-making that may involve habitual and goal-directed processes.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, 980-8578, Japan; Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, MO 63110, USA.
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| |
Collapse
|
24
|
Aquino TG, Cockburn J, Mamelak AN, Rutishauser U, O'Doherty JP. Neurons in human pre-supplementary motor area encode key computations for value-based choice. Nat Hum Behav 2023; 7:970-985. [PMID: 36959327 PMCID: PMC10330469 DOI: 10.1038/s41562-023-01548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Adaptive behaviour in real-world environments requires that choices integrate several variables, including the novelty of the options under consideration, their expected value and uncertainty in value estimation. Here, to probe how integration over decision variables occurs during decision-making, we recorded neurons from the human pre-supplementary motor area (preSMA), ventromedial prefrontal cortex and dorsal anterior cingulate. Unlike the other areas, preSMA neurons not only represented separate pre-decision variables for each choice option but also encoded an integrated utility signal for each choice option and, subsequently, the decision itself. Post-decision encoding of variables for the chosen option was more widely distributed and especially prominent in the ventromedial prefrontal cortex. Our findings position the human preSMA as central to the implementation of value-based decisions.
Collapse
Affiliation(s)
- Tomas G Aquino
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jeffrey Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John P O'Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
25
|
Albrecht C, Bellebaum C. Slip or fallacy? Effects of error severity on own and observed pitch error processing in pianists. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01097-1. [PMID: 37198385 PMCID: PMC10400674 DOI: 10.3758/s13415-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Errors elicit a negative, mediofrontal, event-related potential (ERP), for both own errors (error-related negativity; ERN) and observed errors (here referred to as observer mediofrontal negativity; oMN). It is unclear, however, if the action-monitoring system codes action valence as an all-or-nothing phenomenon or if the system differentiates between errors of different severity. We investigated this question by recording electroencephalography (EEG) data of pianists playing themselves (Experiment 1) or watching others playing (Experiment 2). Piano pieces designed to elicit large errors were used. While active participants' ERN amplitudes differed between small and large errors, observers' oMN amplitudes did not. The different pattern in the two groups of participants was confirmed in an exploratory analysis comparing ERN and oMN directly. We suspect that both prediction and action mismatches can be coded in action monitoring systems, depending on the task, and a need-to-adapt signal is sent whenever mismatches happen to indicate the magnitude of the needed adaptation.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany.
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: meta-analytic evidence from neuroimaging studies on error processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540136. [PMID: 37214978 PMCID: PMC10197606 DOI: 10.1101/2023.05.10.540136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C. Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
27
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539916. [PMID: 37214975 PMCID: PMC10197553 DOI: 10.1101/2023.05.09.539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The value and uncertainty associated with choice alternatives constitute critical features along which decisions are made. While the neural substrates supporting reward and risk processing have been investigated, the temporal organization by which these computations are encoded remains elusive. Here we leverage the high spatiotemporal precision of intracranial electroencephalography (iEEG) to uncover how representations of decision-related computations unfold in time. We present evidence of locally distributed representations of reward and risk variables that are temporally organized across multiple regions of interest. Reward outcome representations across wide-spread regions follow a temporally cascading order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We highlight the role of the anterior insula in generalizing between reward prediction error (RePE) and risk prediction error (RiPE), within which the encoding of RePE in the distributed iEEG signal predicts RiPE. Together our results emphasize the utility of uncovering temporal dynamics in the human brain for understanding how computational processes critical for value-based decisions under uncertainty unfold.
Collapse
|
28
|
Furstenberg A, Sompolinsky H, Deouell LY. Error monitoring when no errors are possible: Arbitrary free-choice decisions invoke error monitoring processes. iScience 2023; 26:106373. [PMID: 37009217 PMCID: PMC10060684 DOI: 10.1016/j.isci.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Some decisions make a difference, but most are arbitrary and inconsequential, like which of several identical new pairs of socks should I wear? Healthy people swiftly make such decisions even with no rational reasons to rely on. In fact, arbitrary decisions have been suggested as demonstrating "free will". However, several clinical populations and some healthy individuals have significant difficulties in making such arbitrary decisions. Here, we investigate the mechanisms involved in arbitrary picking decisions. We show that these decisions, arguably based on a whim, are subject to similar control mechanisms as reasoned decisions. Specifically, error-related negativity (ERN) brain response is elicited in the EEG following change of intention, without an external definition of error, and motor activity in the non-responding hand resembles actual errors both by its muscle EMG temporal dynamics and by the lateralized readiness potential (LRP) pattern. This provides new directions in understanding decision-making and its deficits.
