1
|
Ko SY, Rong Y, Ramsaran AI, Chen X, Rashid AJ, Mocle AJ, Dhaliwal J, Awasthi A, Guskjolen A, Josselyn SA, Frankland PW. Systems consolidation reorganizes hippocampal engram circuitry. Nature 2025:10.1038/s41586-025-08993-1. [PMID: 40369077 DOI: 10.1038/s41586-025-08993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Episodic memories-high-fidelity memories for events that depend initially on the hippocampus-do not maintain their precision in perpetuity. One benefit of this time-dependent loss of precision is the emergence of event-linked gist memories that may be used to guide future behaviour in new but related situations (that is, generalization)1-3. Models of systems consolidation propose that memory reorganization accompanies this loss of memory precision1,4; however, the locus of this reorganization is unclear. Here we report that time-dependent reorganization of hippocampal engram circuitry is sufficient to explain shifts in memory precision associated with systems consolidation. Using engram labelling tools in mice, we demonstrate that the passage of time rewires hippocampal engram circuits, enabling hippocampal engram neurons to be promiscuously active and guide behaviour in related situations that do not match the original training conditions. Reorganization depends on hippocampal neurogenesis; eliminating hippocampal neurogenesis prevents reorganization and maintains precise, event memories. Conversely, promoting hippocampal neurogenesis accelerates memory reorganization and the emergence of event-linked gist memories in the hippocampus. Our results indicate that systems consolidation models require updating to account for within-hippocampus reorganization that leads to qualitative shifts in memory precision.
Collapse
Affiliation(s)
- Sangyoon Y Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yiming Rong
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoyu Chen
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Asim J Rashid
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew J Mocle
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jagroop Dhaliwal
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ankit Awasthi
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Axel Guskjolen
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chavan P, Kitamura T, Sakaguchi M. Memory processing by hippocampal adult-born neurons. Neurobiol Learn Mem 2025; 220:108062. [PMID: 40345378 DOI: 10.1016/j.nlm.2025.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
This review provides an integrative overview of the functional roles of adult neurogenesis in the hippocampal dentate gyrus (DG), focusing specifically on its impact on memory processes across the lifespan. A distinguishing feature of this review is its systematic approach, organizing the contributions of adult-born neurons (ABNs) chronologically through the stages of memory-from initial encoding, through sleep-dependent consolidation, retrieval, and finally forgetting. Although the existence and extent of adult neurogenesis in the human DG remain debated, accumulating evidence suggests that ABNs support cognitive functions throughout adulthood. This perspective gains particular importance when considering cognitive decline associated with aging and neurological disorders such as Alzheimer's disease, which are linked to substantial reductions in adult neurogenesis. We compare traditional models of DG function with emerging evidence highlighting both shared and unique contributions of ABNs. For example, the DG is well-established for its role in pattern separation, and as key mediators of this function, ABNs-due to their transiently heightened plasticity and excitability-appear critical for discriminating novel or similar experiences. On the other hand, recent findings underscore the distinct and essential role of ABNs in memory consolidation during REM sleep, suggesting specialized functions of ABNs that are absent in developmentally born granule cells in the DG. Clinically, the potential therapeutic importance of enhancing neurogenesis in memory-related disorders, including post-traumatic stress disorder (PTSD), is emphasized, highlighting promising treatments such as memantine. Lastly, we outline key unresolved questions, advocating for future research aimed at understanding ABN-specific mechanisms. Far from being a mere evolutionary vestige, hippocampal ABNs represent dynamic and essential elements of neural plasticity that are critical for memory formation, adaptation, and resilience across the lifespan.
Collapse
Affiliation(s)
- Parimal Chavan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| |
Collapse
|
3
|
Vergara P, Wang Y, Srinivasan S, Dong Z, Feng Y, Koyanagi I, Kumar D, Chérasse Y, Naoi T, Sugaya Y, Sakurai T, Kano M, Shuman T, Cai D, Yanagisawa M, Sakaguchi M. A comprehensive suite for extracting neuron signals across multiple sessions in one-photon calcium imaging. Nat Commun 2025; 16:3443. [PMID: 40216771 PMCID: PMC11992088 DOI: 10.1038/s41467-025-58817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
We developed CaliAli, a comprehensive suite designed to extract neuronal signals from one-photon calcium imaging data collected across multiple sessions in free-moving conditions in mice. CaliAli incorporates information from blood vessels and neurons to correct inter-session misalignments, making it robust against non-rigid brain deformations even after substantial changes in the field of view across sessions. This also makes CaliAli robust against high neuron overlap and changes in active neuron population across sessions. CaliAli performs computationally efficient signal extraction from concatenated video sessions that enhances the detectability of weak calcium signals. Notably, CaliAli enhanced the spatial coding accuracy of extracted hippocampal CA1 neuron activity across sessions. An optogenetic tagging experiment showed that CaliAli enhanced neuronal trackability in the dentate gyrus across a time scale of weeks. Finally, dentate gyrus neurons tracked using CaliAli exhibited stable population activity for 99 days. Overall, CaliAli advances our capacity to understand the activity dynamics of neuronal ensembles over time, which is crucial for deciphering the complex neuronal substrates of natural animal behaviors.
Collapse
Grants
- JP21zf0127005, JP23wm0525003 Japan Agency for Medical Research and Development (AMED)
- JP21zf0127005 Japan Agency for Medical Research and Development (AMED)
- 24H00894, 23H02784, 22H00469, 16H06280, 20H03552, 21H05674, 21F21080 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJSP2124 MEXT | Japan Science and Technology Agency (JST)
- 24H00894, 21J11746, 23K19393, 24K18212 Japan Society for the Promotion of Science London (JSPS London)
- 16H06280 Japan Society for the Promotion of Science London (JSPS London)
- Takeda Science Foundation
- Uehara Memorial Foundation
- G-7 Scholarship Foundation Uehara Memorial Foundation The Mitsubishi Foundation
Collapse
Affiliation(s)
- Pablo Vergara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yuteng Wang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhe Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Iyo Koyanagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Deependra Kumar
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshie Naoi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Denise Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Mutti C, Siclari F, Rosenzweig I. Dreaming conundrum. J Sleep Res 2025; 34:e14338. [PMID: 39360736 PMCID: PMC11911046 DOI: 10.1111/jsr.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 03/18/2025]
Abstract
Dreaming, a common yet mysterious cognitive phenomenon, is an involuntary process experienced by individuals during sleep. Although the fascination with dreams dates back to ancient times and gained therapeutic significance through psychoanalysis in the early twentieth century, its scientific investigation only gained momentum with the discovery of rapid eye movement (REM) sleep in the 1950s. This review synthesises current research on the neurobiological and psychological aspects of dreaming, including factors influencing dream recall and content, neurophysiological correlates, and experimental models, and discusses the implications for clinical practice.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and SurgeryParma University HospitalParmaItaly
- Mario Giovanni Terzano Interdepartmental Center for Sleep MedicineUniversity of ParmaParmaItaly
| | - Francesca Siclari
- The Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
- Center for Investigation and Research on SleepLausanne University Hospital (CHUV)LausanneSwitzerland
- The Sense Innovation and Research Center, Lausanne and SionLausanneSwitzerland
| | - Ivana Rosenzweig
- Department of Neuroimaging, Sleep and Brain Plasticity CentreInstitute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College LondonLondonUK
- Sleep Disorders Centre, Guy's and St Thomas’ NHS Foundation TrustLondonUK
| |
Collapse
|
5
|
Abstract
Since one of its first descriptions 70 years ago, rapid eye movement sleep has continually inspired and excited new generations of sleep researchers. Despite significant advancements in understanding its neurocircuitry, underlying mechanisms and microstates, many questions regarding its function, especially beyond the early neurodevelopment, remain unanswered. This opinion review delves into some of the unresolved issues in rapid eye movement sleep research, highlighting the ongoing need for comprehensive exploration in this fascinating field.
