1
|
Hoagland A, Schultz R, Cai Z, Newman ZL, Isacoff EY. Behavioral resilience via dynamic circuit firing homeostasis. Proc Natl Acad Sci U S A 2025; 122:e2421386122. [PMID: 40299703 DOI: 10.1073/pnas.2421386122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/22/2025] [Indexed: 05/01/2025] Open
Abstract
Homeostatic regulation ensures stable neural circuit output under changing conditions. We find that in Drosophila larvae, either presynaptic weakening due to perturbation of transmitter release or postsynaptic weakening due to perturbation of glutamate receptors at synapses between motor neuron (MN) and muscle has little impact on locomotion, suggesting a nonsynaptic compensatory mechanism. In vivo imaging shows that five different forms of synaptic weakening increase the duration of activity bouts in type I MNs. Strikingly, this compensation is input selective: occurring only in the tonic type Ib MN, not the phasic type Is MN that innervates the same muscle. Moreover, an inhibitory class of central pre-MNs that innervates the tonic-but not phasic-input decreases in activity. The adjustment in activity occurs remarkably quickly: within minutes of synapse perturbation. We propose that MN firing is dynamically regulated by two coordinated mechanisms: a cell-autonomous adjustment of MN excitability and a circuit adjustment of inhibitory central drive. The input selectivity of this process suggests homeostatic adjustment to maintain tonic drive but hold constant the phasic drive that organizes locomotory wave patterns.
Collapse
Affiliation(s)
- Adam Hoagland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - Ryan Schultz
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720
| | - Zerong Cai
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - Zachary L Newman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720
- Weill Neurohub, University of California Berkeley, Berkeley, CA 94720
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
2
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
3
|
Cai Y, Wang T. Regulation of presynaptic homeostatic plasticity by glial signalling in Alzheimer's disease. J Physiol 2024. [PMID: 39705214 DOI: 10.1113/jp286751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/04/2024] [Indexed: 12/22/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia among the elderly, affects numerous individuals worldwide. Despite advances in understanding the molecular underpinnings of AD pathology, effective treatments to prevent or cure the disease remain elusive. AD is characterized not only by pathological hallmarks such as amyloid plaques and neurofibrillary tangles but also by impairments in synaptic physiology, circuit activity and cognitive function. Synaptic homeostatic plasticity plays a vital role in maintaining the stability of synaptic and neural functions amid genetic and environmental disturbances. A key component of this regulation is presynaptic homeostatic potentiation, where increased presynaptic neurotransmitter release compensates for reduced postsynaptic glutamate receptor functionality, thereby stabilizing neuronal excitability. The role of presynaptic homeostatic plasticity in synapse stabilization in AD, however, remains unclear. Moreover, recent advances in transcriptomics have illuminated the complex roles of glial cells in regulating synaptic function in ageing brains and in the progression of neurodegenerative diseases. Yet, the impact of AD-related abnormalities in glial signalling on synaptic homeostatic plasticity has not been fully delineated. This review discusses recent findings on how glial dysregulation in AD affects presynaptic homeostatic plasticity. There is increasing evidence that disrupted glial signalling, particularly through aberrant histone acetylation and transcriptomic changes in glia, compromises this plasticity in AD. Notably, the sphingosine signalling pathway has been identified as being protective in stabilizing synaptic physiology through epigenetic and homeostatic mechanisms, presenting potential therapeutic targets for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tingting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
4
|
Li Y, Badawi Y, Meriney SD. Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions. Cells 2024; 13:1684. [PMID: 39451202 PMCID: PMC11506802 DOI: 10.3390/cells13201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Motor ability decline remains a major threat to the quality of life of the elderly. Although the later stages of aging co-exist with degenerative pathologies, the long process of aging is more complicated than a simple and gradual degeneration. To combat senescence and the associated late-stage degeneration of the neuromuscular system, it is imperative to examine changes that occur during the long process of aging. Prior to late-stage degeneration, age-induced changes in the neuromuscular system trigger homeostatic plasticity. This unique phenomenon may be important for the maintenance of the neuromuscular system during the early stages of aging. In this review, we will focus on age-induced changes in neurotransmission at the neuromuscular junction, providing the potential mechanisms responsible for these changes. The goal is to highlight these key elements and their role in regulating neurotransmission, facilitating future research efforts to combat late-stage degeneration in the neuromuscular system by preserving the functional and structural integrity of these elements prior to the late stage of aging.
Collapse
Affiliation(s)
| | | | - Stephen D. Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.L.); (Y.B.)
| |
Collapse
|
5
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Imomnazarov K, Torrence SE, Lindgren CA. Reduced Plasma-Membrane Calcium ATPase Activity and Extracellular Acidification Trigger Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2023; 532:103-112. [PMID: 37778690 DOI: 10.1016/j.neuroscience.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.