Collapse
Affiliation(s)
- Ariel Furstenberg
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Haim Sompolinsky
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Leon Y. Deouell
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Psychology Department, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
29
|
LoTemplio SB, Lopes CL, McDonnell AS, Scott EE, Payne BR, Strayer DL. Updating the relationship of the Ne/ERN to task-related behavior: A brief review and suggestions for future research. Front Hum Neurosci 2023; 17:1150244. [PMID: 37082151 PMCID: PMC10110987 DOI: 10.3389/fnhum.2023.1150244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
The error negativity/error-related negativity (Ne/ERN) is one of the most well-studied event-related potential (ERP) components in the electroencephalography (EEG) literature. Peaking about 50 ms after the commission of an error, the Ne/ERN is a negative deflection in the ERP waveform that is thought to reflect error processing in the brain. While its relationships to trait constructs such as anxiety are well-documented, there is still little known about how the Ne/ERN may subsequently influence task-related behavior. In other words, does the occurrence of the Ne/ERN trigger any sort of error corrective process, or any other behavioral adaptation to avoid errors? Several theories have emerged to explain how the Ne/ERN may implement or affect behavior on a task, but evidence supporting each has been mixed. In the following manuscript, we review these theories, and then systematically discuss the reasons that there may be discrepancies in the literature. We review both the inherent biological factors of the neural regions that underlie error-processing in the brain, and some of the researcher-induced factors in analytic and experimental choices that may be exacerbating these discrepancies. We end with a table of recommendations for future researchers who aim to understand the relationship between the Ne/ERN and behavior.
Collapse
Affiliation(s)
- Sara B. LoTemplio
- Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Clara Louise Lopes
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Amy S. McDonnell
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Emily E. Scott
- Department of Psychology, Vermont State University, Johnson, VT, United States
| | - Brennan R. Payne
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - David L. Strayer
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Guo Z, Qiu R, Qiu H, Lu H, Zhu X. Long-term effects of repeated multitarget high-definition transcranial direct current stimulation combined with cognitive training on response inhibition gains. Front Neurosci 2023; 17:1107116. [PMID: 36968503 PMCID: PMC10033537 DOI: 10.3389/fnins.2023.1107116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundFew studies have investigated the effects of repeated sessions of transcranial direct current stimulation (tDCS) combined with concurrent cognitive training on improving response inhibition, and the findings have been heterogeneous in the limited research. This study investigated the long-lasting and transfer effects of 10 consecutive sessions of multitarget anodal HD-tDCS combined with concurrent cognitive training on improving response inhibition compared with multitarget stimulation or training alone.MethodsNinety-four healthy university students aged 18–25 were randomly assigned to undergo different interventions, including real stimulation combined with stop-signal task (SST) training, real stimulation, sham stimulation combined with SST training, and sham stimulation. Each intervention lasted 20 min daily for 10 consecutive days, and the stimulation protocol targeted right inferior frontal gyrus (rIFG) and pre-supplementary motor area (pre-SMA) simultaneously with a total current intensity of 2.5 mA. Performance on SST and possible transfer effects to Stroop task, attention network test, and N-back task were measured before and 1 day and 1 month after completing the intervention course.ResultsThe main findings showed that the combined protocol and the stimulation alone significantly reduced stop-signal reaction time (SSRT) in the post-intervention and follow-up tests compared to the pre-intervention test. However, training alone only decreased SSRT in the post-test. The sham control exhibited no changes. Subgroup analysis revealed that the combined protocol and the stimulation alone induced a decrease in the SSRT of the low-performance subgroup at the post-test and follow-up test compared with the pre-test. However, only the combined protocol, but not the stimulation alone, improved the SSRT of the high-performance subgroup. The transfer effects were absent.ConclusionThis study provides supportive evidence for the synergistic effect of the combined protocol, indicating its superiority over the single intervention method. In addition, the long-term after-effects can persist for up to at least 1 month. Our findings also provide insights into the clinical application and strategy for treating response inhibition deficits.
Collapse
|
31
|
Fu Z, Sajad A, Errington SP, Schall JD, Rutishauser U. Neurophysiological mechanisms of error monitoring in human and non-human primates. Nat Rev Neurosci 2023; 24:153-172. [PMID: 36707544 PMCID: PMC10231843 DOI: 10.1038/s41583-022-00670-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/29/2023]
Abstract
Performance monitoring is an important executive function that allows us to gain insight into our own behaviour. This remarkable ability relies on the frontal cortex, and its impairment is an aspect of many psychiatric diseases. In recent years, recordings from the macaque and human medial frontal cortex have offered a detailed understanding of the neurophysiological substrate that underlies performance monitoring. Here we review the discovery of single-neuron correlates of error monitoring, a key aspect of performance monitoring, in both species. These neurons are the generators of the error-related negativity, which is a non-invasive biomarker that indexes error detection. We evaluate a set of tasks that allows the synergistic elucidation of the mechanisms of cognitive control across the two species, consider differences in brain anatomy and testing conditions across species, and describe the clinical relevance of these findings for understanding psychopathology. Last, we integrate the body of experimental facts into a theoretical framework that offers a new perspective on how error signals are computed in both species and makes novel, testable predictions.
Collapse
Affiliation(s)
- Zhongzheng Fu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Amirsaman Sajad
- Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Steven P Errington
- Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey D Schall
- Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Centre for Vision Research, York University, Toronto, Ontario, Canada.
- Vision: Science to Applications (VISTA), York University, Toronto, Ontario, Canada.
