1
|
Chai R, Wang N, Nie J, Xu Z, Zhang S, Deng S, Wang R, Li M, Gao X, Geng R, Li H, Li L, Wu H, Li Z, Cheng TL, Xu XH, Shu Y, Hong H, Huang X, Wang W. Endocannabinoids disinhibit the ventral tegmental nucleus of Gudden to dorsal premammillary nucleus pathway to enhance escape behavior following learned threat experience. Nat Commun 2025; 16:4885. [PMID: 40419467 PMCID: PMC12106801 DOI: 10.1038/s41467-025-60080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Innate escape behaviors, while not requiring prior learning, are shaped by an animal's learned experiences, such as previous exposure. Here, we found that learned threat experience in mice enhances flight behaviors, which is linked to increased activation of cholecystokinin-expressing neurons in the dorsal premammillary nucleus (PMdCCK neurons), a population that controls circa-strike escape responses. This heightened activity coincides with reduced inhibition from parvalbumin-expressing GABAergic neurons in the ventral tegmental nucleus of Gudden (VTgPV), which typically suppress PMdCCK activity and escape behaviors. Furthermore, threat memory prompts a prefrontal projection to stimulate the release of endocannabinoids, inhibiting the axon terminals of VTgPV neurons. The necessity of this endocannabinoid-mediated disinhibition for the observed enhancement in flight behaviors is confirmed through genetic deletion or pharmacological blockade of endocannabinoid receptors on VTgPV neurons. Thus, our study uncovers a neural mechanism by which experience amplifies innate escape behaviors, highlighting the crucial role of endocannabinoids.
Collapse
Affiliation(s)
- Ruikai Chai
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Nawen Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Jinlu Nie
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Zongyi Xu
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Shuqian Zhang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Suixin Deng
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Rongxin Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Mu Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Xinyi Gao
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Ruijie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haibin Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Hebi Wu
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Zhiming Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Tian-Lin Cheng
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiao-Hong Xu
- Institute for Brain Science, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Huilin Hong
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Weisheng Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Torossian A, Miranda BA, Reis FMCV, Hilgert EL, Gudipati R, Bloom CPV, Wang W, Schuette PJ, Adhikari A. Hypothalamic Control of Learned Flight Induced by Threat Imminence. J Neurosci 2025; 45:e1806242025. [PMID: 40180574 PMCID: PMC12060629 DOI: 10.1523/jneurosci.1806-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Flexible experience-dependent learned escape has paramount survival value. However, flight is generally investigated in the presence of innate threats. To study conditioned escape, we developed a paradigm in which mice learn to escape a moving shock grid, which simulates a naturalistic situation of being chased by a threat. In a single session, mice learn to escape from the shock-delivering moving grid, displaying a "flight upon grid approach" (FUGA). Importantly, this learned flight is also displayed the next day during fear retrieval, in the absence of shock. We reasoned that circuits implicated in escape and learned fear control this behavior. Fittingly, cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd-cck neurons) are necessary for escape from innate threats, and PMd activity modulates learned defense, suggesting it may participate in the maintenance of learned FUGA escapes. Here, we show in male and female mice that inhibiting PMd-cck activity during FUGA acquisition impairs learned flight during fear retrieval. Furthermore, these results were specific to a paradigm with a moving threat, as PMd-cck inhibition during fear acquisition did not alter behavior during fear retrieval in contextual or auditory-cued fear conditioning. Lastly, PMd-cck cells encoded distance to the moving grid and FUGA escape speed, but were not activated by fear-conditioned tones or conditioned freezing. These data show that the PMd is critical for the maintenance of the memory of the threat associated with the grid and underscore recent views demonstrating that the hypothalamus has key contributions for learning flexible experience-dependent survival actions.
Collapse
Affiliation(s)
- Anita Torossian
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Blake A Miranda
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Elizabeth L Hilgert
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Renesh Gudipati
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Catherine P V Bloom
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Weisheng Wang
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, California, 90095
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, California, 90095
| |
Collapse
|
3
|
Melleu FF, Canteras NS. Neural Circuits of Fear and Anxiety: Insights from a Neuroethological Perspective. Physiology (Bethesda) 2025; 40:0. [PMID: 39661324 DOI: 10.1152/physiol.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
The predatory imminence continuum (PIC) of antipredator defensive behavior has been a helpful strategy for modeling anxiety and fear-related disorders in nonclinical research. The PIC is divided into three different sequential stages that reflect defensive behavioral strategy in response to predatory imminence. However, the PIC was experimentally addressed with a series of shock-based fear conditioning experiments rather than predatory threats. In this article, we consider the PIC in a more naturalistic behavioral setting, focusing on analyzing the neural systems of animals responding to terrestrial and aerial predators. Of relevance, there is a sequential engagement of the distinct neural circuits along each phase of the PIC. In the preencounter phase, prefrontal cortical networks are particularly involved in planning and organizing behavioral responses to ambiguous threats. As the predatory cues or the real predator is detected, there is an engagement of amygdalar and hippocampal > hypothalamic pathways in conjunction with the periaqueductal gray, which organize fear responses. This dynamic particularly reveals how specific neural circuits are set into action to subserve distinct defensive responses. Moreover, we further explore the neural circuits governing other fearful situations outside the context of the PIC, including agonistic social encounters and interoceptive challenges. This analysis reveals an interesting overlap between the neural systems responding to these threats and those involved in response to predatory threats. The present review clarifies how defensive circuits respond to natural threats and provides a more realistic view of the neural systems underlying anxiety and fear responses.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical SciencesUniversity of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Crawford LS, Yang S, Meylakh N, Sattarov L, Ramachandran A, Macefield VG, Keay KA, Henderson LA. Forebrain networks driving brainstem pain modulatory circuits during nocebo hyperalgesia in healthy humans. Pain 2025:00006396-990000000-00874. [PMID: 40232878 DOI: 10.1097/j.pain.0000000000003604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 04/17/2025]