Collapse
Affiliation(s)
| | - Sarah E Torrence
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States.
| |
Collapse
|
8
|
Zhang Y, Wang T, Cai Y, Cui T, Kuah M, Vicini S, Wang T. Role of α2δ-3 in regulating calcium channel localization at presynaptic active zones during homeostatic plasticity. Front Mol Neurosci 2023; 16:1253669. [PMID: 38025261 PMCID: PMC10662314 DOI: 10.3389/fnmol.2023.1253669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The homeostatic modulation of synaptic transmission is an evolutionarily conserved mechanism that is critical for stabilizing the nervous system. At the Drosophila neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) compensates for impairments in postsynaptic glutamate receptors due to pharmacological blockade or genetic deletion. During PHP, there is an increase in presynaptic neurotransmitter release, counteracting postsynaptic changes and restoring excitation to baseline levels. Previous studies have shown that α2δ-3, an auxiliary subunit of voltage-gated calcium channels (VGCCs), is essential for both the rapid induction and sustained expression of PHP at the Drosophila NMJ. However, the molecular mechanisms by which α2δ-3 regulates neurotransmitter release during PHP remain to be elucidated. In this study, we utilized electrophysiological, confocal imaging, and super-resolution imaging approaches to explore how α2δ-3 regulates synaptic transmission during PHP. Our findings suggest that α2δ-3 governs PHP by controlling the localization of the calcium channel pore-forming α1 subunit at presynaptic release sites, or active zones. Moreover, we examined the role of two structural domains within α2δ-3 in regulating neurotransmitter release and calcium channel localization. Our results highlight that these domains in α2δ-3 serve distinct functions in controlling synaptic transmission and presynaptic calcium channel abundance, at baseline in the absence of perturbations and during PHP. In summary, our research offers compelling evidence that α2δ-3 is an indispensable signaling component for controlling calcium channel trafficking and stabilization in homeostatic plasticity.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Ting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Yimei Cai
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Tao Cui
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Michelle Kuah
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Tingting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
9
|
Cai Y, Cui T, Yin P, Paganelli P, Vicini S, Wang T. Dysregulated glial genes in Alzheimer's disease are essential for homeostatic plasticity: Evidence from integrative epigenetic and single cell analyses. Aging Cell 2023; 22:e13989. [PMID: 37712202 PMCID: PMC10652298 DOI: 10.1111/acel.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Synaptic homeostatic plasticity is a foundational regulatory mechanism that maintains the stability of synaptic and neural functions within the nervous system. Impairment of homeostatic regulation has been linked to synapse destabilization during the progression of Alzheimer's disease (AD). Recent epigenetic and transcriptomic characterizations of the nervous system have revealed intricate molecular details about the aging brain and the pathogenesis of neurodegenerative diseases. Yet, how abnormal epigenetic and transcriptomic alterations in different cell types in AD affect synaptic homeostatic plasticity remains to be elucidated. Various glial cell types play critical roles in modulating synaptic functions both during the aging process and in the context of AD. Here, we investigated the impact of glial dysregulation of histone acetylation and transcriptome in AD on synaptic homeostatic plasticity, using computational analysis combined with electrophysiological methods in Drosophila. By integrating snRNA-seq and H3K9ac ChIP-seq data from the same AD patient cohort, we pinpointed cell type-specific signature genes that were transcriptionally altered by histone acetylation. We subsequently investigated the role of these glial genes in regulating presynaptic homeostatic potentiation in Drosophila. Remarkably, nine glial-specific genes, which were identified through our computational method as targets of H3K9ac and transcriptional dysregulation, were found to be crucial for the regulation of synaptic homeostatic plasticity in Drosophila. Our genetic evidence connects abnormal glial transcriptomic changes in AD with the impairment of homeostatic plasticity in the nervous system. In summary, our integrative computational and genetic studies highlight specific glial genes as potential key players in the homeostatic imbalance observed in AD.