- Department of Biology, Faculty of Science, York University, Toronto, Ontario, Canada.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Xiao Y, Chou CC, Cosgrove GR, Crone NE, Stone S, Madsen JR, Reucroft I, Shih YC, Weisholtz D, Yu HY, Anderson WS, Kreiman G. Cross-task specificity and within-task invariance of cognitive control processes. Cell Rep 2023; 42:111919. [PMID: 36640346 PMCID: PMC9993332 DOI: 10.1016/j.celrep.2022.111919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Cognitive control involves flexibly combining multiple sensory inputs with task-dependent goals during decision making. Several tasks involving conflicting sensory inputs and motor outputs have been proposed to examine cognitive control, including the Stroop, Flanker, and multi-source interference task. Because these tasks have been studied independently, it remains unclear whether the neural signatures of cognitive control reflect abstract control mechanisms or specific combinations of sensory and behavioral aspects of each task. To address these questions, we record invasive neurophysiological signals from 16 patients with pharmacologically intractable epilepsy and compare neural responses within and between tasks. Neural signals differ between incongruent and congruent conditions, showing strong modulation by conflicting task demands. These neural signals are mostly specific to each task, generalizing within a task but not across tasks. These results highlight the complex interplay between sensory inputs, motor outputs, and task demands underlying cognitive control processes.
Collapse
Affiliation(s)
| | - Chien-Chen Chou
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | | | | | - Scellig Stone
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian Reucroft
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yen-Cheng Shih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Daniel Weisholtz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hsiang-Yu Yu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | | | - Gabriel Kreiman
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.
| |
Collapse
|
33
|
Fievez F, Derosiere G, Verbruggen F, Duque J. Post-error Slowing Reflects the Joint Impact of Adaptive and Maladaptive Processes During Decision Making. Front Hum Neurosci 2022; 16:864590. [PMID: 35754776 PMCID: PMC9218087 DOI: 10.3389/fnhum.2022.864590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Errors and their consequences are typically studied by investigating changes in decision speed and accuracy in trials that follow an error, commonly referred to as “post-error adjustments”. Many studies have reported that subjects slow down following an error, a phenomenon called “post-error slowing” (PES). However, the functional significance of PES is still a matter of debate as it is not always adaptive. That is, it is not always associated with a gain in performance and can even occur with a decline in accuracy. Here, we hypothesized that the nature of PES is influenced by one’s speed-accuracy tradeoff policy, which determines the overall level of choice accuracy in the task at hand. To test this hypothesis, we had subjects performing a task in two distinct contexts (separate days), which either promoted speed (hasty context) or cautiousness (cautious context), allowing us to consider post-error adjustments according to whether subjects performed choices with a low or high accuracy level, respectively. Accordingly, our data indicate that post-error adjustments varied according to the context in which subjects performed the task, with PES being solely significant in the hasty context (low accuracy). In addition, we only observed a gain in performance after errors in a specific trial type, suggesting that post-error adjustments depend on a complex combination of processes that affect the speed of ensuing actions as well as the degree to which such PES comes with a gain in performance.
Collapse
Affiliation(s)
- Fanny Fievez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Vidal F, Burle B, Hasbroucq T. On the Comparison Between the Nc/CRN and the Ne/ERN. Front Hum Neurosci 2022; 15:788167. [PMID: 35812306 PMCID: PMC9261282 DOI: 10.3389/fnhum.2021.788167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
After the Error Negativity (Ne or ERN) has been described on full-blown errors and on partial error, a smaller Error Negativity-like wave (CRN or Nc) has also been evidenced on correct trials, first in patients with schizophrenia and, later on, in healthy subjects. The functional significance of the Nc as compared to the Ne is of critical importance since most models accounting for the genesis of the Ne on errors and partial errors cannot account for the existence of the Nc if this Nc simply corresponds to a small Ne. On the contrary, if the Nc and the Ne are two completely distinct components, then the existence of a Nc poses no constraint to the existing models. To this end, we examine in the present review the similarities and the differences existing between the Ne and the Nc regarding their functional properties and their anatomical origin.
Collapse
Affiliation(s)
- Franck Vidal
- Aix-Marseille Université, CNRS, LNC UMR 7291, Marseille, France
| | | | | |
Collapse
|
35
|
Fu Z, Beam D, Chung JM, Reed CM, Mamelak AN, Adolphs R, Rutishauser U. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 2022; 376:eabm9922. [PMID: 35511978 DOI: 10.1126/science.abm9922] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controlling behavior to flexibly achieve desired goals depends on the ability to monitor one's own performance. It is unknown how performance monitoring can be both flexible, to support different tasks, and specialized, to perform each task well. We recorded single neurons in the human medial frontal cortex while subjects performed two tasks that involve three types of cognitive conflict. Neurons encoding conflict probability, conflict, and error in one or both tasks were intermixed, forming a representational geometry that simultaneously allowed task specialization and generalization. Neurons encoding conflict retrospectively served to update internal estimates of conflict probability. Population representations of conflict were compositional. These findings reveal how representations of evaluative signals can be both abstract and task-specific and suggest a neuronal mechanism for estimating control demand.