Collapse
Affiliation(s)
- Liborio Parrino
- Sleep Medicine CenterUniversity of ParmaParmaItaly
- Neurology UnitParma University HospitalParmaItaly
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience (IoPPN), King's College LondonLondonUK
- Sleep Disorders CentreGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
6
|
Chung A, Alipio JB, Ghosh M, Evans L, Miller SM, Goode TD, Mehta I, Ahmed OJ, Sahay A. Neotenic expansion of adult-born dentate granule cells reconfigures GABAergic inhibition to enhance social memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643806. [PMID: 40166333 PMCID: PMC11957001 DOI: 10.1101/2025.03.17.643806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Adult-born dentate granule cells (abDGCs) contribute to hippocampal dentate gyrus (DG)-CA3/CA2 circuit functions in memory encoding, retrieval and consolidation. Heightened synaptic and structural plasticity of immature abDGCs is thought to govern their distinct contributions to circuit and network mechanisms of hippocampal-dependent memory operations. Protracted maturation or neoteny of abDGCs in higher mammals is hypothesized to offset decline in adult hippocampal neurogenesis by expanding the capacity for circuit and network plasticity underlying different memory operations. Here, we provide evidence for this hypothesis by genetically modelling the effective impact of neoteny of abDGCs on circuitry, network properties and social cognition in mice. We show that selective synchronous expansion of a single cohort of 4 weeks old immature, but not 8 weeks old mature abDGCs, increases functional recruitment of fast spiking parvalbumin expressing inhibitory interneurons (PV INs) in CA3/CA2, number of PV IN-CA3/CA2 synapses, and GABAergic inhibition of CA3/CA2. This transient increase in feed-forward inhibition in DG-CA2 decreased social memory interference and enhanced social memory consolidation. In vivo local field potential recordings revealed that the expansion of a single cohort of 4-week-old abDGCs increased baseline power, amplitude, and duration, as well as sensitivity to social investigation-dependent rate changes of sharp-wave ripples (SWRs) in CA1 and CA2, a neural substrate for memory consolidation. Inhibitory neuron-targeted chemogenetic manipulations implicate CA3/CA2 INs, including PV INs, as necessary and sufficient for social memory consolidation following neotenic expansion of the abDGC population and in wild-type mice, respectively. These studies suggest that neoteny of abDGCs may represent an evolutionary adaptation to support cognition by reconfiguring PV IN-CA3/CA2 circuitry and emergent network properties underlying memory consolidation.
Collapse
Affiliation(s)
- Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
- Department of Bio and Brain Engineering, Korea Advanced Institution for Science and Technology, Deajeon, KOR
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Samara M Miller
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Iyanah Mehta
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
7
|
Cunningham LA, Tunc-Ozcan E, Rodriguez AM. Adult Hippocampal Neurogenesis as a Therapeutic Target in Fetal Alcohol Spectrum Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:93-109. [PMID: 40128476 DOI: 10.1007/978-3-031-81908-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This review is focused on adult hippocampal neurogenesis as a potential therapeutic target in fetal alcohol spectrum disorder (FASD). Adult hippocampal neurogenesis refers to the production of new hippocampal dentate granule cells (DGCs) from a replenishable pool of neural stem and progenitor cells throughout life. Adult-generated DGCs have been shown to exert a profound influence on hippocampal network activity in experimental animals and have been implicated in the regulation of many hippocampal-dependent behaviors and emotional states, including certain forms of learning and memory, anxiety, mood, and stress resilience. While adult hippocampal neurogenesis in humans remains controversial, many studies support its existence and impact on hippocampal function in human health and disease. Here, we review mechanisms of adult hippocampal neurogenesis under physiological conditions, as described primarily in rodent brain, its impact on network activity and behavior, and the negative effects of developmental alcohol exposure on this process. We then explore hippocampal neurogenesis as a potential target for FASD therapy using pharmacological and neurophysiological approaches known to stimulate adult hippocampal neurogenesis, currently available for clinical use in FASD patients.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | - Elif Tunc-Ozcan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Arasely M Rodriguez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Dittmann NL, Chen L, Voronova A. Regulation of neural stem cells by innervating neurons. J Neurochem 2025; 169:e16287. [PMID: 39775528 PMCID: PMC11707326 DOI: 10.1111/jnc.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states. Recently, NPCs have been found to express neurotransmitter receptors, respond to electrical stimulation and interact with neurons, suggesting that neuron-NPC communication is an emerging critical regulator of NPC biology. In this review, we discuss reports that demonstrate neuronal innervation and control of the neurogenic niches. We discuss the role of innervating neurons in regulating NPC fates, such as activation, proliferation, and differentiation. Our review focuses primarily on the innervation of the SVZ niche by the following neuronal types: glutamatergic, GABAergic projection and interneurons, cholinergic, dopaminergic, serotonergic, neuropeptidergic, nitrergic, and noradrenergic. We also discuss the origins of SVZ niche innervating neurons, such as striatum, cortex, basal ganglia, raphe nuclei, substantia nigra and ventral tegmental area, hypothalamus, and locus coeruleus. Our review highlights the various roles of innervating neurons in SVZ NPC fates in a spatiotemporal manner and emphasizes a need for future investigation into the impact of neuronal innervation on NPC gliogenesis.