Collapse
Affiliation(s)
- Yimei Cai
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
| | - Tao Cui
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| | - Pengqi Yin
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Present address:
Department of Neurology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Present address:
Department of Neurology, First Affiliated HospitalHarbin Medical UniversityHarbinChina
| | - Paxton Paganelli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
| | - Stefano Vicini
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| | - Tingting Wang
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashingtonD.C.USA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonD.C.USA
| |
Collapse
|
10
|
Zhao J, Gao L, Nurrish S, Kaplan JM. Post-synaptic GABA A receptors potentiate transmission by recruiting CaV2 channels to their inputs. Cell Rep 2023; 42:113161. [PMID: 37742192 PMCID: PMC10873018 DOI: 10.1016/j.celrep.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
We describe a retrograde synaptic signal at the C. elegans GABAergic neuromuscular junction. At this synapse, GABA release is controlled by two voltage-activated calcium channels (UNC-2/CaV2 and EGL-19/CaV1), and muscle responses are mediated by a single GABA receptor (UNC-49/GABAA). Mutations inactivating UNC-49 or those preventing UNC-49 synaptic clustering cause retrograde defects in GABAergic motor neurons, whereby UNC-2/CaV2 levels at active zones, UNC-2 current, and pre-synaptic GABA release are decreased. Inactivating post-synaptic GABAA receptors has no effect on GABA neuron EGL-19/CaV1 levels nor on several other pre-synaptic markers. The effect of GABAA receptors on pre-synaptic strength is not a consequence of decreased GABA transmission and is input selective. Finally, pre-synaptic UNC-2/CaV2 levels are increased when post-synaptic GABAA receptors are increased but are unaffected by increased extra-synaptic receptors. Collectively, these results suggest that clustered post-synaptic GABAA receptors adjust the strength of their inputs by recruiting CaV2 to contacting active zones.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Dey S, Barkai O, Gokhman I, Suissa S, Haffner-Krausz R, Wigoda N, Feldmesser E, Ben-Dor S, Kovalenko A, Binshtok A, Yaron A. Kinesin family member 2A gates nociception. Cell Rep 2023; 42:113257. [PMID: 37851573 DOI: 10.1016/j.celrep.2023.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Irena Gokhman
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sapir Suissa
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Wigoda
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Dyer MS, Odierna GL, Clark RM, Woodhouse A, Blizzard CA. Synaptic remodeling follows upper motor neuron hyperexcitability in a rodent model of TDP-43. Front Cell Neurosci 2023; 17:1274979. [PMID: 37941604 PMCID: PMC10628445 DOI: 10.3389/fncel.2023.1274979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an incurable disease characterized by relentlessly progressive degeneration of the corticomotor system. Cortical hyperexcitability has been identified as an early pre-symptomatic biomarker of ALS. This suggests that hyperexcitability occurs upstream in the ALS pathological cascade and may even be part of the mechanism that drives development of symptoms or loss of motor neurons in the spinal cord. However, many studies also indicate a loss to the synaptic machinery that mediates synaptic input which raises the question of which is the driver of disease, and which is a homeostatic response. Herein, we used an inducible mouse model of TDP-43 mediated ALS that permits for the construction of detailed phenotypic timelines. Our work comprehensively describes the relationship between intrinsic hyperexcitability and altered synaptic input onto motor cortical layer 5 pyramidal neurons over time. As a result, we have constructed the most complete timeline of electrophysiological changes following induction of TDP-43 dysfunction in the motor cortex. We report that intrinsic hyperexcitability of layer 5 pyramidal neurons precedes changes to excitatory synaptic connections, which manifest as an overall loss of inputs onto layer 5 pyramidal neurons. This finding highlights the importance of hyperexcitability as a primary mechanism of ALS and re-contextualizes synaptic changes as possibly representing secondary adaptive responses. Recognition of the relationship between intrinsic hyperexcitability and reduced excitatory synaptic input has important implications for the development of useful therapies against ALS. Novel strategies will need to be developed that target neuronal output by managing excitability against synapses separately.
Collapse
Affiliation(s)
- Marcus S. Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - G. Lorenzo Odierna
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M. Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
13
|
Lee Y, Yeo IS, Kim N, Lee DK, Kim KT, Yoon J, Yi J, Hong YB, Choi BO, Kosodo Y, Kim D, Park J, Song MR. Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. eLife 2023; 12:e84596. [PMID: 37869988 PMCID: PMC10637776 DOI: 10.7554/elife.84596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.
Collapse
Affiliation(s)
- Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - In Seo Yeo
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Namhee Kim
- Fermentation Regulation Technology Research Group, World Institute of KimchiGwangjuRepublic of Korea
| | - Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of ToxicologyJeongeup-siRepublic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusanRepublic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoichi Kosodo
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| |
Collapse
|
14
|
Yin P, Cai Y, Cui T, Berg AJ, Wang T, Morency DT, Paganelli PM, Lok C, Xue Y, Vicini S, Wang T. Glial Sphingosine-Mediated Epigenetic Regulation Stabilizes Synaptic Function in Drosophila Models of Alzheimer's Disease. J Neurosci 2023; 43:6954-6971. [PMID: 37669862 PMCID: PMC10586542 DOI: 10.1523/jneurosci.0515-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Destabilization of neural activity caused by failures of homeostatic regulation has been hypothesized to drive the progression of Alzheimer's Disease (AD). However, the underpinning mechanisms that connect synaptic homeostasis and the disease etiology are yet to be fully understood. Here, we demonstrated that neuronal overexpression of amyloid β (Aβ) causes abnormal histone acetylation in peripheral glia and completely blocks presynaptic homeostatic potentiation (PHP) at the neuromuscular junction in Drosophila The synaptic deficits caused by Aβ overexpression in motoneurons are associated with motor function impairment at the adult stage. Moreover, we found that a sphingosine analog drug, Fingolimod, ameliorates synaptic homeostatic plasticity impairment, abnormal glial histone acetylation, and motor behavior defects in the Aβ models. We further demonstrated that perineurial glial sphingosine kinase 2 (Sk2) is not only required for PHP, but also plays a beneficial role in modulating PHP in the Aβ models. Glial overexpression of Sk2 rescues PHP, glial histone acetylation, and motor function deficits that are associated with Aβ in Drosophila Finally, we showed that glial overexpression of Sk2 restores PHP and glial histone acetylation in a genetic loss-of-function mutant of the Spt-Ada-Gcn5 Acetyltransferase complex, strongly suggesting that Sk2 modulates PHP through epigenetic regulation. Both male and female animals were used in the experiments and analyses in this study. Collectively, we provided genetic evidence demonstrating that abnormal glial epigenetic alterations in Aβ models in Drosophila are associated with the impairment of PHP and that the sphingosine signaling pathway displays protective activities in stabilizing synaptic physiology.SIGNIFICANCE STATEMENT Fingolimod, an oral drug to treat multiple sclerosis, is phosphorylated by sphingosine kinases to generate its active form. It is known that Fingolimod enhances the cognitive function in mouse models of Alzheimer's disease (AD), but the role of sphingosine kinases in AD is not clear. We bridge this knowledge gap by demonstrating the relationship between impaired homeostatic plasticity and AD. We show that sphingosine kinase 2 (Sk2) in glial cells is necessary for homeostatic plasticity and that glial Sk2-mediated epigenetic signaling has a protective role in synapse stabilization. Our findings demonstrate the potential of the glial sphingosine signaling as a key player in glia-neuron interactions during homeostatic plasticity, suggesting it could be a promising target for sustaining synaptic function in AD.