Abstract
ABSTRACT Prior experiences, conditioning cues, and expectations of improvement are essential for nocebo hyperalgesia expression. The neural circuits that communicate with brainstem pain modulatory nuclei during nocebo hyperalgesia responsivity are underexplored. In this study, we employed a classical conditioning and expectation model in 25 healthy human participants and measured brain activity using ultra-high field functional magnetic resonance imaging. We assessed forebrain activity changes as well as noxious stimulus-independent and -dependent connectivity changes with the lateral midbrain periaqueductal gray matter (lPAG). We found hyperalgesia-related signal increases in the orbitofrontal cortex, insula, and amygdala. In addition, we found stimulus-dependent lPAG connectivity changes with the orbitofrontal, anterior cingulate, and dorsolateral prefrontal cortices and stimulus-independent lPAG connectivity with the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens during hyperalgesia. Whilst these connectivity changes are all associated with hyperalgesia, dynamic causal modelling analysis revealed that the dorsolateral prefrontal cortex was principally responsible for driving the lPAG. Overall, our results show that there is a complex relationship between forebrain activation and connectivity with brainstem pain modulation circuitry that results in the behavioural expression of nocebo hyperalgesia.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Sora Yang
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Leana Sattarov
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Alister Ramachandran
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
- Westmead Hospital Pain Management Centre, New South Wales, Australia
| | | | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Gu H, Zhao F, Liu Z, Cao P. Defense or death? A review of the neural mechanisms underlying sensory modality-triggered innate defensive behaviors. Curr Opin Neurobiol 2025; 92:102977. [PMID: 40015135 DOI: 10.1016/j.conb.2025.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Defense or death presents a canonical dilemma for animals when encountering predators. Threatening sensory cues provide essential information that signals predator presence, driving the evolution of a spectrum of defensive behaviors. In rodents, these behaviors, as described by the classic "predatory imminence continuum" model, range from risk assessment and freezing to rapid escape responses. During the pre-encounter phase, risk assessment and avoidance responses are crucial for monitoring the environment with vigilance and cautiousness. Once detected during the post-encounter phase or physically attacked during the circa-strike phase, multiple sensory systems are rapidly activated, triggering escape responses to increase the distance from the threat. Although there are species-specific variations, the brain regions underpinning these defensive strategies, including the thalamus, hypothalamus, and midbrain, are evolutionarily conserved. This review aims to provide a comprehensive overview of the universal innate defensive circuit framework to enrich our understanding of how animals respond to life-threatening situations.
Collapse
Affiliation(s)
- Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiran Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhihui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
6
|
Goh RCW, Mu MD, Yung WH, Ke Y. The midline thalamic nucleus reuniens promotes compulsive-like grooming in rodents. Transl Psychiatry 2025; 15:67. [PMID: 39994171 PMCID: PMC11850824 DOI: 10.1038/s41398-025-03283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Obsessive-compulsive disorder (OCD), a disabling and notoriously treatment-resistant neuropsychiatric disorder, affects 2-3% of the general population and is characterized by recurring, intrusive thoughts (obsessions) and repetitive, ritualistic behaviors (compulsions). Although long associated with dysfunction within the cortico-striato-thalamic-cortical circuits, the thalamic role in OCD pathogenesis remains highly understudied in the literature. Here, we identified a rat thalamic nucleus - the reuniens (NRe) - that mediates persistent, compulsive self-grooming behavior. Optogenetic activation of this nucleus triggers immediate, excessive grooming with strong irresistibility, increases anxiety, and induces negative affective valence. A thalamic-hypothalamic pathway linking NRe to the dorsal premammillary nucleus (PMd) was discovered to mediate excessive self-grooming behavior and render it a defensive coping response to stress, mirroring the compulsions faced by OCD patients. Given the close resemblance between this self-grooming behavior and the clinical manifestations of OCD, the results from this study highlight the role of NRe in mediating OCD-like compulsive behaviors. This can be attributed to NRe's position at the nexus of an extensive frontal-striatal-thalamic network regulating cognition, emotion, and stress-related behaviors, suggesting NRe as a potential novel target for intervention.
Collapse
Affiliation(s)
- Romeo Chen Wei Goh
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
7
|
Pais RC, Goldani A, Hutchison J, Mazrouei A, Khavaninzadeh M, Molina LA, Sutherland RJ, Mohajerani MH. Assessing cognitive flexibility in mice using a custom-built touchscreen chamber. Front Behav Neurosci 2025; 19:1536458. [PMID: 40017733 PMCID: PMC11865062 DOI: 10.3389/fnbeh.2025.1536458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Automated touchscreen systems have become increasingly prevalent in rodent model screening. This technology has significantly enhanced cognitive and behavioral assessments in mice and has bridged the translational gap between basic research using rodent models and human clinical research. Our study introduces a custom-built touchscreen operant conditioning chamber powered by a Raspberry Pi and a commercially available computer tablet, which effectively addresses the significant cost barriers traditionally associated with this technology. In order to test our prototype, we decided to train C57BL/6 mice on a visual discrimination serial-reversal task, and both C57BL/6 and AppNL-G-Fstrain - an Alzheimer's Disease (AD) mouse model - on a new location discrimination serial-reversal task. The results demonstrated a clear progression toward asymptotic performance, particularly in the location discrimination task, which also revealed potential genotype-specific deficits, with AppNL-G-F mice displaying an increase in the average number of errors in the first reversal as well as in perseverative errors, compared to wild-type mice. These results validate the practical utility of our touchscreen apparatus and underline its potential to provide insights into the behavioral and cognitive markers of neurobiological disorders.