Collapse
Affiliation(s)
| | - Lauren Chen
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Anastassia Voronova
- Neurosciences and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Medicine & Dentistry, MS CentreUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
9
|
Li G, Sun C, Zhu L, Zeng Y, Li J, Mei Y. High cadmium exposure impairs adult hippocampal neurogenesis via disruption of store-operated calcium entry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117162. [PMID: 39383818 DOI: 10.1016/j.ecoenv.2024.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Cadmium (Cd) is a neurotoxicant that gradually accumulates in the human body with age. High Cd burden is correlated with adult hippocampal neurogenesis (AHN) and memory deficits in mammals. However, little knowledge is known about the mechanism by which Cd exposure impairs neurogenesis and cognition. Here, we investigated the roles of store-operated calcium entry (SOCE)-mediated calcium dyshomeostasis in Cd-induced AHN and memory deficits as well as therapeutic potential for the prevention of Cd-induced neurotoxicity. To achieve this goal, 8 weeks-old C57BL/6 J mice were subjected to different concentrations of cadmium chloride (0, 5, 10, 20 ppm) in drinking water for 8 weeks, we then examined the AHN, calcium homeostasis, SOCE channel and memory in Cd-exposed mice by using immunohistochemistry, calcium imaging, Y-maze and fear conditioning test. Our results indicated that chronic Cd exposure markedly increased Cd levels in serum and cerebrospinal fluid by almost 10-fold, and inhibited the proliferation and differentiation of hippocampal adult neural stem cells in a dose-dependent manner. Additionally, Cd exposure impaired the maturation of hippocampal neural stem cells without inducing gliosis. Transcriptome analysis revealed that Cd exposure inhibited the proliferation of neuroblastoma via alteration of calcium signaling pathway, and attenuated SOCE channels played a pivotal role in mediating Cd-induced cytoplasmic calcium overload and depletion of endoplasmic reticulum calcium stores. Activation of SOCE by hyperforin, a natural derivative from medicinal plant, restored intracellular calcium homeostasis and improved AHN and memory in Cd-exposed mice. Together, this study provided novel insights into the mechanism that Cd exposure impaired AHN and memory by prompting neuronal SOCE-mediated calcium dyshomeostasis, and offered a new therapeutic approach for prevention of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Guoqing Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Caiyun Sun
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Le Zhu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
10
|
Kashiwagi M, Beck G, Kanuka M, Arai Y, Tanaka K, Tatsuzawa C, Koga Y, Saito YC, Takagi M, Oishi Y, Sakaguchi M, Baba K, Ikuno M, Yamakado H, Takahashi R, Yanagisawa M, Murayama S, Sakurai T, Sakai K, Nakagawa Y, Watanabe M, Mochizuki H, Hayashi Y. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson's disease. Cell 2024; 187:6272-6289.e21. [PMID: 39303715 DOI: 10.1016/j.cell.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshifumi Arai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Koga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, 69373 Lyon, France
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
11
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
13
|
Kumar D, Yanagisawa M, Funato H. Sleep-dependent memory consolidation in young and aged brains. AGING BRAIN 2024; 6:100124. [PMID: 39309405 PMCID: PMC11416671 DOI: 10.1016/j.nbas.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Young children and aged individuals are more prone to memory loss than young adults. One probable reason is insufficient sleep-dependent memory consolidation. Sleep timing and sleep-stage duration differ between children and aged individuals compared to adults. Frequent daytime napping and fragmented sleep architecture are common in children and older individuals. Moreover, sleep-dependent oscillations that play crucial roles in long-term memory storage differ among age groups. Notably, the frontal cortex, which is important for long-term memory storage undergoes major structural changes in children and aged subjects. The similarities in sleep dynamics between children and aged subjects suggest that a deficit in sleep-dependent consolidation contributes to memory loss in both age groups.
Collapse
Affiliation(s)
- Deependra Kumar
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| |
Collapse
|
14
|
Frechou MA, Martin SS, McDermott KD, Huaman EA, Gökhan Ş, Tomé WA, Coen-Cagli R, Gonçalves JT. Adult neurogenesis improves spatial information encoding in the mouse hippocampus. Nat Commun 2024; 15:6410. [PMID: 39080283 PMCID: PMC11289285 DOI: 10.1038/s41467-024-50699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory.
Collapse
Affiliation(s)
- M Agustina Frechou
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Sunaina S Martin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Kelsey D McDermott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evan A Huaman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wolfgang A Tomé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruben Coen-Cagli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
López-Canul M, He Q, Sasson T, Ettaoussi M, Gregorio DD, Ochoa-Sanchez R, Catoire H, Posa L, Rouleau G, Beaulieu JM, Comai S, Gobbi G. Selective Enhancement of REM Sleep in Male Rats through Activation of Melatonin MT 1 Receptors Located in the Locus Ceruleus Norepinephrine Neurons. J Neurosci 2024; 44:e0914232024. [PMID: 38744530 PMCID: PMC11255427 DOI: 10.1523/jneurosci.0914-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.
Collapse
Affiliation(s)
- Martha López-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Qianzi He
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Tania Sasson
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mohamed Ettaoussi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Research Institute, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
16
|
Pesonen AK, Koskinen MK, Vuorenhela N, Halonen R, Mäkituuri S, Selin M, Luokkala S, Suutari A, Hovatta I. The effect of REM-sleep disruption on affective processing: A systematic review of human and animal experimental studies. Neurosci Biobehav Rev 2024; 162:105714. [PMID: 38729279 DOI: 10.1016/j.neubiorev.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Evidence on the importance of rapid-eye-movement sleep (REMS) in processing emotions is accumulating. The focus of this systematic review is the outcomes of experimental REMS deprivation (REMSD), which is the most common method in animal models and human studies on REMSD. This review revealed that variations in the applied REMSD methods were substantial. Animal models used longer deprivation protocols compared with studies in humans, which mostly reported acute deprivation effects after one night. Studies on animal models showed that REMSD causes aggressive behavior, increased pain sensitivity, reduced sexual behavior, and compromised consolidation of fear memories. Animal models also revealed that REMSD during critical developmental periods elicits lasting consequences on affective-related behavior. The few human studies revealed increases in pain sensitivity and suggest stronger consolidation of emotional memories after REMSD. As pharmacological interventions (such as selective serotonin reuptake inhibitors [SSRIs]) may suppress REMS for long periods, there is a clear gap in knowledge regarding the effects and mechanisms of chronic REMS suppression in humans.
Collapse
Affiliation(s)
- Anu-Katriina Pesonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland.
| | - Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Neea Vuorenhela
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Risto Halonen
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Saara Mäkituuri
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Maikki Selin
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Sanni Luokkala
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Alma Suutari
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014, Finland
| |
Collapse
|
17
|
Dugan BJ, Fraigne JJ, Peever J. REM sleep: Out-dreaming fear. Curr Biol 2024; 34:R510-R512. [PMID: 38772341 DOI: 10.1016/j.cub.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The ability to forget fear-inducing situations is essential for adapting to our environment, but the neural mechanisms underlying 'fear forgetting' remain unclear. Novel findings reveal that the activity of the infralimbic cortex - specifically during REM sleep - contributes to the extinction of fear memory.
Collapse
Affiliation(s)
- Brittany J Dugan
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada.
| |
Collapse
|
18
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
19
|
Zhang Z, Lu Y, Zhang H, Dong S, Wu Y, Wang S, Huang A, Jiang Q, Yin S. Enriched environment ameliorates fear memory impairments induced by sleep deprivation via inhibiting PIEZO1/calpain/autophagy signaling pathway in the basal forebrain. CNS Neurosci Ther 2024; 30:e14365. [PMID: 37485782 PMCID: PMC10848088 DOI: 10.1111/cns.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS To verify the hypothesis that an enriched environment (EE) alleviates sleep deprivation-induced fear memory impairment by modulating the basal forebrain (BF) PIEZO1/calpain/autophagy pathway. METHODS Eight-week-old male mice were housed in a closed, isolated environment (CE) or an EE, before 6-h total sleep deprivation. Changes in fear memory after sleep deprivation were observed using an inhibitory avoidance test. Alterations in BF PIEZO1/calpain/autophagy signaling were detected. The PIEZO1 agonist Yoda1 or inhibitor GsMTx4, the calpain inhibitor PD151746, and the autophagy inducer rapamycin or inhibitor 3-MA were injected into the bilateral BF to investigate the pathways involved in the memory-maintaining role of EE in sleep-deprived mice. RESULTS Mice housed in EE performed better than CE mice in short- and long-term fear memory tests after sleep deprivation. Sleep deprivation resulted in increased PIEZO1 expression, full-length tropomyosin receptor kinase B (TrkB-FL) degradation, and autophagy, as reflected by increased LC3 II/I ratio, enhanced p62 degradation, increased TFEB expression and nuclear translocation, and decreased TFEB phosphorylation. These molecular changes were partially reversed by EE treatment. Microinjection of Yoda1 or rapamycin into the bilateral basal forebrain induced excessive autophagy and eliminated the cognition-protective effects of EE. Bilateral basal forebrain microinjection of GsMTx4, PD151746, or 3-MA mimicked the cognitive protective and autophagy inhibitory effects of EE in sleep-deprived mice. CONCLUSIONS EE combats sleep deprivation-induced fear memory impairments by inhibiting the BF PIEZO1/calpain/autophagy pathway.