Collapse
Affiliation(s)
- Pengqi Yin
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yimei Cai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Tao Cui
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Andrew J Berg
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Ting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Danielle T Morency
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Paxton M Paganelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Chloe Lok
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Biology, Georgetown University, Washington, DC 20007
| | - Yang Xue
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Tingting Wang
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| |
Collapse
|
15
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Li J, Wang P, Wang LY, Wu Y, Wang J, Yu D, Chen Z, Shi H, Yin S. Redistribution of the astrocyte phenotypes in the medial vestibular nuclei after unilateral labyrinthectomy. Front Neurosci 2023; 17:1146147. [PMID: 37434761 PMCID: PMC10330711 DOI: 10.3389/fnins.2023.1146147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Astrocytes are highly heterogeneous and involved in different aspects of fundamental functions in the central nervous system (CNS). However, whether and how this heterogeneous population of cells reacts to the pathophysiological challenge is not well understood. To investigate the response status of astrocytes in the medial vestibular nucleus (MVN) after vestibular loss, we examined the subtypes of astrocytes in MVN using single-cell sequencing technology in a unilateral labyrinthectomy mouse model. We discovered four subtypes of astrocytes in the MVN with each displaying unique gene expression profiles. After unilateral labyrinthectomy, the proportion of the astrocytic subtypes and their transcriptional features on the ipsilateral side of the MVN differ significantly from those on the contralateral side. With new markers to detect and classify the subtypes of astrocytes in the MVN, our findings implicate potential roles of the adaptive changes of astrocyte subtypes in the early vestibular compensation following peripheral vestibular damage to reverse behavioral deficits.
Collapse
Affiliation(s)
- Jie Li
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengjun Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yaqin Wu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengnong Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
17
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
18
|
Perry S, Han Y, Qiu C, Chien C, Goel P, Nishimura S, Sajnani M, Schmid A, Sigrist SJ, Dickman D. A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling. Nat Commun 2022; 13:7656. [PMID: 36496500 PMCID: PMC9741633 DOI: 10.1038/s41467-022-35417-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively enhances neurotransmitter release following diminished postsynaptic glutamate receptor (GluR) functionality to maintain synaptic strength. While much is known about PHP expression mechanisms, postsynaptic induction remains enigmatic. For over 20 years, diminished postsynaptic Ca2+ influx was hypothesized to reduce CaMKII activity and enable retrograde PHP signaling at the Drosophila neuromuscular junction. Here, we have interrogated inductive signaling and find that active CaMKII colocalizes with and requires the GluRIIA receptor subunit. Next, we generated Ca2+-impermeable GluRs to reveal that both CaMKII activity and PHP induction are Ca2+-insensitive. Rather, a GluRIIA C-tail domain is necessary and sufficient to recruit active CaMKII. Finally, chimeric receptors demonstrate that the GluRIIA tail constitutively occludes retrograde homeostatic signaling by stabilizing active CaMKII. Thus, the physical loss of the GluRIIA tail is sensed, rather than reduced Ca2+, to enable retrograde PHP signaling, highlighting a unique, Ca2+-independent control mechanism for CaMKII in gating homeostatic plasticity.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chengjie Qiu
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Manisha Sajnani
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Andreas Schmid
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Mushtaq Z, Aavula K, Lasser DA, Kieweg ID, Lion LM, Kins S, Pielage J. Madm/NRBP1 mediates synaptic maintenance and neurodegeneration-induced presynaptic homeostatic potentiation. Cell Rep 2022; 41:111710. [PMID: 36450258 DOI: 10.1016/j.celrep.2022.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
The precise regulation of synaptic connectivity and function is essential to maintain neuronal circuits. Here, we show that the Drosophila pseudo-kinase Madm/NRBP1 (Mlf-1-adapter-molecule/nuclear-receptor-binding protein 1) is required presynaptically to maintain synaptic stability and to coordinate synaptic growth and function. Presynaptic Madm mediates these functions by controlling cap-dependent translation via the target of rapamycin (TOR) effector 4E-BP/Thor (eukaryotic initiation factor 4E binding protein/Thor). Strikingly, at degenerating neuromuscular synapses, postsynaptic Madm induces a compensatory, transsynaptic signal that utilizes the presynaptic homeostatic potentiation (PHP) machinery to offset synaptic release deficits and to delay synaptic degeneration. Madm is not required for canonical PHP but induces a neurodegeneration-specific form of PHP and acts via the regulation of the cap-dependent translation regulators 4E-BP/Thor and S6-kinase. Consistently, postsynaptic induction of canonical PHP or TOR activation can compensate for postsynaptic Madm to alleviate functional and structural synaptic defects. Our results provide insights into the molecular mechanisms underlying neurodegeneration-induced PHP with potential neurotherapeutic applications.