Collapse
Affiliation(s)
- Rui C. Pais
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ali Goldani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jayden Hutchison
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Amirhossein Mazrouei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Mostafa Khavaninzadeh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Leonardo A. Molina
- Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J. Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Hinds NM, Wojtas ID, Pulley DM, McDonald SJ, Spencer CD, Sudarikov M, Hubbard NE, Kulick-Soper CM, de Guzman S, Hayden S, Debski JJ, Patel B, Fox DP, Manvich DF. Fos expression in the periaqueductal gray, but not the ventromedial hypothalamus, is correlated with psychosocial stress-induced cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634146. [PMID: 39896664 PMCID: PMC11785129 DOI: 10.1101/2025.01.22.634146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Psychosocial stressors are known to promote cocaine craving and relapse in humans but are infrequently employed in preclinical relapse models. Consequently, the underlying neural circuitry by which these stressors drive cocaine seeking has not been thoroughly explored. Using Fos expression analyses, we sought to examine whether the ventromedial hypothalamus (VMH) or periaqueductal gray (PAG), two critical components of the brain's hypothalamic defense system, are activated during psychosocial stress-induced cocaine seeking. Adult male and female rats self-administered cocaine (0.5 mg/kg/inf IV, fixed-ratio 1 schedule, 2 h/session) over 20 sessions. On sessions 11, 14, 17, and 20, a tactile cue was present in the operant chamber that signaled impending social defeat stress (n=16, 8/sex), footshock stress (n=12, 6/sex), or a no-stress control condition (n=12, 6/sex) immediately after the session's conclusion. Responding was subsequently extinguished, and rats were tested for reinstatement of cocaine seeking during re-exposure to the tactile cue that signaled their impending stress/no-stress post-session event. All experimental groups displayed significant reinstatement of cocaine seeking, but Fos analyses indicated that neural activity within the rostrolateral PAG (rPAGl) was selectively correlated with cocaine-seeking magnitude in the socially-defeated rats. rPAGl activation was also associated with active-defense coping behaviors during social defeat encounters and with Fos expression in prelimbic prefrontal cortex and orexin-negative cells of the lateral hypothalamus/perifornical area in males, but not females. These findings suggest a potentially novel role for the rPAGl in psychosocial stress-induced cocaine seeking, perhaps in a sex-dependent manner.
Collapse
Affiliation(s)
- Nicole M. Hinds
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Ireneusz D. Wojtas
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Desta M. Pulley
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Stephany J. McDonald
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Colton D. Spencer
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Milena Sudarikov
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Nicole E. Hubbard
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Colin M. Kulick-Soper
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Samantha de Guzman
- College of Liberal Arts, Temple University, 1114 West Berks Street, Philadelphia, PA 19122
| | - Sara Hayden
- College of Liberal Arts, Temple University, 1114 West Berks Street, Philadelphia, PA 19122
| | - Jessica J. Debski
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Bianca Patel
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Douglas P. Fox
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| | - Daniel F. Manvich
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084
| |
Collapse
|
9
|
Richards BK, Ch'ng SS, Simon AB, Pang TY, Kim JH, Lawrence AJ, Perry CJ. Relaxin family peptide receptor 3 (RXFP3) expressing cells in the zona incerta/lateral hypothalamus augment behavioural arousal. J Neurochem 2025; 169:e16217. [PMID: 39233365 PMCID: PMC11658188 DOI: 10.1111/jnc.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.
Collapse
Affiliation(s)
- Brandon K. Richards
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Sarah S. Ch'ng
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Ariel B. Simon
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Terence Y. Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Institute of Health and Sports (IHES)Victoria UniversityFootscrayVictoriaAustralia
| | - Jee Hyun Kim
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Christina J. Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
10
|
Pessoa L. The Spiraling Cognitive-Emotional Brain: Combinatorial, Reciprocal, and Reentrant Macro-organization. J Cogn Neurosci 2024; 36:2697-2711. [PMID: 38530327 PMCID: PMC12005377 DOI: 10.1162/jocn_a_02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This article proposes a framework for understanding the macro-scale organization of anatomical pathways in the mammalian brain. The architecture supports flexible behavioral decisions across a spectrum of spatiotemporal scales. The proposal emphasizes the combinatorial, reciprocal, and reentrant connectivity-called CRR neuroarchitecture-between cortical, BG, thalamic, amygdala, hypothalamic, and brainstem circuits. Thalamic nuclei, especially midline/intralaminar nuclei, are proposed to act as hubs routing the flow of signals between noncortical areas and pFC. The hypothalamus also participates in multiregion circuits via its connections with cortex and thalamus. At slower timescales, long-range behaviors integrate signals across levels of the neuroaxis. At fast timescales, parallel engagement of pathways allows urgent behaviors while retaining flexibility. Overall, the proposed architecture enables context-dependent, adaptive behaviors spanning proximate to distant spatiotemporal scales. The framework promotes an integrative perspective and a distributed, heterarchical view of brain function.