Collapse
Affiliation(s)
- Zhongzheng Fu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Danielle Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
36
|
Fletcher A, Benveniste M. A new method for training creativity: narrative as an alternative to divergent thinking. Ann N Y Acad Sci 2022; 1512:29-45. [PMID: 35267201 PMCID: PMC9313823 DOI: 10.1111/nyas.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Creativity is a major source of innovation, growth, adaptability, and psychological resilience, making it a top priority of governments, global corporations, educational institutions, and other organizations that collectively invest hundreds of millions of dollars annually into training. The current foundation of creativity training is the technique known as divergent thinking; yet for decades, concerns have been raised about the adequacy of divergent thinking: it is incongruent with the creative processes of children and most adult creatives, and it has failed to yield expected downstream results in creative production. In this article, we present an alternative approach to creativity training, based in neural processes different from those involved in divergent thinking and drawing upon a previously unused resource for creativity research: narrative theory. We outline a narrative theory of creativity training; illustrate with examples of training and assessment from our ongoing work with the U.S. Department of Defense, Fortune 50 companies, and graduate and professional schools; and explain how the theory can help fill prominent lacunae and gaps in existing creativity research, including the creativity of children, the psychological mechanisms of scientific and technological innovation, and the failure of computer artificial intelligence to replicate human creativity.
Collapse
Affiliation(s)
- Angus Fletcher
- Project Narrative, The Ohio State University, Columbus, Ohio
| | - Mike Benveniste
- Project Narrative, The Ohio State University, Columbus, Ohio
| |
Collapse
|
37
|
Balzus L, Klawohn J, Elsner B, Schmidt S, Brandt SA, Kathmann N. Non-invasive brain stimulation modulates neural correlates of performance monitoring in patients with obsessive-compulsive disorder. NEUROIMAGE: CLINICAL 2022; 35:103113. [PMID: 35870380 PMCID: PMC9421486 DOI: 10.1016/j.nicl.2022.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 07/10/2022] [Indexed: 12/02/2022] Open
Abstract
Effects of tDCS on performance monitoring examined in OCD and healthy individuals. A preregistered, randomized, sham-controlled tDCS–EEG study was conducted. Cathodal tDCS over the pre-SMA reduced the error-related negativity (ERN). Correct-response negativity was enhanced, error positivity reduced by cathodal tDCS. The findings substantiate the role of the ERN as a target for new interventions.
Overactive performance monitoring, as reflected by enhanced neural responses to errors (the error-related negativity, ERN), is considered a biomarker for obsessive-compulsive disorder (OCD) and may be a promising target for novel treatment approaches. Prior research suggests that non-invasive brain stimulation with transcranial direct current stimulation (tDCS) may reduce the ERN in healthy individuals, yet no study has investigated its efficacy in attenuating the ERN in OCD. In this preregistered, randomized, sham-controlled, crossover study, we investigated effects of tDCS on performance monitoring in patients with OCD (n = 28) and healthy individuals (n = 28). Cathodal and sham tDCS was applied over the presupplementary motor area (pre-SMA) in two sessions, each followed by electroencephalogram recording during a flanker task. Cathodal tDCS reduced the ERN amplitude compared to sham tDCS, albeit this effect was only marginally significant (p = .052; mean difference: 0.86 μV). Additionally, cathodal tDCS reduced the correct-response negativity and increased the error positivity. These neural modulations were not accompanied by behavioral changes. Moreover, we found no evidence that the tDCS effect was more pronounced in the patient group. In summary, our findings indicate that tDCS over the pre-SMA modulates neural correlates of performance monitoring across groups. Therefore, this study represents a valuable starting point for future research to determine whether repeated tDCS application induces a more pronounced ERN attenuation and normalizes aberrant performance monitoring in the long term, thereby potentially alleviating obsessive-compulsive symptoms and providing a psychophysiological intervention strategy for individuals who do not benefit sufficiently from existing interventions.
Collapse
|
38
|
Kirschner H, Klein TA. Beyond a blunted ERN - Biobehavioral correlates of performance monitoring in schizophrenia. Neurosci Biobehav Rev 2021; 133:104504. [PMID: 34922988 DOI: 10.1016/j.neubiorev.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Cognitive deficits are well documented in schizophrenia. Here, we reviewed alterations in performance monitoring as potential marker of cognitive deficits in schizophrenia. We found that performance monitoring alterations in schizophrenia are specific to early (indexed by blunted error-related negativity (ERN)) and late (reflected in blunted error positivity (Pe)) internal error processing, while external performance feedback processing in simple response feedback tasks is relatively preserved. We propose, that these performance monitoring deficits may best be interpret as one aspect of disrupted theta band (4-8 Hz) oscillations over medial frontal recordings sites. Midfrontal theta dynamics are an increasingly established direct neural index of the recruitment of cognitive control and are impaired in several clinical populations. While theta-related ERPs (the ERN) may be an easy to assess marker of cognitive deficits in schizophrenia, further work investigating the trial-by-trial dynamics of theta in both the time and time-frequency domain is needed to parse cognitive deficits in schizophrenia into finer levels of detail and evaluate theta modulation as a therapeutic tool.