Collapse
Affiliation(s)
- Zi‐qing Zhang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Yan Lu
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Hao Zhang
- Department of AnesthesiologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Su‐he Dong
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Ya‐tong Wu
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Si‐nian Wang
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Ai‐hua Huang
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Qi‐sheng Jiang
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Shi‐min Yin
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| |
Collapse
|
20
|
Madrid LI, Hafey K, Bandhavkar S, Bodea GO, Jimenez-Martin J, Milne M, Walker TL, Faulkner GJ, Coulson EJ, Jhaveri DJ. Stimulation of the muscarinic receptor M4 regulates neural precursor cell proliferation and promotes adult hippocampal neurogenesis. Development 2024; 151:dev201835. [PMID: 38063486 PMCID: PMC10820734 DOI: 10.1242/dev.201835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Cholinergic signaling plays a crucial role in the regulation of adult hippocampal neurogenesis; however, the mechanisms by which acetylcholine mediates neurogenic effects are not completely understood. Here, we report the expression of muscarinic acetylcholine receptor subtype M4 (M4 mAChR) on a subpopulation of neural precursor cells (NPCs) in the adult mouse hippocampus, and demonstrate that its pharmacological stimulation promotes their proliferation, thereby enhancing the production of new neurons in vivo. Using a targeted ablation approach, we also show that medial septum (MS) and the diagonal band of Broca (DBB) cholinergic neurons support both the survival and morphological maturation of adult-born neurons in the mouse hippocampus. Although the systemic administration of an M4-selective allosteric potentiator fails to fully rescue the MS/DBB cholinergic lesion-induced decrease in hippocampal neurogenesis, it further exacerbates the impairment in the morphological maturation of adult-born neurons. Collectively, these findings reveal stage-specific roles of M4 mAChRs in regulating adult hippocampal neurogenesis, uncoupling their positive role in enhancing the production of new neurons from the M4-induced inhibition of their morphological maturation, at least in the context of cholinergic signaling dysfunction.
Collapse
Affiliation(s)
- Lidia I. Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Katelyn Hafey
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Saurabh Bandhavkar
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Gabriela O. Bodea
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Michael Milne
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Tara L. Walker
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Geoffrey J. Faulkner
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
| | - Dhanisha J. Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane QLD 4102, Queensland, Australia
| |
Collapse
|
21
|
Liang M, Jian T, Tao J, Wang X, Wang R, Jin W, Chen Q, Yao J, Zhao Z, Yang X, Xiao J, Yang Z, Liao X, Chen X, Wang L, Qin H. Hypothalamic supramammillary neurons that project to the medial septum modulate wakefulness in mice. Commun Biol 2023; 6:1255. [PMID: 38087004 PMCID: PMC10716381 DOI: 10.1038/s42003-023-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) plays a crucial role in controlling wakefulness, but the downstream target regions participating in this control process remain unknown. Here, using circuit-specific fiber photometry and single-neuron electrophysiology together with electroencephalogram, electromyogram and behavioral recordings, we find that approximately half of SuM neurons that project to the medial septum (MS) are wake-active. Optogenetic stimulation of axonal terminals of SuM-MS projection induces a rapid and reliable transition to wakefulness from non-rapid-eye movement or rapid-eye movement sleep, and chemogenetic activation of SuMMS projecting neurons significantly increases wakefulness time and prolongs latency to sleep. Consistently, chemogenetically inhibiting these neurons significantly reduces wakefulness time and latency to sleep. Therefore, these results identify the MS as a functional downstream target of SuM and provide evidence for the modulation of wakefulness by this hypothalamic-septal projection.
Collapse
Affiliation(s)
- Mengru Liang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Tao
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xia Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Liecheng Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
22
|
Girardeau G. [The role of sleep brain oscillations and neuronal patterns for memory]. Med Sci (Paris) 2023; 39:836-844. [PMID: 38018927 DOI: 10.1051/medsci/2023160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Sleep is crucial for the selective processing and strengthening of information encoded during wakefulness, known as memory consolidation. The different phases of sleep are characterized by specific neuronal activities associated with memory consolidation and homeostatic regulation. In the hippocampus during non-REM sleep, neural patterns called sharp-wave ripple complexes are associated with reactivations of the neural activity that occurred during wakefulness. These reactivations, through their coordinations with cortical slow oscillations and thalamocortical spindles, contribute to the consolidation of spatial memories by strengthening neuronal connections. Cortical slow waves are also a marker of synaptic homeostasis, a regulatory phenomenon maintaining networks in a functional range of firing rates. Finally, REM sleep is also important for memory, although the underlying physiology and the role of theta waves deserves to be further explored.
Collapse
|
23
|
Zhang Y, Shen Y, Liufu N, Liu L, Li W, Shi Z, Zheng H, Mei X, Chen CY, Jiang Z, Abtahi S, Dong Y, Liang F, Shi Y, Cheng LL, Yang G, Kang JX, Wilkinson JE, Xie Z. Transmission of Alzheimer's disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients. Mol Psychiatry 2023; 28:4421-4437. [PMID: 37604976 PMCID: PMC11733706 DOI: 10.1038/s41380-023-02216-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD. However, it remains unclear whether gut microbiota dysbiosis can be transmitted from AD individuals to non-AD individuals and contribute to the development of AD pathogenesis and cognitive impairment. We, therefore, set out to perform both animal studies and clinical investigation by co-housing wild-type mice and AD transgenic mice, analyzing microbiota via 16S rRNA gene sequencing, measuring short-chain fatty acid amounts, and employing behavioral test, mass spectrometry, site-mutations and other methods. The present study revealed that co-housing between wild-type mice and AD transgenic mice or administrating feces of AD transgenic mice to wild-type mice resulted in AD-associated gut microbiota dysbiosis, Tau phosphorylation, and cognitive impairment in the wild-type mice. Gavage with Lactobacillus and Bifidobacterium restored these changes in the wild-type mice. The oral and gut microbiota of AD patient partners resembled that of AD patients but differed from healthy controls, indicating the transmission of microbiota. The underlying mechanism of these findings includes that the butyric acid-mediated acetylation of GSK3β at lysine 15 regulated its phosphorylation at serine 9, consequently impacting Tau phosphorylation. Pending confirmative studies, these results provide insight into a potential link between the transmission of AD-associated microbiota dysbiosis and development of cognitive impairment, which underscore the need for further research in this area.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Yuan Shen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
- Mental Health Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ning Liufu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, PR China
| | - Ling Liu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, PR China
| | - Wei Li
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhongyong Shi
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
- Mental Health Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Hailin Zheng
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Xinchun Mei
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
- Mental Health Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zengliang Jiang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, PR China
| | - Shabnamsadat Abtahi
- Biostatistics Department and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yujiang Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jeremy E Wilkinson
- Biostatistics Department and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Zhang Y, Shen Y, Liufu N, Liu L, Li W, Shi Z, Zheng H, Mei X, Chen CY, Jiang Z, Abtahi S, Dong Y, Liang F, Shi Y, Cheng L, Yang G, Kang JX, Wilkinson J, Xie Z. Transmission of Alzheimer's Disease-Associated Microbiota Dysbiosis and its Impact on Cognitive Function: Evidence from Mouse Models and Human Patients. RESEARCH SQUARE 2023:rs.3.rs-2790988. [PMID: 37162940 PMCID: PMC10168447 DOI: 10.21203/rs.3.rs-2790988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Spouses of Alzheimer's disease (AD) patients are at higher risk of developing AD dementia, but the reasons and underlying mechanism are unknown. One potential factor is gut microbiota dysbiosis, which has been associated with AD. However, it remains unclear whether the gut microbiota dysbiosis can be transmitted to non-AD individuals and contribute to the development of AD pathogenesis and cognitive impairment. The present study found that co-housing wild-type mice with AD transgenic mice or giving them AD transgenic mice feces caused AD-associated gut microbiota dysbiosis, Tau phosphorylation, and cognitive impairment. Gavage with Lactobacillus and Bifidobacterium restored these changes. The oral and gut microbiota of AD patient partners resembled that of AD patients but differed from healthy controls, indicating the transmission of oral and gut microbiota and its impact on cognitive function. The underlying mechanism of these findings includes that the butyric acid-mediated acetylation of GSK3β at lysine 15 regulated its phosphorylation at serine 9, consequently impacting Tau phosphorylation. These results provide insight into a potential link between gut microbiota dysbiosis and AD and underscore the need for further research in this area.