Collapse
|
11
|
Piszczek L, Haubensak W. Neuroethology: Fear outside the box. Curr Biol 2024; 34:R685-R687. [PMID: 39043141 DOI: 10.1016/j.cub.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Behavioral neuroscience has successfully and in great detail deconstructed circuit mechanisms underlying fear behaviors using reductionist approaches. Recent research in more naturalistic settings now reveals additional higher-level organization, where hypothalamic circuits multiplex threat detection and fear memory updating to safely navigate complex environments.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
12
|
Stempel AV, Evans DA, Arocas OP, Claudi F, Lenzi SC, Kutsarova E, Margrie TW, Branco T. Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice. Curr Biol 2024; 34:3031-3039.e7. [PMID: 38936364 DOI: 10.1016/j.cub.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.
Collapse
Affiliation(s)
- A Vanessa Stempel
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| | - Dominic A Evans
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Oriol Pavón Arocas
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Stephen C Lenzi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Elena Kutsarova
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Troy W Margrie
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK.
| |
Collapse
|
13
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
14
|
Viellard JMA, Melleu FF, Tamais AM, de Almeida AP, Zerbini C, Ikebara JM, Domingues K, de Lima MAX, Oliveira FA, Motta SC, Canteras NS. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr Biol 2024; 34:2657-2671.e7. [PMID: 38810639 DOI: 10.1016/j.cub.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.
Collapse
Affiliation(s)
- Juliette M A Viellard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia M Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alisson P de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliane M Ikebara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Karolina Domingues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Miguel A X de Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC)-Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Simone C Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
15
|
Kim J, Tashjian SM, Mobbs D. The human hypothalamus coordinates switching between different survival actions. PLoS Biol 2024; 22:e3002624. [PMID: 38941452 PMCID: PMC11213486 DOI: 10.1371/journal.pbio.3002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.
Collapse
Affiliation(s)
- Jaejoong Kim
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
| | - Sarah M. Tashjian
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
| | - Dean Mobbs
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
- Neural Systems Program at the California, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
16
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
17
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Alemany-González M, Wokke ME, Chiba T, Narumi T, Kaneko N, Yokoyama H, Watanabe K, Nakazawa K, Imamizu H, Koizumi A. Fear in action: Fear conditioning and alleviation through body movements. iScience 2024; 27:109099. [PMID: 38414854 PMCID: PMC10897899 DOI: 10.1016/j.isci.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Fear memories enhance survival especially when the memories guide defensive movements to minimize harm. Accordingly, fear memories and body movements have tight relationships in animals: Fear memory acquisition results in adapting reactive defense movements, while training active defense movements reduces fear memory. However, evidence in humans is scarce because their movements are typically suppressed in experiments. Here, we tracked adult participants' body motions while they underwent ecologically valid fear conditioning in a 3D virtual space. First, with body motion tracking, we revealed that distinct spatiotemporal body movement patterns emerge through fear conditioning. Second, subsequent training to actively avoid threats with naturalistic defensive actions led to a long-term (24 h) reduction of physiological and embodied conditioned responses, while extinction or vicarious training only transiently reduced the responses. Together, our results highlight the role of body movements in human fear memory and its intervention.
Collapse
Affiliation(s)
| | - Martijn E. Wokke
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- Centre for Mind, Brain and Behavior, University of Granada, Granada, Spain
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Toshinori Chiba
- The Department of Decoded Neurofeedback, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- The Department of Psychiatry, Self-Defense Forces Hanshin Hospital, Kawanishi, Japan
- The Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Narumi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Department of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Imamizu
- Research Into Artifacts, Center for Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neuroscience, Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Ai Koizumi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| |
Collapse
|
19
|
Reis FMCV, Maesta-Pereira S, Ollivier M, Schuette PJ, Sethi E, Miranda BA, Iniguez E, Chakerian M, Vaughn E, Sehgal M, Nguyen DCT, Yuan FTH, Torossian A, Ikebara JM, Kihara AH, Silva AJ, Kao JC, Khakh BS, Adhikari A. Control of feeding by a bottom-up midbrain-subthalamic pathway. Nat Commun 2024; 15:2111. [PMID: 38454000 PMCID: PMC10920831 DOI: 10.1038/s41467-024-46430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthias Ollivier
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Blake A Miranda
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emily Iniguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric Vaughn
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
| | - Darren C T Nguyen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Faith T H Yuan
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anita Torossian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Baljit S Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Boggan MB, Ramos AR, Magalhães G, Burgos-Robles A. Prefrontal Regulation of Safety Learning during Ethologically Relevant Thermal Threat. eNeuro 2024; 11:ENEURO.0140-23.2024. [PMID: 38272673 PMCID: PMC10903390 DOI: 10.1523/eneuro.0140-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.
Collapse
Affiliation(s)
- Ada C Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jaelyn M Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Hope D Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Miranda B Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Angelica R Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
21
|
Zheng JY, Wang ZH, Zhu ZY, Huang ZH, Song KX, Ye BL, Zhou HY, Gao SQ. The Lateral Parabrachial Nucleus Inputs to the Lateral Hypothalamus Trigger Nocifensive Behaviors. Neuroscience 2024; 537:12-20. [PMID: 38036057 DOI: 10.1016/j.neuroscience.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The lateral parabrachial nucleus (LPBN) is known to play a key role in relaying noxious information from the spinal cord to the brain. Different LPBN efferent mediate different aspects of the nocifensive response. However, the function of the LPBN → lateral hypothalamus (LH) circuit in response to noxious stimuli has remained unknown. Here, we show that LPBN → LH circuit is activated by noxious stimuli. Interestingly, either activation or inhibition of this circuit induced analgesia. Optogenetic activation of LPBN afferents in the LH elicited spontaneous jumping and induced place aversion. Optogenetic inhibition inhibited jumping behavior to noxious heat. Ablation of LH glutamatergic neurons could abolish light-evoked analgesia and jumping behavior. Our study revealed a role for the LPBN → LH pathway in nocifensive behaviors.