Collapse
Affiliation(s)
- H Kirschner
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany.
| | - T A Klein
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany; Center for Behavioral Brain Sciences, D-39106, Magdeburg, Germany.
| |
Collapse
|
39
|
Altered resting-state functional connectivity of the frontal-striatal circuit in elderly with apathy. PLoS One 2021; 16:e0261334. [PMID: 34898646 PMCID: PMC8668136 DOI: 10.1371/journal.pone.0261334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Apathy is defined as reduction of goal-directed behaviors and a common nuisance syndrome of neurodegenerative and psychiatric disease. The underlying mechanism of apathy implicates changes of the front-striatal circuit, but its precise alteration is unclear for apathy in healthy aged people. The aim of our study is to investigate how the frontal-striatal circuit is changed in elderly with apathy using resting-state functional MRI. Eighteen subjects with apathy (7 female, 63.7 ± 3.0 years) and eighteen subjects without apathy (10 female, 64.8 ± 3.0 years) who underwent neuropsychological assessment and MRI measurement were recruited. We compared functional connectivity with/within the striatum between the apathy and non-apathy groups. The seed-to-voxel group analysis for functional connectivity between the striatum and other brain regions showed that the connectivity was decreased between the ventral rostral putamen and the right dorsal anterior cingulate cortex/supplementary motor area in the apathy group compared to the non-apathy group while the connectivity was increased between the dorsal caudate and the left sensorimotor area. Moreover, the ROI-to-ROI analysis within the striatum indicated reduction of functional connectivity between the ventral regions and dorsal regions of the striatum in the apathy group. Our findings suggest that the changes in functional connectivity balance among different frontal-striatum circuits contribute to apathy in elderly.
Collapse
|
40
|
McDougle SD. Post-error Slowing During Instrumental Learning is Shaped by Working Memory-based Choice Strategies. Neuroscience 2021; 486:37-45. [PMID: 34695537 DOI: 10.1016/j.neuroscience.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/11/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Post-error slowing (PES) - a relative increase in response time for a decision on trialtgiven an error on trialt - 1 - is a well-known effect in studies of human decision-making. Post-error processing is reflected in neural signatures such as reduced activity in sensorimotor regions and increased activity in medial prefrontal cortex. PES is thought to reflect the deployment of executive resources to get task performance back on track. This provides a general account of PES that cuts across perceptual decision-making, memory, and learning tasks. With respect to PES and learning, things are complicated by the fact that learning often reflectsmultiple qualitatively different processes with distinct neural correlates. It is unclear if multiple processes shape PES during learning, or if PES reflects a policy for reacting to errors generated by one particular process (e.g., cortico-striatal reinforcement learning). Here we provide behavioral and computational evidence that PES is influenced by the operation of multiple distinct processes. Human subjects learned a simple visuomotor skill (arbitrary visuomotor association learning) under low load conditionsmore amenable to simple working memory-based strategies, and high load conditions that were putatively more reliant on trial-by-trial reinforcement learning. PES decreased withload, even when the progress of learning (i.e., reinforcement history) was accounted for. This result suggested that PES during learning is influenced by the recruitment of working memory. Indeed, observed PES effects were approximated by a computational model with parallel working memory and reinforcement learning systems that are differentially recruited according to cognitive load.
Collapse
|
41
|
Contrasting time and frequency domains: ERN and induced theta oscillations differentially predict post-error behavior. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:636-647. [PMID: 32303991 DOI: 10.3758/s13415-020-00792-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated the neural dynamics of error processing in both the time and frequency domains, as well as associated behavioral phenomena, at the single-trial level. We used a technique that enabled us to separately investigate the evoked and induced aspects of the EEG signal (Cohen & Donner, 2013, Journal of Neurophysiology, 110[12], 2752-2763). We found that at the single-trial level, while the (evoked) error-related negativity (ERN) predicted only post-error slowing (PES)-and only when errors occurred on incongruent trials-induced frontal midline theta power served as a robust predictor of both PES and post-error accuracy (PEA) regardless of stimulus congruency. Mediation models of both electrophysiological indices demonstrated that although the relationship between theta and PEA was mediated by PES, there was not a relationship between the ERN and PEA. Our data suggest that although the ERN and frontal midline theta index functionally related underlying cognitive processes, they are not simply the same process manifested in different domains. In addition, our findings are consistent with the adaptive theory of post-error slowing, as PES was positively associated with post-error accuracy at the single-trial level. More generally, our study provides additional support for the inclusion of a time-frequency approach to better understand the role of medial frontal cortex in action monitoring.
Collapse
|
42
|
Wang J, Tao A, Anderson WS, Madsen JR, Kreiman G. Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Rep 2021; 36:109585. [PMID: 34433053 PMCID: PMC8457376 DOI: 10.1016/j.celrep.2021.109585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Cognition depends on rapid and robust communication between neural circuits spanning different brain areas. We investigated the mesoscopic network of cortico-cortical interactions in the human brain in an extensive dataset consisting of 6,024 h of intracranial field potential recordings from 4,142 electrodes in 48 subjects. We evaluated communication between brain areas at the network level across different frequency bands. The interaction networks were validated against known anatomical measurements and neurophysiological interactions in humans and monkeys. The resulting human brain interactome is characterized by a broad and spatially specific, dynamic, and extensive network. The physiological interactome reveals small-world properties, which we conjecture might facilitate efficient and reliable information transmission. The interaction dynamics correlate with the brain sleep/awake state. These results constitute initial steps toward understanding how the interactome orchestrates cortical communication and provide a reference for future efforts assessing how dysfunctional interactions may lead to mental disorders. Cognition relies on rapid and robust communication between brain areas. Wang et al. leverage multi-day intracranial field potential recordings to characterize the human mesoscopic functional interactome. They validated the methods using monkey anatomical and physiological data. The human interactome reveals small-world properties and is modulated by sleep versus awake state.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Kreiman
- Harvard Medical School, Boston, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.