Collapse
Affiliation(s)
- Zeeshan Mushtaq
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kumar Aavula
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Dario A Lasser
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ingrid D Kieweg
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lena M Lion
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
20
|
Orr BO, Fetter RD, Davis GW. Activation and expansion of presynaptic signaling foci drives presynaptic homeostatic plasticity. Neuron 2022; 110:3743-3759.e6. [PMID: 36087584 PMCID: PMC9671843 DOI: 10.1016/j.neuron.2022.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA.
| |
Collapse
|
21
|
Blum JA, Gitler AD. Singling out motor neurons in the age of single-cell transcriptomics. Trends Genet 2022; 38:904-919. [PMID: 35487823 PMCID: PMC9378604 DOI: 10.1016/j.tig.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Baccino-Calace M, Schmidt K, Müller M. The E3 ligase Thin controls homeostatic plasticity through neurotransmitter release repression. eLife 2022; 11:71437. [PMID: 35796533 PMCID: PMC9299833 DOI: 10.7554/elife.71437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic proteins and synaptic transmission are under homeostatic control, but the relationship between these two processes remains enigmatic. Here, we systematically investigated the role of E3 ubiquitin ligases, key regulators of protein degradation-mediated proteostasis, in presynaptic homeostatic plasticity (PHP). An electrophysiology-based genetic screen of 157 E3 ligase-encoding genes at the Drosophila neuromuscular junction identified thin, an ortholog of human tripartite motif-containing 32 (TRIM32), a gene implicated in several neurological disorders, including autism spectrum disorder and schizophrenia. We demonstrate that thin functions presynaptically during rapid and sustained PHP. Presynaptic thin negatively regulates neurotransmitter release under baseline conditions by limiting the number of release-ready vesicles, largely independent of gross morphological defects. We provide genetic evidence that thin controls release through dysbindin, a schizophrenia-susceptibility gene required for PHP. Thin and Dysbindin localize in proximity within presynaptic boutons, and Thin degrades Dysbindin in vitro. Thus, the E3 ligase Thin links protein degradation-dependent proteostasis of Dysbindin to homeostatic regulation of neurotransmitter release.
Collapse
Affiliation(s)
| | - Katharina Schmidt
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Richard M, Doubková K, Nitta Y, Kawai H, Sugie A, Tavosanis G. A Quantitative Model of Sporadic Axonal Degeneration in the Drosophila Visual System. J Neurosci 2022; 42:4937-4952. [PMID: 35534228 PMCID: PMC9188428 DOI: 10.1523/jneurosci.2115-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
In human neurodegenerative diseases, neurons undergo axonal degeneration months to years before they die. Here, we developed a system modeling early degenerative events in Drosophila adult photoreceptor cells. Thanks to the stereotypy of their axonal projections, this system delivers quantitative data on sporadic and progressive axonal degeneration of photoreceptor cells. Using this method, we show that exposure of adult female flies to a constant light stimulation for several days overcomes the intrinsic resilience of R7 photoreceptors and leads to progressive axonal degeneration. This was not associated with apoptosis. We furthermore provide evidence that loss of synaptic integrity between R7 and a postsynaptic partner preceded axonal degeneration, thus recapitulating features of human neurodegenerative diseases. Finally, our experiments uncovered a role of postsynaptic partners of R7 to initiate degeneration, suggesting that postsynaptic cells signal back to the photoreceptor to maintain axonal structure. This model can be used to dissect cellular and circuit mechanisms involved in the early events of axonal degeneration, allowing for a better understanding of how neurons cope with stress and lose their resilience capacities.SIGNIFICANCE STATEMENT Neurons can be active and functional for several years. In the course of aging and in disease conditions leading to neurodegeneration, subsets of neurons lose their resilience and start dying. What initiates this turning point at the cellular level is not clear. Here, we developed a model allowing to systematically describe this phase. The loss of synapses and axons represents an early and functionally relevant event toward degeneration. Using the ordered distribution of Drosophila photoreceptor axon terminals, we assembled a system to study sporadic initiation of axon loss and delineated a role for non-cell-autonomous activity regulation in the initiation of axon degeneration. This work will help shed light on key steps in the etiology of nonfamilial cases of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélisande Richard
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Karolína Doubková
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Gaia Tavosanis
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
24
|
Müller JA, Betzin J, Santos-Tejedor J, Mayer A, Oprişoreanu AM, Engholm-Keller K, Paulußen I, Gulakova P, McGovern TD, Gschossman LJ, Schönhense E, Wark JR, Lamprecht A, Becker AJ, Waardenberg AJ, Graham ME, Dietrich D, Schoch S. A presynaptic phosphosignaling hub for lasting homeostatic plasticity. Cell Rep 2022; 39:110696. [PMID: 35443170 DOI: 10.1016/j.celrep.2022.110696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