Collapse
Affiliation(s)
- Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Hao Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Yu Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Han Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ke-Xin Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bao-Lin Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang-Qi Gao
- Departments of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630 Guangzhou, Guangdong Province, China.
| |
Collapse
|
22
|
Dorst KE, Senne RA, Diep AH, de Boer AR, Suthard RL, Leblanc H, Ruesch EA, Pyo AY, Skelton S, Carstensen LC, Malmberg S, McKissick OP, Bladon JH, Ramirez S. Hippocampal Engrams Generate Variable Behavioral Responses and Brain-Wide Network States. J Neurosci 2024; 44:e0340232023. [PMID: 38050098 PMCID: PMC10860633 DOI: 10.1523/jneurosci.0340-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Ryan A Senne
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Anh H Diep
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Antje R de Boer
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Sara Skelton
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Lucas C Carstensen
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Samantha Malmberg
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
- Graduate Program for Neuroscience, Boston University, Boston 02215, Massachusetts
| | - Olivia P McKissick
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - John H Bladon
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston 02215, Massachusetts
| |
Collapse
|
23
|
Borkar CD, Stelly CE, Fu X, Dorofeikova M, Le QSE, Vutukuri R, Vo C, Walker A, Basavanhalli S, Duong A, Bean E, Resendez A, Parker JG, Tasker JG, Fadok JP. Top-down control of flight by a non-canonical cortico-amygdala pathway. Nature 2024; 625:743-749. [PMID: 38233522 PMCID: PMC10878556 DOI: 10.1038/s41586-023-06912-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.
Collapse
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Psychological Sciences, Loyola University, New Orleans, LA, USA
| | - Xin Fu
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Maria Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Quan-Son Eric Le
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Rithvik Vutukuri
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Catherine Vo
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alex Walker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Samhita Basavanhalli
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Anh Duong
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Erin Bean
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jones G Parker
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
24
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
25
|
Tseng YT, Schaefke B, Wei P, Wang L. Defensive responses: behaviour, the brain and the body. Nat Rev Neurosci 2023; 24:655-671. [PMID: 37730910 DOI: 10.1038/s41583-023-00736-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
26
|
Ly A, Barker A, Hotchkiss H, Prévost ED, McGovern DJ, Kilpatrick Z, Root DH. Bed nucleus of the stria terminalis GABA neurons are necessary for changes in foraging behaviour following an innate threat. Eur J Neurosci 2023; 58:3630-3649. [PMID: 37715507 PMCID: PMC10748738 DOI: 10.1111/ejn.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Foraging is a universal behaviour that has co-evolved with predation pressure. We investigated the role of the bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Both robotic and live predator interactions increased BNST GABA neuron activity. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared with pre-encounter behaviour. Inhibition of BNST GABA neurons had no effect on foraging behaviour post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and significantly altered their overall foraging performance. Inhibition of BNST GABA neurons during live predator exposure prevented changes in foraging behaviour from developing after a live predator threat. BNST GABA neuron inhibition did not alter foraging behaviour during robotic or live predator threats. We conclude that these results demonstrate that while both robotic and live predator encounters effectively intrude on foraging behaviour, the perceived risk and behavioural consequences of the threat are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behaviour.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alexandra Barker
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, USA
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
27
|
de Araujo Salgado I, Li C, Burnett CJ, Rodriguez Gonzalez S, Becker JJ, Horvath A, Earnest T, Kravitz AV, Krashes MJ. Toggling between food-seeking and self-preservation behaviors via hypothalamic response networks. Neuron 2023; 111:2899-2917.e6. [PMID: 37442130 PMCID: PMC10528369 DOI: 10.1016/j.neuron.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/02/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.