Collapse
Affiliation(s)
| | - Yuan Shen
- Tenth People's Hospital of Tongji University
| | | | | | - Wei Li
- Massachusetts General Hospital
| | | | | | | | | | | | | | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Guang Yang
- Department of Anesthesiology, Columbia University
| | | | | | | |
Collapse
|
26
|
Atiwiwat D, Aquilino M, Devinsky O, Bardakjian BL, Carlen PL. Interregional phase-amplitude coupling between theta rhythm in the nucleus tractus solitarius and high-frequency oscillations in the hippocampus during REM sleep in rats. Sleep 2023; 46:zsad027. [PMID: 36782374 PMCID: PMC10091087 DOI: 10.1093/sleep/zsad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Indexed: 02/15/2023] Open
Abstract
Cross-frequency coupling (CFC) between theta and high-frequency oscillations (HFOs) is predominant during active wakefulness, REM sleep and behavioral and learning tasks in rodent hippocampus. Evidence suggests that these state-dependent CFCs are linked to spatial navigation and memory consolidation processes. CFC studies currently include only the cortical and subcortical structures. To our knowledge, the study of nucleus tractus solitarius (NTS)-cortical structure CFC is still lacking. Here we investigate CFC in simultaneous local field potential recordings from hippocampal CA1 and the NTS during behavioral states in freely moving rats. We found a significant increase in theta (6-8 Hz)-HFO (120-160 Hz) coupling both within the hippocampus and between NTS theta and hippocampal HFOs during REM sleep. Also, the hippocampal HFOs were modulated by different but consistent phases of hippocampal and NTS theta oscillations. These findings support the idea that phase-amplitude coupling is both state- and frequency-specific and CFC analysis may serve as a tool to help understand the selective functions of neuronal network interactions in state-dependent information processing. Importantly, the increased NTS theta-hippocampal HFO coupling during REM sleep may represent the functional connectivity between these two structures which reflects the function of the hippocampus in visceral learning with the sensory information provided by the NTS. This gives a possible insight into an association between the sensory activity and REM-sleep dependent memory consolidation.
Collapse
Affiliation(s)
- Danita Atiwiwat
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mark Aquilino
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Orrin Devinsky
- New York University Langone Medical Center, Neurology, New York, NY, United States
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Li YD, Luo YJ, Song J. Optimizing memory performance and emotional states: multi-level enhancement of adult hippocampal neurogenesis. Curr Opin Neurobiol 2023; 79:102693. [PMID: 36822141 PMCID: PMC10023407 DOI: 10.1016/j.conb.2023.102693] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/25/2023]
Abstract
Adult hippocampal neurogenesis (AHN) plays a key role in modulating memory and emotion processing. A fundamental question remains on how to effectively modulate AHN to improve hippocampal function. Here, we review recent work on how distinct aspects of hippocampal neurogenesis, including the number, maturation state, and activity of adult-born neurons (ABNs), contribute to overall hippocampal function. We propose multi-level enhancement of hippocampal neurogenesis with the combination of increased number, elevated activity, and enhanced maturation of ABNs as a potential strategy to optimize overall hippocampal performance. In addition, integration of ABNs induces significant remodeling of the local hippocampal circuits, which may in turn modulates brain-wide network dynamics. We discuss recent progress on how integration of ABNs contributes to local hippocampal circuit and brain-wide network dynamics during behavior.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. https://twitter.com/yadlee2
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
BaHammam AS, Pirzada AR, Pandi-Perumal SR. Neurocognitive, mood changes, and sleepiness in patients with REM-predominant obstructive sleep apnea. Sleep Breath 2023; 27:57-66. [PMID: 35318576 DOI: 10.1007/s11325-022-02602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE This article focuses on recent evidence linking rapid eye movement (REM) obstructive sleep apnea (OSA) (REM-OSA) to neurocognitive dysfunction and mood changes; the proposed mechanisms for increased risk of neurocognitive dysfunction in REM-OSA, and future research prospects. METHODS PubMed and Google Scholar records were examined for articles utilizing pre-defined keywords. In this work, we mainly included studies published after 2017; nevertheless, critical studies published prior to 2017 were considered. RESULTS REM-OSA is an under-recognized stage-related sleep-disordered breathing in which obstructive respiratory events happen chiefly in stage REM. The disorder is commonly seen amongst younger patients and females and has recently been linked to cardiometabolic complications. Although less symptomatic than non-REM-OSA and non-stage-specific OSA, current findings indicate that REM-OSA may have neurocognitive repercussions and mood changes and could be linked to insomnia, increased dreams, and nightmares. CONCLUSION Currently available evidence indicates that REM-OSA may present with insomnia and nightmares and could affect cognitive function and mood.
Collapse
Affiliation(s)
- Ahmed S BaHammam
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia. .,Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi, Arabia (08-MED511-02), Riyadh, Saudi Arabia.
| | - Abdul Rouf Pirzada
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,North Cumbria Integrated Care (NCIC), NHS, Carlisle, UK
| | - Seithikurippu R Pandi-Perumal
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
29
|
A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. J Pers Med 2023; 13:jpm13020306. [PMID: 36836540 PMCID: PMC9960519 DOI: 10.3390/jpm13020306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Endogenous depression represents a severe mental health condition projected to become one of the worldwide leading causes of years lived with disability. The currently available clinical and non-clinical interventions designed to alleviate endogenous depression-associated symptoms encounter a series of inconveniences, from the lack of intervention effectiveness and medication adherence to unpleasant side effects. In addition, depressive individuals tend to be more frequent users of primary care units, which markedly affects the overall treatment costs. In parallel with the growing incidence of endogenous depression, researchers in sleep science have discovered multiple links between rapid eye movement (REM) sleep patterns and endogenous depression. Recent findings suggest that prolonged periods of REM sleep are associated with different psychiatric disorders, including endogenous depression. In addition, a growing body of experimental work confidently describes REM sleep deprivation (REM-D) as the underlying mechanism of most pharmaceutical antidepressants, proving its utility as either an independent or adjuvant approach to alleviating the symptoms of endogenous depression. In this regard, REM-D is currently being explored for its potential value as a sleep intervention-based method for improving the clinical management of endogenous depression. Therefore, this narrative review represents a comprehensive inventory of the currently available evidence supporting the potential use of REM-D as a reliable, non-pharmaceutical approach for treating endogenous depression, or as an adjuvant practice that could improve the effectiveness of currently used medication.