Collapse
Affiliation(s)
- Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Julia Betzin
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jorge Santos-Tejedor
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Annika Mayer
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Kasper Engholm-Keller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | | | - Polina Gulakova
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Lena Johanna Gschossman
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Eva Schönhense
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Alf Lamprecht
- Department of Pharmaceutics, Bonn University, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ashley J Waardenberg
- Australian Institute for Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; i-Synapse, Cairns, QLD, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Upregulation of IP 3 receptor mediates APP-induced defects in synaptic downscaling and sleep homeostasis. Cell Rep 2022; 38:110594. [PMID: 35354048 DOI: 10.1016/j.celrep.2022.110594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that impaired synaptic and firing homeostasis represents a driving force of early Alzheimer's disease (AD) progression. Here, we examine synaptic and sleep homeostasis in a Drosophila model by overexpressing human amyloid precursor protein (APP), whose duplication and mutations cause familial early-onset AD. We find that APP overexpression induces synaptic hyperexcitability. RNA-seq data indicate exaggerated expression of Ca2+-related signaling genes in APP mutants, including genes encoding Dmca1D, calcineurin (CaN) complex, and IP3R. We further demonstrate that increased CaN activity triggers transcriptional activation of Itpr (IP3R) through activating nuclear factor of activated T cells (NFAT). Strikingly, APP overexpression causes defects in synaptic downscaling and sleep deprivation-induced sleep rebound, and both defects could be restored by inhibiting IP3R. Our findings uncover IP3R as a shared signaling molecule in synaptic downscaling and sleep homeostasis, and its dysregulation may lead to synaptic hyperexcitability and AD progression at early stage.
Collapse
|
26
|
Gautam M, Gunay A, Chandel NS, Ozdinler PH. Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD + balance as a therapeutic strategy. Sci Rep 2022; 12:4287. [PMID: 35277554 PMCID: PMC8917163 DOI: 10.1038/s41598-022-08068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial defects result in dysregulation of metabolomics and energy homeostasis that are detected in upper motor neurons (UMNs) with TDP-43 pathology, a pathology that is predominantly present in both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). While same mitochondrial problems are present in the UMNs of ALS patients with TDP-43 pathology and UMNs of TDP-43 mouse models, and since pathologies are shared at a cellular level, regardless of species, we first analyzed the metabolite profile of both healthy and diseased motor cortex to investigate whether metabolomic changes occur with respect to TDP-43 pathology. High-performance liquid chromatography, high-resolution mass spectrometry and tandem mass spectrometry (HPLC-MS/MS) for metabolite profiling began to suggest that reduced levels of NAD+ is one of the underlying causes of metabolomic problems. Since nicotinamide mononucleotide (NMN) was reported to restore NAD+ levels, we next investigated whether NMN treatment would improve the health of diseased corticospinal motor neurons (CSMN, a.k.a. UMN in mice). prpTDP-43A315T-UeGFP mice, the CSMN reporter line with TDP-43 pathology, allowed cell-type specific responses of CSMN to NMN treatment to be assessed in vitro. Our results show that metabolomic defects occur early in ALS motor cortex and establishing NAD+ balance could offer therapeutic benefit to UMNs with TDP-43 pathology.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Aksu Gunay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA. .,Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60611, USA. .,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
27
|
Taylor HBC, Jeans AF. Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease. Front Cell Neurosci 2021; 15:782768. [PMID: 34955753 PMCID: PMC8702499 DOI: 10.3389/fncel.2021.782768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) regulates synaptic strength both pre- and postsynaptically to ensure stability and efficient information transfer in neural networks. A number of neurological diseases have been associated with deficits in HSP, particularly diseases characterised by episodic network instability such as migraine and epilepsy. Recently, it has become apparent that HSP also plays a role in many neurodegenerative diseases. In this mini review, we present an overview of the evidence linking HSP to each of the major neurodegenerative diseases, finding that HSP changes in each disease appear to belong to one of three broad functional categories: (1) deficits in HSP at degenerating synapses that contribute to pathogenesis or progression; (2) HSP induced in a heterosynaptic or cell non-autonomous manner to support the function of networks of which the degenerating synapses or cells are part; and (3) induction of HSP within the degenerating population of synapses to preserve function and to resist the impact of synapse loss. Understanding the varied manifestations of HSP in neurodegeneration will not only aid understanding mechanisms of disease but could also inspire much-needed novel approaches to therapy.