Collapse
Affiliation(s)
- Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - C Joseph Burnett
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan J Becker
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Horvath
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Earnest
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
28
|
Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol 2023; 33:3215-3228.e7. [PMID: 37490921 PMCID: PMC10529150 DOI: 10.1016/j.cub.2023.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The anterior hypothalamic area (AHA) is a critical structure for defensive responding. Here, we identified a cluster of parvalbumin-expressing neurons in the AHA (AHAPV) that are glutamatergic with fast-spiking properties and send axonal projections to the dorsal premammillary nucleus (PMD). Using in vivo functional imaging, optogenetics, and behavioral assays, we determined the role of these AHAPV neurons in regulating behaviors essential for survival. We observed that AHAPV neuronal activity significantly increases when mice are exposed to a predator, and in a real-time place preference assay, we found that AHAPV neuron photoactivation is aversive. Moreover, activation of both AHAPV neurons and the AHAPV → PMD pathway triggers escape responding during a predator-looming test. Furthermore, escape responding is impaired after AHAPV neuron ablation, and anxiety-like behavior as measured by the open field and elevated plus maze assays does not seem to be affected by AHAPV neuron ablation. Finally, whole-brain metabolic mapping using positron emission tomography combined with AHAPV neuron photoactivation revealed discrete activation of downstream areas involved in arousal, affective, and defensive behaviors including the amygdala and the substantia nigra. Our results indicate that AHAPV neurons are a functional glutamatergic circuit element mediating defensive behaviors, thus expanding the identity of genetically defined neurons orchestrating fight-or-flight responses. Together, our work will serve as a foundation for understanding neuropsychiatric disorders triggered by escape such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Anjali Gajendiran
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
30
|
Crawford LS, Meylakh N, Macey PM, Macefield VG, Keay KA, Henderson LA. Stimulus-independent and stimulus-dependent neural networks underpin placebo analgesia responsiveness in humans. Commun Biol 2023; 6:569. [PMID: 37244947 DOI: 10.1038/s42003-023-04951-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023] Open
Abstract
The neural circuits that regulate placebo analgesia responsivity are unknown, although engagement of brainstem pain modulatory regions is likely critical. Here we show in 47 participants that differences are present in neural circuit connectivity's in placebo responders versus non-responders. We distinguish stimulus-independent and stimulus-dependent neural networks that display altered connections between the hypothalamus, anterior cingulate cortex and midbrain periaqueductal gray matter. This dual regulatory system underpins an individual's ability to mount placebo analgesia.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, VIC, 3800, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
31
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Ramos AR, Boggan MB, Lopez-Pesina SM, Magalhães G, Burgos-Robles A. The infralimbic and prelimbic cortical areas bidirectionally regulate safety learning during normal and stress conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539516. [PMID: 37205585 PMCID: PMC10187296 DOI: 10.1101/2023.05.05.539516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Safety learning is a critical function for behavioral adaptation, environmental fitness, and mental health. Animal models have implicated the prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) in safety learning. However, whether these regions differentially contribute to safety learning and how their contributions become affected by stress still remain poorly understood. In this study, we evaluated these issues using a novel semi-naturalistic mouse model for threat and safety learning. As mice navigated within a test arena, they learned that specific zones were associated with either noxious cold temperatures ("threat") or pleasant warm temperatures ("safety"). Optogenetic-mediated inhibition revealed critical roles for the IL and PL regions for selectively controlling safety learning during these naturalistic conditions. This form of safety learning was also highly susceptible to stress pre-exposure, and while IL inhibition mimicked the deficits produced by stress, PL inhibition fully rescued safety learning in stress-exposed mice. Collectively, these findings indicate that IL and PL bidirectionally regulate safety learning during naturalistic situations, with the IL region promoting this function and the PL region suppressing it, especially after stress. A model of balanced IL and PL activity is proposed as a fundamental mechanism for controlling safety learning.
Collapse
Affiliation(s)
- Ada C. Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Jaelyn M. Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Hope D. Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Angelica R. Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
- Department of Psychology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Miranda B. Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
- Department of Psychology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Savannah M. Lopez-Pesina
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States, 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States, 78249
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, United States, 78249
| |
Collapse
|
32
|
Reis FMCV, Mobbs D, Canteras NS, Adhikari A. Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology 2023; 228:109458. [PMID: 36773777 DOI: 10.1016/j.neuropharm.2023.109458] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The midbrain periaqueductal gray (PAG) has been recognized for decades as having a central role in the control of a wide variety of defensive responses. Initial discoveries relied primarily on lesions, electrical stimulation and pharmacology. Recent developments in neural activity imaging and in methods to control activity with anatomical and genetic specificity have revealed additional streams of data informing our understanding of PAG function. Here, we discuss both classic and modern studies reporting on how PAG-centered circuits influence innate as well as learned defensive actions in rodents and humans. Though early discoveries emphasized the PAG's role in rapid induction of innate defensive actions, emerging new data indicate a prominent role for the PAG in more complex processes, including representing behavioral states and influencing fear learning and memory. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, CA, United States.
| | - Dean Mobbs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA, United States.
| |
Collapse
|
33
|
Wang F, Chen Y, Lin Y, Wang X, Li K, Han Y, Wu J, Shi X, Zhu Z, Long C, Hu X, Duan S, Gao Z. A parabrachial to hypothalamic pathway mediates defensive behavior. eLife 2023; 12:85450. [PMID: 36930206 PMCID: PMC10023160 DOI: 10.7554/elife.85450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuge Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuxin Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xuze Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Kaiyuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yong Han
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Jintao Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xingyi Shi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Zhenggang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Chaoying Long
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xiaojun Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- The Institute of Brain and Cognitive Sciences, Zhejiang University City CollegeHangzhouChina
- Chuanqi Research and Development Center of Zhejiang UniversityHangzhouChina
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| |
Collapse
|
34
|
A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance. Nat Commun 2022; 13:7464. [PMID: 36463200 PMCID: PMC9719513 DOI: 10.1038/s41467-022-35211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Collapse
|
35
|
Hajdarovic KH, Yu D, Webb AE. Understanding the aging hypothalamus, one cell at a time. Trends Neurosci 2022; 45:942-954. [PMID: 36272823 PMCID: PMC9671837 DOI: 10.1016/j.tins.2022.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
The hypothalamus is a brain region that integrates signals from the periphery and the environment to maintain organismal homeostasis. To do so, specialized hypothalamic neuropeptidergic neurons control a range of processes, such as sleep, feeding, the stress response, and hormone release. These processes are altered with age, which can affect longevity and contribute to disease status. Technological advances, such as single-cell RNA sequencing, are upending assumptions about the transcriptional identity of cell types in the hypothalamus and revealing how distinct cell types change with age. In this review, we summarize current knowledge about the contribution of hypothalamic functions to aging. We highlight recent single-cell studies interrogating distinct cell types of the mouse hypothalamus and suggest ways in which single-cell 'omics technologies can be used to further understand the aging hypothalamus and its role in longevity.