Collapse
|
30
|
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener 2023; 18:9. [PMID: 36721148 PMCID: PMC9889249 DOI: 10.1186/s13024-023-00595-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results in a sustained decline in cognition. There are currently few effective disease modifying therapies for AD, but insights into the mechanisms that mediate the onset and progression of disease may lead to new, effective therapeutic strategies. Amyloid beta oligomers and plaques, tau aggregates, and neuroinflammation play a critical role in neurodegeneration and impact clinical AD progression. The upstream modulators of these pathological features have not been fully clarified, but recent evidence indicates that the gut microbiome (GMB) may have an influence on these features and therefore may influence AD progression in human patients. In this review, we summarize studies that have identified alterations in the GMB that correlate with pathophysiology in AD patients and AD mouse models. Additionally, we discuss findings with GMB manipulations in AD models and potential GMB-targeted therapeutics for AD. Lastly, we discuss diet, sleep, and exercise as potential modifiers of the relationship between the GMB and AD and conclude with future directions and recommendations for further studies of this topic.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sangram S. Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL 60637 USA
| | - Robert J. Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
31
|
Zhang TR, Askari B, Kesici A, Guilherme E, Vila-Rodriguez F, Snyder JS. Intermittent theta burst transcranial magnetic stimulation induces hippocampal mossy fibre plasticity in male but not female mice. Eur J Neurosci 2023; 57:310-323. [PMID: 36484786 DOI: 10.1111/ejn.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Transcranial magnetic stimulation (TMS) induces electric fields that depolarise or hyperpolarise neurons. Intermittent theta burst stimulation (iTBS), a patterned form of TMS that is delivered at the theta frequency (~5 Hz), induces neuroplasticity in the hippocampus, a brain region that is implicated in memory and learning. One form of plasticity that is unique to the hippocampus is adult neurogenesis; however, little is known about whether TMS or iTBS in particular affects newborn neurons. Here, we therefore applied repeated sessions of iTBS to male and female mice and measured the extent of adult neurogenesis and the morphological features of immature neurons. We found that repeated sessions of iTBS did not significantly increase the amount of neurogenesis or affect the gross dendritic morphology of new neurons, and there were no sex differences in neurogenesis rates or aspects of afferent morphology. In contrast, efferent properties of newborn neurons varied as a function of sex and stimulation. Chronic iTBS increased the size of mossy fibre terminals, which synapse onto Cornu Ammonis 3 (CA3) pyramidal neurons, but only in males. iTBS also increased the number of terminal-associated filopodia, putative synapses onto inhibitory interneurons but only in male mice. This efferent plasticity could result from a general trophic effect, or it could reflect accelerated maturation of immature neurons. Given the important role of mossy fibre synapses in hippocampal learning, our results identify a neurobiological effect of iTBS that might be associated with sex-specific changes in cognition.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baran Askari
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aydan Kesici
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo, Brazil
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Fölsz O, Trouche S, Croset V. Adult-born neurons add flexibility to hippocampal memories. Front Neurosci 2023; 17:1128623. [PMID: 36875670 PMCID: PMC9975346 DOI: 10.3389/fnins.2023.1128623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Although most neurons are generated embryonically, neurogenesis is maintained at low rates in specific brain areas throughout adulthood, including the dentate gyrus of the mammalian hippocampus. Episodic-like memories encoded in the hippocampus require the dentate gyrus to decorrelate similar experiences by generating distinct neuronal representations from overlapping inputs (pattern separation). Adult-born neurons integrating into the dentate gyrus circuit compete with resident mature cells for neuronal inputs and outputs, and recruit inhibitory circuits to limit hippocampal activity. They display transient hyperexcitability and hyperplasticity during maturation, making them more likely to be recruited by any given experience. Behavioral evidence suggests that adult-born neurons support pattern separation in the rodent dentate gyrus during encoding, and they have been proposed to provide a temporal stamp to memories encoded in close succession. The constant addition of neurons gradually degrades old connections, promoting generalization and ultimately forgetting of remote memories in the hippocampus. This makes space for new memories, preventing saturation and interference. Overall, a small population of adult-born neurons appears to make a unique contribution to hippocampal information encoding and removal. Although several inconsistencies regarding the functional relevance of neurogenesis remain, in this review we argue that immature neurons confer a unique form of transience on the dentate gyrus that complements synaptic plasticity to help animals flexibly adapt to changing environments.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, United Kingdom.,MSc in Neuroscience Programme, University of Oxford, Oxford, United Kingdom
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
33
|
Miyamoto D. Neural circuit plasticity for complex non-declarative sensorimotor memory consolidation during sleep. Neurosci Res 2022; 189:37-43. [PMID: 36584925 DOI: 10.1016/j.neures.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the brain actively consolidates long-term memory during sleep. Motor skill memory is a form of non-declarative procedural memory and can be coordinated with multi-sensory processing such as visual, tactile, and, auditory. Conversely, perception is affected by body movement signal from motor brain regions. Although both cortical and subcortical brain regions are involved in memory consolidation, cerebral cortex activity can be recorded and manipulated noninvasively or minimally invasively in humans and animals. NREM sleep, which is important for non-declarative memory consolidation, is characterized by slow and spindle waves representing thalamo-cortical population activity. In animals, electrophysiological recording, optical imaging, and manipulation approaches have revealed multi-scale cortical dynamics across learning and sleep. In the sleeping cortex, neural activity is affected by prior learning and neural circuits are continually reorganized. Here I outline how sensorimotor coordination is formed through awake learning and subsequent sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
34
|
Kameyama A, Asai H, Nomoto M, Ohno S, Ghandour K, Ohkawa N, Saitoh Y, Yamazaki M, Inokuchi K. Sevoflurane-induced amnesia is associated with inhibition of hippocampal cell ensemble activity after learning. Biol Open 2022; 11:286145. [PMID: 36541652 PMCID: PMC9793868 DOI: 10.1242/bio.059666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
General anesthesia could induce amnesia, however the mechanism remains unclear. We hypothesized that suppression of neuronal ensemble activity in the hippocampus by anesthesia during the post-learning period causes retrograde amnesia. To test this hypothesis, two experiments were conducted with sevoflurane anesthesia (2.5%, 30 min): a hippocampus-dependent memory task, the context pre-exposure facilitation effect (CPFE) procedure to measure memory function and in vivo calcium imaging to observe neural activity in hippocampal CA1 during context exploration and sevoflurane/home cage session. Sevoflurane treatment just after context pre-exposure session impaired the CPFE memory, suggesting sevoflurane induced retrograde amnesia. Calcium imaging showed sevoflurane treatment prevented neuronal activity in CA1. Further analysis of neuronal activity with non-negative matrix factorization, which extracts neural ensemble activity based on synchronous activity, showed that sevoflurane treatment reduced the reactivation of neuronal ensembles between during context exploration just before and one day after sevoflurane inhalation. These results suggest that sevoflurane treatment immediately after learning induces amnesia, resulting from suppression of reactivation of neuronal ensembles.