| |
Collapse
|
43
|
Lee SJ, Beam DE, Schjetnan AGP, Paul LK, Chandravadia N, Reed CM, Chung JM, Ross IB, Valiante TA, Mamelak AN, Rutishauser U. Single-neuron correlate of epilepsy-related cognitive deficits in visual recognition memory in right mesial temporal lobe. Epilepsia 2021; 62:2082-2093. [PMID: 34289113 PMCID: PMC8403636 DOI: 10.1111/epi.17010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Impaired memory is a common comorbidity of refractory temporal lobe epilepsy (TLE) and often perceived by patients as more problematic than the seizures themselves. The objective of this study is to understand what the relationship of these behavioral impairments is to the underlying pathophysiology, as there are currently no treatments for these deficits, and it remains unknown what circuits are affected. METHODS We recorded single neurons in the medial temporal lobes (MTLs) of 62 patients (37 with refractory TLE) who performed a visual recognition memory task to characterize the relationship between behavior, tuning, and anatomical location of memory selective and visually selective neurons. RESULTS Subjects with a seizure onset zone (SOZ) in the right but not left MTL demonstrated impaired ability to recollect as indicated by the degree of asymmetry of the receiver operating characteristic curve. Of the 1973 recorded neurons, 159 were memory selective (MS) and 366 were visually selective (VS) category cells. The responses of MS neurons located within right but not left MTL SOZs were impaired during high-confidence retrieval trials, mirroring the behavioral deficit seen both in our task and in standardized neuropsychological tests. In contrast, responses of VS neurons were unimpaired in both left and right MTL SOZs. Our findings show that neuronal dysfunction within SOZs in the MTL was specific to a functional cell type and behavior, whereas other cell types respond normally even within the SOZ. We show behavioral metrics that detect right MTL SOZ-related deficits and identify a neuronal correlate of this impairment. SIGNIFICANCE Together, these findings show that single-cell responses can be used to assess the causal effects of local circuit disruption by an SOZ in the MTL, and establish a neural correlate of cognitive impairment due to epilepsy that can be used as a biomarker to assess the efficacy of novel treatments.
Collapse
Affiliation(s)
- Seung J Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FLA, USA
| | - Danielle E Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian B Ross
- Department of Neurosurgery, Huntington Memorial Hospital, Pasadena, CA, USA
| | - Taufik A Valiante
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
44
|
Sisterson ND, Carlson AA, Rutishauser U, Mamelak AN, Flagg M, Pouratian N, Salimpour Y, Anderson WS, Richardson RM. Electrocorticography During Deep Brain Stimulation Surgery: Safety Experience From 4 Centers Within the National Institute of Neurological Disorders and Stroke Research Opportunities in Human Consortium. Neurosurgery 2021; 88:E420-E426. [PMID: 33575799 DOI: 10.1093/neuros/nyaa592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intraoperative research during deep brain stimulation (DBS) surgery has enabled major advances in understanding movement disorders pathophysiology and potential mechanisms for therapeutic benefit. In particular, over the last decade, recording electrocorticography (ECoG) from the cortical surface, simultaneously with subcortical recordings, has become an important research tool for assessing basal ganglia-thalamocortical circuit physiology. OBJECTIVE To provide confirmation of the safety of performing ECoG during DBS surgery, using data from centers involved in 2 BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative-funded basic human neuroscience projects. METHODS Data were collected separately at 4 centers. The primary endpoint was complication rate, defined as any intraoperative event, infection, or postoperative magnetic resonance imaging abnormality requiring clinical follow-up. Complication rates for explanatory variables were compared using point biserial correlations and Fisher exact tests. RESULTS A total of 367 DBS surgeries involving ECoG were reviewed. No cortical hemorrhages were observed. Seven complications occurred: 4 intraparenchymal hemorrhages and 3 infections (complication rate of 1.91%; CI = 0.77%-3.89%). The placement of 2 separate ECoG research electrodes through a single burr hole (84 cases) did not result in a significantly different rate of complications, compared to placement of a single electrode (3.6% vs 1.5%; P = .4). Research data were obtained successfully in 350 surgeries (95.4%). CONCLUSION Combined with the single report previously available, which described no ECoG-related complications in a single-center cohort of 200 cases, these findings suggest that research ECOG during DBS surgery did not significantly alter complication rates.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - April A Carlson
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitchell Flagg
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Yousef Salimpour
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - William S Anderson
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Pereira M, Megevand P, Tan MX, Chang W, Wang S, Rezai A, Seeck M, Corniola M, Momjian S, Bernasconi F, Blanke O, Faivre N. Evidence accumulation relates to perceptual consciousness and monitoring. Nat Commun 2021; 12:3261. [PMID: 34059682 PMCID: PMC8166835 DOI: 10.1038/s41467-021-23540-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
A fundamental scientific question concerns the neural basis of perceptual consciousness and perceptual monitoring resulting from the processing of sensory events. Although recent studies identified neurons reflecting stimulus visibility, their functional role remains unknown. Here, we show that perceptual consciousness and monitoring involve evidence accumulation. We recorded single-neuron activity in a participant with a microelectrode in the posterior parietal cortex, while they detected vibrotactile stimuli around detection threshold and provided confidence estimates. We find that detected stimuli elicited neuronal responses resembling evidence accumulation during decision-making, irrespective of motor confounds or task demands. We generalize these findings in healthy volunteers using electroencephalography. Behavioral and neural responses are reproduced with a computational model considering a stimulus as detected if accumulated evidence reaches a bound, and confidence as the distance between maximal evidence and that bound. We conclude that gradual changes in neuronal dynamics during evidence accumulation relates to perceptual consciousness and perceptual monitoring in humans.