Collapse
Affiliation(s)
| | - Doudou Yu
- Graduate program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
36
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Bortoloci JGT, Motta SC. Failure of AAV retrograde tracer transduction in hypothalamic projections to the periaqueductal gray matter. Heliyon 2022; 8:e10243. [PMID: 36061004 PMCID: PMC9433681 DOI: 10.1016/j.heliyon.2022.e10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
|
38
|
Schuette PJ, Ikebara JM, Maesta-Pereira S, Torossian A, Sethi E, Kihara AH, Kao JC, Reis FMCV, Adhikari A. GABAergic CA1 neurons are more stable following context changes than glutamatergic cells. Sci Rep 2022; 12:10310. [PMID: 35725588 PMCID: PMC9209472 DOI: 10.1038/s41598-022-13799-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.
Collapse
Affiliation(s)
- Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anita Torossian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
39
|
La-Vu MQ, Sethi E, Maesta-Pereira S, Schuette PJ, Tobias BC, Reis FMCV, Wang W, Torossian A, Bishop A, Leonard SJ, Lin L, Cahill CM, Adhikari A. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. eLife 2022; 11:77115. [PMID: 35674316 PMCID: PMC9224993 DOI: 10.7554/elife.77115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
During threat exposure, survival depends on defensive reactions. Prior works linked large glutamatergic populations in the midbrain periaqueductal gray (PAG) to defensive freezing and flight, and established that the overarching functional organization axis of the PAG is along anatomically-defined columns. Accordingly, broad activation of the dorsolateral column induces flight, while activation of the lateral or ventrolateral (l and vl) columns induces freezing. However, the PAG contains diverse cell types that vary in neurochemistry. How these cell types contribute to defense remains unknown, indicating that targeting sparse, genetically-defined populations may reveal how the PAG generates diverse behaviors. Though prior works showed that broad excitation of the lPAG or vlPAG causes freezing, we found in mice that activation of lateral and ventrolateral PAG (l/vlPAG) cholecystokinin-expressing (CCK) cells selectively caused flight to safer regions within an environment. Furthermore, inhibition of l/vlPAG-CCK cells reduced predator avoidance without altering other defensive behaviors like freezing. Lastly, l/vlPAG-CCK activity decreased when approaching threat and increased during movement to safer locations. These results suggest CCK cells drive threat avoidance states, which are epochs during which mice increase distance from threat and perform evasive escape. Conversely, l/vlPAG pan-neuronal activation promoted freezing, and these cells were activated near threat. Thus, CCK l/vlPAG cells have opposing function and neural activation motifs compared to the broader local ensemble defined solely by columnar boundaries. In addition to the anatomical columnar architecture of the PAG, the molecular identity of PAG cells may confer an additional axis of functional organization, revealing unexplored functional heterogeneity.
Collapse
Affiliation(s)
- Mimi Q La-Vu
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Peter J Schuette
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Weisheng Wang
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Anita Torossian
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Amy Bishop
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Saskia J Leonard
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Lilly Lin
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Catherine M Cahill
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, Los Angeles, United States.,Semel Institute for Neuroscience and Human Behavior, Los Angeles, United States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
40
|
de Almeida AP, Baldo MVC, Motta SC. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc Biol Sci 2022; 289:20220799. [PMID: 35703050 PMCID: PMC9198769 DOI: 10.1098/rspb.2022.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In nature, confrontations between conspecifics are recurrent and related, in general, due to the lack of resources such as food and territory. Adequate defence against a conspecific aggressor is essential for the individual's survival and the group integrity. However, repeated social defeat is a significant stressor promoting several behavioural changes, including social defence per se. What would be the neural basis of these behavioural changes? To build new hypotheses about this, we here investigate the effects of repeated social stress on the neural circuitry underlying motivated social defence behaviour in male mice. We observed that animals re-exposed to the aggressor three times spent more time in passive defence during the last exposure than in the first one. These animals also show less activation of the amygdalar and hypothalamic nuclei related to the processing of conspecific cues. In turn, we found no changes in the activation of the hypothalamic dorsal pre-mammillary nucleus (PMD) that is essential for passive defence. Therefore, our data suggest that the balance between the activity of circuits related to conspecific processing and the PMD determines the pattern of social defence behaviour. Changes in this balance may be the basis of the adaptations in social defence after repeated social defeat.
Collapse
Affiliation(s)
- Alisson P. de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcus V. C. Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Simone C. Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| |
Collapse
|
41
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
de Lima MAX, Baldo MVC, Oliveira FA, Canteras NS. The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. eLife 2022; 11:67007. [PMID: 34984975 PMCID: PMC8730726 DOI: 10.7554/elife.67007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.
Collapse
Affiliation(s)
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC) - Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus. Nat Neurosci 2022; 25:72-85. [PMID: 34980925 DOI: 10.1038/s41593-021-00985-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
Innate defensive behaviors triggered by environmental threats are important for animal survival. Among these behaviors, defensive attack toward threatening stimuli (for example, predators) is often the last line of defense. How the brain regulates defensive attack remains poorly understood. Here we show that noxious mechanical force in an inescapable context is a key stimulus for triggering defensive attack in laboratory mice. Mechanically evoked defensive attacks were abrogated by photoinhibition of vGAT+ neurons in the anterior hypothalamic nucleus (AHN). The vGAT+ AHN neurons encoded the intensity of mechanical force and were innervated by brain areas relevant to pain and attack. Activation of these neurons triggered biting attacks toward a predator while suppressing ongoing behaviors. The projection from vGAT+ AHN neurons to the periaqueductal gray might be one AHN pathway participating in mechanically evoked defensive attack. Together, these data reveal that vGAT+ AHN neurons encode noxious mechanical stimuli and regulate defensive attack in mice.