Collapse
Affiliation(s)
- Akiyo Kameyama
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hirotaka Asai
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Authors for correspondence (, )
| | - Masanori Nomoto
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan
| | - Shuntaro Ohno
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan
| | - Khaled Ghandour
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), JST, Saitama 332-0012, Japan,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), JST, Saitama 332-0012, Japan,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Mitsuaki Yamazaki
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Authors for correspondence (, )
| |
Collapse
|
35
|
Zaraza D, Chernov MM, Yang Y, Rogers JA, Roe AW, Friedman RM. Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates. CELL REPORTS METHODS 2022; 2:100351. [PMID: 36590689 PMCID: PMC9795332 DOI: 10.1016/j.crmeth.2022.100351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Advances in optical technology have revolutionized studies of brain function in freely behaving mice. Here, we describe an optical imaging and stimulation device for use in primates that easily attaches to an intracranial chamber. It consists of affordable commercially available or 3D-printed components: a monochromatic camera, a small standard lens, a wireless μLED stimulator powered by an induction coil, and an LED array for illumination. We show that the intrinsic imaging performance of this device is comparable to a standard benchtop system in revealing the functional organization of the visual cortex for awake macaques in a primate chair or under anesthesia. Imaging revealed neural modulatory effects of wireless focal optogenetic stimulation aimed at identified functional domains. With a 1 to 2 cm field of view, 100× larger than previously used in primates without head restraint, our device permits widefield optical imaging and optogenetic stimulation for ethological studies in primates.
Collapse
Affiliation(s)
- Derek Zaraza
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mykyta M. Chernov
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
36
|
Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, Chen X. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022; 110:4000-4014.e6. [PMID: 36272414 DOI: 10.1016/j.neuron.2022.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.
Collapse
Affiliation(s)
- Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Bo Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Shuancheng Ren
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Zhian Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Arthur Konnerth
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
37
|
Kim SJ, Hotta-Hirashima N, Asano F, Kitazono T, Iwasaki K, Nakata S, Komiya H, Asama N, Matsuoka T, Fujiyama T, Ikkyu A, Kakizaki M, Kanno S, Choi J, Kumar D, Tsukamoto T, Elhosainy A, Mizuno S, Miyazaki S, Tsuneoka Y, Sugiyama F, Takahashi S, Hayashi Y, Muratani M, Liu Q, Miyoshi C, Yanagisawa M, Funato H. Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature 2022; 612:512-518. [PMID: 36477539 DOI: 10.1038/s41586-022-05450-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.
Collapse
Affiliation(s)
- Staci J Kim
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomohiro Kitazono
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinya Nakata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruna Komiya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nodoka Asama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Taeko Matsuoka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jinhwan Choi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Deependra Kumar
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Tsukamoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Asmaa Elhosainy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumihiro Sugiyama
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Qinghua Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan.
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan.
| |
Collapse
|
38
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
39
|
Fujiyama T, Takenaka H, Asano F, Miyanishi K, Hotta-Hirashima N, Ishikawa Y, Kanno S, Seoane-Collazo P, Miwa H, Hoshino M, Yanagisawa M, Funato H. Mice Lacking Cerebellar Cortex and Related Structures Show a Decrease in Slow-Wave Activity With Normal Non-REM Sleep Amount and Sleep Homeostasis. Front Behav Neurosci 2022; 16:910461. [PMID: 35722192 PMCID: PMC9203121 DOI: 10.3389/fnbeh.2022.910461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to the well-known motor control, the cerebellum has recently been implicated in memory, cognition, addiction, and social behavior. Given that the cerebellum contains more neurons than the cerebral cortex and has tight connections to the thalamus and brainstem nuclei, it is possible that the cerebellum also regulates sleep/wakefulness. However, the role of the cerebellum in sleep was unclear, since cerebellar lesion studies inevitably involved massive inflammation in the adjacent brainstem, and sleep changes in lesion studies were not consistent with each other. Here, we examine the role of the cerebellum in sleep and wakefulness using mesencephalon- and rhombomere 1-specific Ptf1a conditional knockout (Ptf1a cKO) mice, which lack the cerebellar cortex and its related structures, and exhibit ataxic gait. Ptf1a cKO mice had similar wake and non-rapid eye movement sleep (NREMS) time as control mice and showed reduced slow wave activity during wakefulness, NREMS and REMS. Ptf1a cKO mice showed a decrease in REMS time during the light phase and had increased NREMS delta power in response to 6 h of sleep deprivation, as did control mice. Ptf1a cKO mice also had similar numbers of sleep spindles and fear memories as control mice. Thus, the cerebellum does not appear to play a major role in sleep-wake control, but may be involved in the generation of slow waves.
Collapse
Affiliation(s)
- Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Henri Takenaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hideki Miwa
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Masashi Yanagisawa
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
- Hiromasa Funato
| |
Collapse
|
40
|
Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022; 31:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.
Collapse
Affiliation(s)
- Elisa Casaglia
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France.,University of Cagliari, Cagliari, Italy
| | - Pierre-Hervé Luppi
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
41
|
Li YD, Luo YJ, Chen ZK, Quintanilla L, Cherasse Y, Zhang L, Lazarus M, Huang ZL, Song J. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci 2022; 25:630-645. [PMID: 35524139 PMCID: PMC9287980 DOI: 10.1038/s41593-022-01065-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Adult hippocampal neurogenesis plays a critical role in memory and emotion processing, and this process is dynamically regulated by neural circuit activity. However, it remains unknown whether manipulation of neural circuit activity can achieve sufficient neurogenic effects to modulate behavior. Here we report that chronic patterned optogenetic stimulation of supramammillary nucleus (SuM) neurons in the mouse hypothalamus robustly promotes neurogenesis at multiple stages, leading to increased production of neural stem cells and behaviorally relevant adult-born neurons (ABNs) with enhanced maturity. Functionally, selective manipulation of the activity of these SuM-promoted ABNs modulates memory retrieval and anxiety-like behaviors. Furthermore, we show that SuM neurons are highly responsive to environmental novelty (EN) and are required for EN-induced enhancement of neurogenesis. Moreover, SuM is required for ABN activity-dependent behavioral modulation under a novel environment. Our study identifies a key hypothalamic circuit that couples novelty signals to the production and maturation of ABNs, and highlights the activity-dependent contribution of circuit-modified ABNs in behavioral regulation.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ze-Ka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luis Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Libo Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Sex Differences in the Spatial Behavior Functions of Adult-Born Neurons in Rats. eNeuro 2022; 9:ENEURO.0054-22.2022. [PMID: 35473765 PMCID: PMC9116935 DOI: 10.1523/eneuro.0054-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding. We therefore trained intact and neurogenesis-deficient rats in the spatial water maze at temperatures that vary in their degree of aversiveness. In the standard water maze, ablating neurogenesis did not alter spatial learning in either sex. However, in cold water, ablating neurogenesis had divergent sex-dependent effects: relative to intact rats, male neurogenesis-deficient rats were slower to escape the maze and female neurogenesis-deficient rats were faster. Neurogenesis promoted temperature-related changes in search strategy in females, but it promoted search strategy stability in males. Females displayed greater recruitment (Fos expression) of the dorsal hippocampus than males, particularly in cold water. However, blocking neurogenesis did not alter Fos expression in either sex. Finally, morphologic analyses revealed greater experience-dependent plasticity in males. Adult-born neurons in males and females had similar morphology at baseline but training increased spine density and reduced presynaptic terminal size, specifically in males. Collectively, these findings indicate that adult-born neurons contribute to spatial learning in stressful conditions and they provide new evidence for sex differences in their behavioral functions.