Collapse
Affiliation(s)
- Michael Pereira
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Rockefeller Neuroscience Institute (RNI), West Virginia University, Morgantown, USA
| | - Pierre Megevand
- Neurology Division, Department of Clinical Neuroscience, Geneva University Hospitals, Geneva, Switzerland
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Mi Xue Tan
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Wenwen Chang
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Shuo Wang
- Rockefeller Neuroscience Institute (RNI), West Virginia University, Morgantown, USA
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, USA
| | - Ali Rezai
- Rockefeller Neuroscience Institute (RNI), West Virginia University, Morgantown, USA
| | - Margitta Seeck
- Neurology Division, Department of Clinical Neuroscience, Geneva University Hospitals, Geneva, Switzerland
| | - Marco Corniola
- Neurosurgery Division, Department of Clinical Neuroscience, University of Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University Hospital Geneva, Geneva, Switzerland
| | - Shahan Momjian
- Neurosurgery Division, Department of Clinical Neuroscience, University of Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University Hospital Geneva, Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Faculty of Medicine, University Hospital Geneva, Geneva, Switzerland
| | - Nathan Faivre
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, Grenoble, France.
| |
Collapse
|
46
|
Bertrand E, van Duinkerken E, Laks J, Dourado MCN, Bernardes G, Landeira-Fernandez J, Mograbi DC. Structural Gray and White Matter Correlates of Awareness in Alzheimer's Disease. J Alzheimers Dis 2021; 81:1321-1330. [PMID: 33935073 DOI: 10.3233/jad-201246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Unawareness of disease is a common feature of Alzheimer's disease (AD), but few studies explored its neural correlates. Additionally, neural correlates according to the object of awareness are unexplored. OBJECTIVE To investigate structural brain correlates in relation to different objects of awareness. METHODS 27 people with AD underwent MRI scanning on a 3T Siemens Prisma. T1-MPRAGE was used to investigate cortical thickness and white matter microstructure was defined by DTI as fractional anisotropy, mean, axial, and radial diffusivity. Preprocessing used FreeSurfer6.0, ExploreDTI, and FSL-TBSS. Awareness of disease, cognitive deficits, emotional state, relationships, and functional capacity were assessed with the short version of the Assessment Scale of Psychosocial Impact of the Diagnosis of Dementia. Voxel-wise correlations between brain structure and awareness were determined by FSL-PALM. Analyses were corrected for multiple comparisons using Threshold Free Cluster Enhancement and FWE. RESULTS Lower left hemisphere cortical thickness was related to poorer disease awareness uncorrected and corrected for age, sex, and MMSE. In the uncorrected model, mainly right-sided, but also left temporal lower cortical thickness was related to decreased awareness of cognitive deficits. Correcting for age, sex, and MMSE eliminated correlations for the right hemisphere, but extensive correlations in the left hemisphere remained. For white matter integrity, higher right hemisphere MD was related to lower cognitive awareness deficits, and lower FA was related to lower functional capacity awareness. CONCLUSION Findings suggest that extensive regions of the brain are linked to self-awareness, with particular frontal and temporal alterations leading to unawareness, in agreement with theoretical models indicating executive and mnemonic forms of anosognosia in AD.
Collapse
Affiliation(s)
- Elodie Bertrand
- MC2Lab (URP 7536), Institut de Psychologie, Université de Paris, Paris, France.,Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Eelco van Duinkerken
- Department of Medical Psychology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands.,Center for Epilepsy, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Postgraduate Program in Neurology, Hospital Universitário Gaffrée e Guinle -UNIRIO, Rio de Janeiro, Brazil
| | - Jerson Laks
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Psychology, Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| | | | - Gabriel Bernardes
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Jesus Landeira-Fernandez
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Daniel C Mograbi
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
47
|
The Potential Role of Dopamine in Mediating Motor Function and Interpersonal Synchrony. Biomedicines 2021; 9:biomedicines9040382. [PMID: 33916451 PMCID: PMC8066519 DOI: 10.3390/biomedicines9040382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Motor functions in general and motor planning in particular are crucial for our ability to synchronize our movements with those of others. To date, these co-occurring functions have been studied separately, and as yet it is unclear whether they share a common biological mechanism. Here, we synthesize disparate recent findings on motor functioning and interpersonal synchrony and propose that these two functions share a common neurobiological mechanism and adhere to the same principles of predictive coding. Critically, we describe the pivotal role of the dopaminergic system in modulating these two distinct functions. We present attention deficit hyperactivity disorder (ADHD) as an example of a disorder that involves the dopaminergic system and describe deficits in motor and interpersonal synchrony. Finally, we suggest possible directions for future studies emphasizing the role of dopamine modulation as a link between social and motor functioning.