Collapse
Affiliation(s)
| | - Alexander F. Jeans
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Gromova A, La Spada AR. Harmony Lost: Cell-Cell Communication at the Neuromuscular Junction in Motor Neuron Disease. Trends Neurosci 2021; 43:709-724. [PMID: 32846148 DOI: 10.1016/j.tins.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that is the point of connection between motor neurons and skeletal muscle. Although developmental studies have established the importance of cell-cell communication at the NMJ for the integrity and full functionality of this synapse, the contribution of this structure as a primary driver in motor neuron disease pathogenesis remains uncertain. Here, we consider the biology of the NMJ and review emerging lines of investigation that are highlighting the importance of cell-cell interaction at the NMJ in spinal muscular atrophy (SMA), X-linked spinal and bulbar muscular atrophy (SBMA), and amyotrophic lateral sclerosis (ALS). Ongoing research may reveal NMJ targets and pathways whose therapeutic modulation will help slow the progression of motor neuron disease, offering a novel treatment paradigm for ALS, SBMA, SMA, and related disorders.
Collapse
Affiliation(s)
- Anastasia Gromova
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology and Laboratory Medicine and Department of Neurology, University of California Irvine, Irvine, CA 92697, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine and Department of Neurology, University of California Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Elimination of glutamatergic transmission from Hb9 interneurons does not impact treadmill locomotion. Sci Rep 2021; 11:16008. [PMID: 34362940 PMCID: PMC8346588 DOI: 10.1038/s41598-021-95143-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
The spinal cord contains neural circuits that can produce the rhythm and pattern of locomotor activity. It has previously been postulated that a population of glutamatergic neurons, termed Hb9 interneurons, contributes to locomotor rhythmogenesis. These neurons were identified by their expression of the homeobox gene, Hb9, which is also expressed in motor neurons. We developed a mouse line in which Cre recombinase activity is inducible in neurons expressing Hb9. We then used this line to eliminate vesicular glutamate transporter 2 from Hb9 interneurons, and found that there were no deficits in treadmill locomotion. We conclude that glutamatergic neurotransmission by Hb9 interneurons is not required for locomotor behaviour. The role of these neurons in neural circuits remains elusive.
Collapse
|
30
|
Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Curr Opin Neurobiol 2021; 69:1-10. [DOI: 10.1016/j.conb.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022]
|
31
|
Zhu Y, Warrenfelt CIC, Flannery JC, Lindgren CA. Extracellular Protons Mediate Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2021; 467:188-200. [PMID: 34215419 DOI: 10.1016/j.neuroscience.2021.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/27/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to the upregulation of neurotransmitter release via an increase in quantal content (QC) when the postsynaptic nicotinic acetylcholine receptors (nAChRs) are partially blocked. The mechanism of PHP has not been completely worked out. In particular, the identity of the presumed retrograde signal is still a mystery. We investigated the role of acid-sensing ion channels (ASICs) and extracellular protons in mediating PHP at the mouse NMJ. We found that blocking AISCs using benzamil, psalmotoxin-1 (PcTx1), or mambalgin-3 (Mamb3) prevented PHP. Likewise, extracellular acidification from pH 7.4 to 7.2 triggered a significant, reversable increase in QC and this increase could be prevented by PcTx1. Interestingly, an acidic saline (pH 7.2) also precluded the subsequent induction of PHP. Using immunofluorescence we observed ASIC2a and ASIC1 subunits at the NMJ. Our results indicate that protons and ASIC channels are involved in activating PHP at the mouse NMJ. We speculate that the partial blockade of nAChRs leads to a modest decrease in the pH of the synaptic cleft (∼0.2 pH units) and this activates ASIC channels on the presynaptic nerve terminal.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | | | - Jill C Flannery
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
32
|
Müller M, Heckmann M. Linking Protons to Homeostatic Plasticity. Neuroscience 2021; 467:185-187. [PMID: 34029647 DOI: 10.1016/j.neuroscience.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Editorial on Extracellular protons mediate presynaptic homeostatic potentiation at the mouse neuromuscular junction.
Collapse
Affiliation(s)
- Martin Müller
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Manfred Heckmann
- Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-University Würzburg, D-97070 Würzburg, Germany.
| |
Collapse
|
33
|
Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front Cell Neurosci 2021; 14:626056. [PMID: 33584206 PMCID: PMC7873902 DOI: 10.3389/fncel.2020.626056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma—the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth R Bierlein
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
34
|
Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 2021; 24:1542-1554. [PMID: 34675437 PMCID: PMC8553627 DOI: 10.1038/s41593-021-00923-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022]
Abstract
Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.