Collapse
|
43
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
44
|
Tripathi S, Jha SK. REM Sleep Deprivation Alters Learning-Induced Cell Proliferation and Generation of Newborn Young Neurons in the Dentate Gyrus of the Dorsal Hippocampus. ACS Chem Neurosci 2022; 13:194-206. [PMID: 34990120 DOI: 10.1021/acschemneuro.1c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The hippocampus-dependent "trace-appetitive conditioning task" increases cell proliferation and the generation of newborn young neurons. Evidence suggests that adult hippocampal neurogenesis and rapid eye movement (REM) sleep play an essential role in memory consolidation. On the other hand, REM sleep deprivation (REM-SD) induces detrimental effects on training-induced cell proliferation in the hippocampus's dentate gyrus (DG). Nonetheless, the role of REM sleep in the trace-appetitive memory and fate determination of the newly proliferated cells is not known. Here, we have studied the following: (I) the effects of 24 h of REM-SD (soon after training) on trace- and delay-appetitive memory and cell proliferation in the adult DG and (II) the effects of chronic (96 h) REM-SD (3 days after the training, the period in which newly generated cells progressed toward the neuronal lineage) on trace-appetitive memory and the generation of newborn young neurons. We used a modified multiple platform method for the selective REM-SD without altering non-REM (NREM) sleep. We found that 24 h of REM-SD, soon after trace-conditioning, impaired the trace-appetitive memory and the training-induced cell proliferation. Nevertheless, 96 h of REM-SD (3 days after the training) did not impair trace memory. Interestingly, 96 h of REM-SD altered the generation of newborn young neurons. These results suggest that REM sleep plays an essential role in training-induced cell proliferation and the fate determination of the newly generated cells toward the neuronal lineage.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K. Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
45
|
Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 2022; 27:403-421. [PMID: 33990771 PMCID: PMC8960391 DOI: 10.1038/s41380-021-01136-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Adult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.
Collapse
Affiliation(s)
- A Surget
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - C Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
46
|
Ohba A, Sakaguchi M. Contribution of adult-born neurons to memory consolidation during rapid eye movement sleep. Neural Regen Res 2022; 17:307-308. [PMID: 34269194 PMCID: PMC8463975 DOI: 10.4103/1673-5374.317966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Akinobu Ohba
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Sleep affects the motor memory of basketball shooting skills in young amateurs. J Clin Neurosci 2021; 96:187-193. [PMID: 34844844 DOI: 10.1016/j.jocn.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
Sleep has long been shown as important for memory processing and retention, and has recently been implicated in motor memory consolidation. However, it is not known whether sports skills, including basketball shooting skills, are also affected by sleep in young, healthy individuals. Therefore, we investigated whether sleep before and after basketball shooting skill training affected the acquisition and retention of shooting skills. This study included 19 healthy male subjects who participated in a basketball shooting skill training session (100 shots) and a retention test performed 2 days later (30 shots). The learning and retention indices were calculated using performance scores that evaluated each subject's shooting skills. A wearable activity tracker was used to measure sleep parameters for 4 consecutive days, 2 days before and 2 days after training. We discovered the relationship between sleep duration before and after training and retention of shooting skills (sleep duration before training; p = 0.044, r = 0.467, sleep duration after training; p = 0.006, r = 0.606). The retention index for the subgroup with long sleep duration before and after training was significantly higher than that for the subgroup with short sleep duration before and after training, respectively (p = 0.021 for both). There was no significant relationship between learning index and each sleep parameter. Our results demonstrated that sleep duration before and after training was related to retention of shooting skills following basketball shooting skills training.
Collapse
|
48
|
Taniguchi M, Tezuka T, Vergara P, Srinivasan S, Hosokawa T, Cherasse Y, Naoi T, Sakurai T, Sakaguchi M. Open-Source Software for Real-time Calcium Imaging and Synchronized Neuron Firing Detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2997-3003. [PMID: 34891875 DOI: 10.1109/embc46164.2021.9629611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed Carignan, a real-time calcium imaging software that can automatically detect activity patterns of neurons. Carignan can activate an external device when synchronized neural activity is detected in calcium imaging obtained by a one-photon (1p) miniscope. Combined with optogenetics, our software enables closed-loop experiments for investigating functions of specific types of neurons in the brain. In addition to making existing pattern detection algorithms run in real-time seamlessly, we developed a new classification module that distinguishes neurons from false-positives using deep learning. We used a combination of convolutional and recurrent neural networks to incorporate both spatial and temporal features in activity patterns. Our method performed better than existing neuron detection methods for false-positive neuron detection in terms of the F1 score. Using Carignan, experimenters can activate or suppress a group of neurons when specific neural activity is observed. Because the system uses a 1p miniscope, it can be used on the brain of a freely-moving animal, making it applicable to a wide range of experimental paradigms.
Collapse
|
49
|
Abstract
Sleep is crucial for healthy cognition, including memory. The two main phases of sleep, REM (rapid eye movement) and non-REM sleep, are associated with characteristic electrophysiological patterns that are recorded using surface and intracranial electrodes. These patterns include sharp-wave ripples, cortical slow oscillations, delta waves, and spindles during non-REM sleep and theta oscillations during REM sleep. They reflect the precisely timed activity of underlying neural circuits. Here, we review how these electrical signatures have been guiding our understanding of the circuits and processes sustaining memory consolidation during sleep, focusing on hippocampal theta oscillations and sharp-wave ripples and how they coordinate with cortical patterns. Finally, we highlight how these brain patterns could also sustain sleep-dependent homeostatic processes and evoke several potential future directions for research on the memory function of sleep.
Collapse
Affiliation(s)
- Gabrielle Girardeau
- Institut du Fer a Moulin, UMR-S 1270 INSERM and Sorbonne Université, 75005 Paris, France
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
50
|
Rocha R, Andrade L, Alves T, Sá S, Pereira PA, Dulce Madeira M, Cardoso A. Behavioral and brain morphological analysis of non-inflammatory and inflammatory rat models of preterm brain injury. Neurobiol Learn Mem 2021; 185:107540. [PMID: 34673263 DOI: 10.1016/j.nlm.2021.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022]
Abstract
Investigations using preclinical models of preterm birth have much contributed, together with human neuropathological studies, for advances in our understanding of preterm brain injury. Here, we evaluated whether the neurodevelopmental and behavioral consequences of preterm birth induced by a non-inflammatory model of preterm birth using mifepristone would differ from those after inflammatory prenatal transient hypoxia-ischemia (TSHI) model. Pregnant Wistar rats were either injected with mifepristone, and pups were delivered on embryonic day 21 (ED21 group), or laparotomized on the 18th day of gestation for 60 min of uterine arteries occlusion. Rat pups were tested postnatally for characterization of developmental milestones and, after weaning, they were behaviorally tested for anxiety and for spatial learning and memory. One month later, brains were processed for quantification of doublecortin (DCX)- and neuropeptide Y (NPY)-immunoreactive cells, and cholinergic varicosities in the hippocampus. ED21 rats did not differ from controls with respect to neonatal developmental milestones, anxiety, learning and memory functions, and neurochemical parameters. Conversely, in TSHI rats the development of neonatal reflexes was delayed, the levels of anxiety were reduced, and spatial learning and memory was impaired; in the hippocampus, the total number of DCX and NPY cells was increased, and the density of cholinergic varicosities was reduced. With these results we suggest that a preterm birth, in a non-inflammatory prenatal environment, does not significantly change neonatal development and adult neurologic outcome. On other hand, prenatal hypoxia and ischemia (inflammation) modifies developmental trajectory, learning and memory, neurogenesis, and NPY GABAergic and cholinergic brain systems.
Collapse
Affiliation(s)
- Ruben Rocha
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Pediatric Neurology Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, 4050-651 Porto, Portugal; Pediatric Emergency Department, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Leonardo Andrade
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Tânia Alves
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana Sá
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Pedro A Pereira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - M Dulce Madeira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|