Collapse
|
48
|
Weidacker K, Johnston SJ, Mullins PG, Boy F, Dymond S. Neurochemistry of response inhibition and interference in gambling disorder: a preliminary study of γ-aminobutyric acid (GABA+) and glutamate-glutamine (Glx). CNS Spectr 2021:1-11. [PMID: 33752778 DOI: 10.1017/s1092852921000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurobehavioral research on the role of impulsivity in gambling disorder (GD) has produced heterogeneous findings. Impulsivity is multifaceted with different experimental tasks measuring different subprocesses, such as response inhibition and distractor interference. Little is known about the neurochemistry of inhibition and interference in GD. METHODS We investigated inhibition with the stop signal task (SST) and interference with the Eriksen Flanker task, and related performance to metabolite levels in individuals with and without GD. We employed magnetic resonance spectroscopy (MRS) to record glutamate-glutamine (Glx/Cr) and inhibitory, γ-aminobutyric acid (GABA+/Cr) levels in the dorsal ACC (dACC), right dorsolateral prefrontal cortex (dlPFC), and an occipital control voxel. RESULTS We found slower processing of complex stimuli in the Flanker task in GD (P < .001, η2p = 0.78), and no group differences in SST performance. Levels of dACC Glx/Cr and frequency of incongruent errors were correlated positively in GD only (r = 0.92, P = .001). Larger positive correlations were found for those with GD between dACC GABA+/Cr and SST Go error response times (z = 2.83, P = .004), as well as between dACC Glx/Cr and frequency of Go errors (z = 2.23, P = .03), indicating general Glx-related error processing deficits. Both groups expressed equivalent positive correlations between posterror slowing and Glx/Cr in the right dlPFC (GD: r = 0.74, P = .02; non-GD: r = .71, P = .01). CONCLUSION Inhibition and interference impairments are reflected in dACC baseline metabolite levels and error processing deficits in GD.
Collapse
Affiliation(s)
| | | | - Paul G Mullins
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Frederic Boy
- School of Psychology, Swansea University, Swansea, United Kingdom
- School of Management, Swansea University, Swansea, United Kingdom
| | - Simon Dymond
- School of Psychology, Swansea University, Swansea, United Kingdom
- Department of Psychology, Reykjavík University, Reykjavík, Iceland
| |
Collapse
|
49
|
Mosher CP, Mamelak AN, Malekmohammadi M, Pouratian N, Rutishauser U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 2021; 109:869-881.e6. [PMID: 33482087 PMCID: PMC7933114 DOI: 10.1016/j.neuron.2020.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The subthalamic nucleus (STN) supports action selection by inhibiting all motor programs except the desired one. Recent evidence suggests that STN can also cancel an already selected action when goals change, a key aspect of cognitive control. However, there is little neurophysiological evidence for dissociation between selecting and cancelling actions in the human STN. We recorded single neurons in the STN of humans performing a stop-signal task. Movement-related neurons suppressed their activity during successful stopping, whereas stop-signal neurons activated at low-latencies near the stop-signal reaction time. In contrast, STN and motor-cortical beta-bursting occurred only later in the stopping process. Task-related neuronal properties varied by recording location from dorsolateral movement to ventromedial stop-signal tuning. Therefore, action selection and cancellation coexist in STN but are anatomically segregated. These results show that human ventromedial STN neurons carry fast stop-related signals suitable for implementing cognitive control.
Collapse
Affiliation(s)
- Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
50
|
Topor M, Opitz B, Leonard HC. Error-Related Cognitive Control and Behavioral Adaptation Mechanisms in the Context of Motor Functioning and Anxiety. Front Hum Neurosci 2021; 15:615616. [PMID: 33613211 PMCID: PMC7892788 DOI: 10.3389/fnhum.2021.615616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Motor proficiency reflects the ability to perform precise and coordinated movements in different contexts. Previous research suggests that different profiles of motor proficiency may be associated with different cognitive functioning characteristics thus suggesting an interaction between cognitive and motor processes. The current study investigated this interaction in the general population of healthy adults with different profiles of motor proficiency by focusing on error-related cognitive control and behavioral adaptation mechanisms. In addition, the impact of these processes was assessed in terms of trait anxiety and worries. Forty healthy adults were divided into high and low motor proficiency groups based on an assessment of their motor skills. Using electroencephalography during a flanker task, error-related negativity (ERN) was measured as the neural indicator of cognitive control. Post-error slowing (PES) was measured to represent behavioral adaptation. Participants also completed an anxiety assessment questionnaire. Participants in the high motor proficiency group achieved better task accuracy and showed relatively enhanced cognitive control through increased ERN. Contrastingly, individuals in the lower motor proficiency group achieved poorer accuracy whilst showing some evidence of compensation through increased PES. Trait anxiety reflecting general worries was found to be correlated with motor functioning, but the study could not provide evidence that this was related to cognitive or behavioral control mechanisms. The interaction between cognitive and motor processes observed in this study is unique for healthy and sub-clinical populations and provides a baseline for the interpretation of similar investigations in individuals with motor disorders.
Collapse
Affiliation(s)
- Marta Topor
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | | | | |
Collapse
|