Collapse
|
44
|
Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for State-Dependent Modulation of Locomotion. Front Hum Neurosci 2021; 15:745689. [PMID: 34858153 PMCID: PMC8631332 DOI: 10.3389/fnhum.2021.745689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.
Collapse
Affiliation(s)
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria S Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Carlos de Bariloche, Argentina
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.,Center for Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Fratzl A, Koltchev AM, Vissers N, Tan YL, Marques-Smith A, Stempel AV, Branco T, Hofer SB. Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron 2021; 109:3810-3822.e9. [PMID: 34614420 PMCID: PMC8648186 DOI: 10.1016/j.neuron.2021.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023]
Abstract
Animals can choose to act upon, or to ignore, sensory stimuli, depending on circumstance and prior knowledge. This flexibility is thought to depend on neural inhibition, through suppression of inappropriate and disinhibition of appropriate actions. Here, we identified the ventral lateral geniculate nucleus (vLGN), an inhibitory prethalamic area, as a critical node for control of visually evoked defensive responses in mice. The activity of vLGN projections to the medial superior colliculus (mSC) is modulated by previous experience of threatening stimuli, tracks the perceived threat level in the environment, and is low prior to escape from a visual threat. Optogenetic stimulation of the vLGN abolishes escape responses, and suppressing its activity lowers the threshold for escape and increases risk-avoidance behavior. The vLGN most strongly affects visual threat responses, potentially via modality-specific inhibition of mSC circuits. Thus, inhibitory vLGN circuits control defensive behavior, depending on an animal’s prior experience and its anticipation of danger in the environment. Activity of vLGN axons in the mSC reflects the previous experience of threat The vLGN bidirectionally controls escape from visual threat Activating the vLGN specifically reduces the activity of visual units in mSC Activating vLGN axons in the mSC specifically suppresses escape from visual threat
Collapse
Affiliation(s)
- Alex Fratzl
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Alice M Koltchev
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Yu Lin Tan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Andre Marques-Smith
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
46
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
47
|
Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Mol Brain 2021; 14:136. [PMID: 34496926 PMCID: PMC8424891 DOI: 10.1186/s13041-021-00844-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Innately aversive experiences produce rapid defensive responses and powerful emotional memories. The midbrain periaqueductal gray (PAG) drives defensive behaviors through projections to brainstem motor control centers, but the PAG has also been implicated in aversive learning, receives information from aversive-signaling sensory systems and sends ascending projections to the thalamus as well as other forebrain structures which could control learning and memory. Here we sought to identify PAG subregions and cell types which instruct memory formation in response to aversive events. We found that optogenetic inhibition of neurons in the dorsolateral subregion of the PAG (dlPAG), but not the ventrolateral PAG (vlPAG), during an aversive event reduced memory formation. Furthermore, inhibition of a specific population of thalamus projecting dlPAG neurons projecting to the anterior paraventricular thalamus (aPVT) reduced aversive learning, but had no effect on the expression of previously learned defensive behaviors. By contrast, inactivation of dlPAG neurons which project to the posterior PVT (pPVT) or centromedial intralaminar thalamic nucleus (CM) had no effect on learning. These results reveal specific subregions and cell types within PAG responsible for its learning related functions.
Collapse
|
48
|
Wang W, Schuette PJ, La-Vu MQ, Torossian A, Tobias BC, Ceko M, Kragel PA, Reis FMCV, Ji S, Sehgal M, Maesta-Pereira S, Chakerian M, Silva AJ, Canteras NS, Wager T, Kao JC, Adhikari A. Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. eLife 2021; 10:e69178. [PMID: 34468312 PMCID: PMC8457830 DOI: 10.7554/elife.69178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/28/2021] [Indexed: 02/04/2023] Open
Abstract
Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Peter J Schuette
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Anita Torossian
- University of California, Los AngelesLos AngelesUnited States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Marta Ceko
- Institute of Cognitive Science, University of ColoradoBoulderUnited States
| | | | - Fernando MCV Reis
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Shiyu Ji
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | | | - Meghmik Chakerian
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Alcino J Silva
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los AngelesLos AngelesUnited States
| | | | - Tor Wager
- University of ColoradoBoulderUnited States
| | - Jonathan C Kao
- Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
49
|
Borkar CD, Fadok JP. The hypothalamus coordinates diverse escape strategies from threat. Neuron 2021; 109:1763-1765. [PMID: 34081918 PMCID: PMC10893794 DOI: 10.1016/j.neuron.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neural circuits orchestrating complex behavioral response strategies to threat are not understood. In this issue of Neuron, Wang et al. (2021) establish the hypothalamic dorsal premammillary nucleus as a critical node that communicates with thalamic and midbrain regions to coordinate diverse escape strategies.
Collapse
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Psychology, Tulane University, New Orleans, LA 70118-5698, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118-5698, USA
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118-5698, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118-5698, USA.
| |
Collapse
|
50
|
Reis FM, Lee JY, Maesta-Pereira S, Schuette PJ, Chakerian M, Liu J, La-Vu MQ, Tobias BC, Ikebara JM, Kihara AH, Canteras NS, Kao JC, Adhikari A. Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife 2021; 10:64934. [PMID: 33955356 PMCID: PMC8133778 DOI: 10.7554/elife.64934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.
Collapse
Affiliation(s)
- Fernando McV Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Johannes Y Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Jinhan Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|