Collapse
|
35
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
36
|
Dyer MS, Reale LA, Lewis KE, Walker AK, Dickson TC, Woodhouse A, Blizzard CA. Mislocalisation of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory neurotransmission in the motor cortex. J Neurochem 2020; 157:1300-1315. [PMID: 33064315 DOI: 10.1111/jnc.15214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease pathologically characterised by mislocalisation of the RNA-binding protein TAR-DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm. Changes to neuronal excitability and synapse dysfunction in the motor cortex are early pathological changes occurring in people with ALS and mouse models of disease. To investigate the effect of mislocalised TDP-43 on the function of motor cortex neurons we utilised mouse models that express either human wild-type (TDP-43WT ) or nuclear localisation sequence-deficient TDP-43 (TDP-43ΔNLS ) on an inducible promoter that enriches expression to forebrain neurons. Pathophysiology was investigated through immunohistochemistry and whole-cell patch-clamp electrophysiology. Thirty days expression of TDP-43ΔNLS in adult mice did not cause any changes in the number of CTIP2-positive neurons in the motor cortex. However, at this time-point, the expression of TDP-43ΔNLS drives intrinsic hyperexcitability in layer V excitatory neurons of the motor cortex. This hyperexcitability occurs concomitantly with a decrease in excitatory synaptic input to these cells and fluctuations in both directions of ionotropic glutamate receptors. This pathophysiology is not present with TDP-43WT expression, demonstrating that the localisation of TDP-43 to the cytoplasm is crucial for the altered excitability phenotype. This study has important implications for the mechanisms of toxicity of one of the most notorious proteins linked to ALS, TDP-43. We provide the first evidence that TDP-43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mislocalisation of TDP-43.
Collapse
Affiliation(s)
- Marcus S Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Katherine E Lewis
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
37
|
The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proc Natl Acad Sci U S A 2020; 117:25830-25839. [PMID: 32973097 DOI: 10.1073/pnas.1915464117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Presynaptic glutamate receptors (GluRs) modulate neurotransmitter release and are physiological targets for regulation during various forms of plasticity. Although much is known about the auxiliary subunits associated with postsynaptic GluRs, far less is understood about presynaptic auxiliary GluR subunits and their functions. At the Drosophila neuromuscular junction, a presynaptic GluR, DKaiR1D, localizes near active zones and operates as an autoreceptor to tune baseline transmission and enhance presynaptic neurotransmitter release in response to diminished postsynaptic GluR functionality, a process referred to as presynaptic homeostatic potentiation (PHP). Here, we identify an auxiliary subunit that collaborates with DKaiR1D to promote these synaptic functions. This subunit, dSol-1, is the homolog of the Caenorhabditis elegans CUB (Complement C1r/C1s, Uegf, Bmp1) domain protein Sol-1. We find that dSol-1 functions in neurons to facilitate baseline neurotransmission and to enable PHP expression, properties shared with DKaiR1D Intriguingly, presynaptic overexpression of dSol-1 is sufficient to enhance neurotransmitter release through a DKaiR1D-dependent mechanism. Furthermore, dSol-1 is necessary to rapidly increase the abundance of DKaiR1D receptors near active zones during homeostatic signaling. Together with recent work showing the CUB domain protein Neto2 is necessary for the homeostatic modulation of postsynaptic GluRs in mammals, our data demonstrate that dSol-1 is required for the homeostatic regulation of presynaptic GluRs. Thus, we propose that CUB domain proteins are fundamental homeostatic modulators of GluRs on both sides of the synapse.
Collapse
|
38
|
Sleigh JN, Mech AM, Schiavo G. Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death Dis 2020; 11:564. [PMID: 32703932 PMCID: PMC7378196 DOI: 10.1038/s41419-020-02798-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Dominantly inherited, missense mutations in the widely expressed housekeeping gene, GARS1, cause Charcot-Marie-Tooth type 2D (CMT2D), a peripheral neuropathy characterised by muscle weakness and wasting in limb extremities. Mice modelling CMT2D display early and selective neuromuscular junction (NMJ) pathology, epitomised by disturbed maturation and neurotransmission, leading to denervation. Indeed, the NMJ disruption has been reported in several different muscles; however, a systematic comparison of neuromuscular synapses from distinct body locations has yet to be performed. We therefore analysed NMJ development and degeneration across five different wholemount muscles to identify key synaptic features contributing to the distinct pattern of neurodegeneration in CMT2D mice. Denervation was found to occur along a distal-to-proximal gradient, providing a cellular explanation for the greater weakness observed in mutant Gars hindlimbs compared with forelimbs. Nonetheless, muscles from similar locations and innervated by axons of equivalent length showed significant differences in neuropathology, suggestive of additional factors impacting on site-specific neuromuscular degeneration. Defective NMJ development preceded and associated with degeneration, but was not linked to a delay of wild-type NMJ maturation processes. Correlation analyses indicate that muscle fibre type nor synaptic architecture explain the differential denervation of CMT2D NMJs, rather it is the extent of post-natal synaptic growth that predisposes to neurodegeneration. Together, this work improves our understanding of the mechanisms driving synaptic vulnerability in CMT2D and hints at pertinent pathogenic pathways.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| | - Aleksandra M Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Goldsmith J, Holzbaur ELF. Presynaptic Homeostatic Plasticity Staves off Neurodegenerative Pathophysiology up to a Tipping Point. Neuron 2020; 107:6-8. [PMID: 32645308 DOI: 10.1016/j.neuron.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Neuron, Orr et al. (2020) identify an evolutionarily conserved mechanism of presynaptic homeostatic plasticity induced by ALS-like motor neuron degeneration, which maintains excitatory potentials until a threshold of synaptic loss is reached. Past this tipping point, disease onset progresses rapidly.
Collapse
Affiliation(s)
- Juliet Goldsmith
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|