1
|
da Silva DG, Torres-Cruz M, Helou AY, Xavier GF. Cytochrome-C-oxidase expression in the subiculum and anterior thalamic nuclei of rats increases following training in an extrapolation of serial stimulus patterns task. Physiol Behav 2025; 296:114926. [PMID: 40252943 DOI: 10.1016/j.physbeh.2025.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The brain continuously monitors the environment, comparing predictions based on memories of past regularities and action plans with current sensory information. The subiculum and the anteroventral thalamus have been proposed to play critical roles in this Generator of Predictions System (GPS). This study evaluated the hypothesis that cytochrome C oxidase (COX) expression changes in the subiculum and anterior thalamic nuclei of subjects exposed to training and testing in an extrapolation of serial stimulus pattern task that stimulates the generation of predictions. Shortly, male Wistar rats were trained to run through a straight alleyway to receive variable amounts of sunflower seeds. In each session (one session per day), the animals ran 4 successive trials, receiving different amounts of sunflower seeds in each trial. Subjects exposed to the monotonic pattern (M) received 14, 7, 3, and 1 sunflower seeds. Subjects exposed to the non-monotonic pattern (NM) received 14, 3, 7, and 1 sunflower seeds. The animals were trained for 20 sessions. In the 21st session, a fifth trial, never experienced before by the subjects, was added immediately after the fourth trial. An additional control group was not exposed to training in the task, allowing evaluation of COX expression in untrained subjects. Data revealed increased COX activity in the anteroventral thalamus, and in the ventral subiculum, all related to training in the NM, but not M, schedule of reward. Data also revealed reduced COX activity in the dorsal portion of the subiculum, restricted to subjects trained with the NM serial pattern. These figures suggest that the anteroventral thalamus and the ventral and dorsal subiculum are engaged in the acquisition of extrapolation of serial stimulus pattern tasks, thus opening novel avenues to studying neural brain circuits involved in generating predictions. One possibility, for instance, would be to evaluate the time course of these COX activations in association with training in the M and NM serial patterns.
Collapse
Affiliation(s)
- Daniel Giura da Silva
- Laboratory of Neuroscience and Behavior, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| | - Mateus Torres-Cruz
- Laboratory of Neuroscience and Behavior, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| | - Ammir Yacoub Helou
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Gilberto Fernando Xavier
- Laboratory of Neuroscience and Behavior, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
2
|
Zhang YX, Li LY, Xing Y, Chen AX, Xie ST, Li HZ, Zhang QP, Zhang XY, Yang X, Yung WH, Zhu JN. Glutamatergic synaptic plasticity in medial vestibular nuclei during vestibular compensation. Neuroscience 2025; 576:213-222. [PMID: 40316005 DOI: 10.1016/j.neuroscience.2025.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Vestibular compensation, the spontaneous recovery from vestibular dysfunction following unilateral vestibular loss, serves as a valuable model for investigating post-lesion plasticity in the adult central nervous system. Elucidating the mechanisms underlying vestibular compensation also offers promising therapeutic avenues for treating vestibular disorders. While most studies have focused on the dynamics of GABAergic synaptic plasticity and intrinsic cellular adaptations in the ipsilesional medial vestibular nucleus (MVN) after unilateral labyrinthectomy (UL), the role of glutamatergic synaptic plasticity in this process remains largely unexplored. Here, we employed Golgi staining, immunofluorescence, whole-cell patch-clamp recordings, and behavioral assessments to examine the structural and functional dynamics of glutamatergic synapses during vestibular compensation. Our results reveal rapid structural and functional plasticity of glutamatergic transmission in response to UL. Specifically, dendritic spine density and morphology in the ipsilesional MVN recovered to baseline levels within 6 to 24 h post-UL. Furthermore, UL-induced postsynaptic depression of glutamatergic synaptic strength, reflected by a reduced AMPA/NMDA ratio, was reversed within 24 h, likely due to an upregulation of Ca2+-permeable AMPA receptors. In contrast, presynaptic glutamate release probability, as indicated by a reduced frequency of spontaneous excitatory postsynaptic currents, was not fully compensated during this period. These results suggest that while presynaptic properties recover more slowly in ipsilesional MVN neurons following UL, postsynaptic glutamatergic transmission undergoes rapid structural and functional reorganization. The findings highlight glutamatergic synaptic plasticity as a critical driver for vestibular compensation and suggest that pharmacological interventions targeting these mechanisms may accelerate functional recovery, offering potential therapeutic avenues for vestibular disorders.
Collapse
Affiliation(s)
- Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lu-Yao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Xing
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ao-Xue Chen
- Department of Neurology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xu Yang
- Department of Neurology, Peking University First Hospital, Beijing, China.
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye H, Wang MJ, Peng SY, Xue WX, Zhang YX, Li W, Tang H, Huang T, Zhang Q, Li L, Gao L, Zhou H, Hang C, Zhu JN, Li X, Liu X, Cong Q, Yan C. GABA-dependent microglial elimination of inhibitory synapses underlies neuronal hyperexcitability in epilepsy. Nat Neurosci 2025:10.1038/s41593-025-01979-2. [PMID: 40425792 DOI: 10.1038/s41593-025-01979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Neuronal hyperexcitability is a common pathophysiological feature of many neurological diseases. Neuron-glia interactions underlie this process but the detailed mechanisms remain unclear. Here, we reveal a critical role of microglia-mediated selective elimination of inhibitory synapses in driving neuronal hyperexcitability. In epileptic mice of both sexes, hyperactive inhibitory neurons directly activate surveilling microglia via GABAergic signaling. In response, these activated microglia preferentially phagocytose inhibitory synapses, disrupting the balance between excitatory and inhibitory synaptic transmission and amplifying network excitability. This feedback mechanism depends on both GABA-GABAB receptor-mediated microglial activation and complement C3-C3aR-mediated microglial engulfment of inhibitory synapses, as pharmacological or genetic blockage of both pathways effectively prevents inhibitory synapse loss and ameliorates seizure symptoms in mice. Additionally, putative cell-cell interaction analyses of brain tissues from males and females with temporal lobe epilepsy reveal that inhibitory neurons induce microglial phagocytic states and inhibitory synapse loss. Our findings demonstrate that inhibitory neurons can directly instruct microglial states to control inhibitory synaptic transmission through a feedback mechanism, leading to the development of neuronal hyperexcitability in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiangqiang Liu
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Wei-Xuan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Department of Cell Biology, College of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
4
|
Ren Y, Ma Z, Ding Z, Yang R, Li X, He X, Liu T. SFPGCL: Specificity-preserving federated population graph contrastive learning for multi-site ASD identification using rs-fMRI data. Comput Med Imaging Graph 2025; 124:102558. [PMID: 40424859 DOI: 10.1016/j.compmedimag.2025.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder that affects people's social communication and daily routine. Most existing imaging studies on ASD use single site resting-state functional magnetic resonance imaging (rs-fMRI) data, which may suffer from limited samples and geographic bias. Improving the generalization ability of the diagnostic models often necessitates a large-scale dataset from multiple imaging sites. However, centralizing multi-site data generally faces inherent challenges related to privacy, security, and storage burden. Federated learning (FL) can address these issues by enabling collaborative model training without centralizing data. Nevertheless, multi-site rs-fMRI data introduces site variations, causing unfavorable data heterogeneity. This negatively impacts biomarker identification and diagnostic decision. Moreover, previous FL approaches for fMRI analysis often ignore site-specific demographic information, such as age, gender, and full intelligence quotient (FIQ), providing useful information as non-imaging features. On the other hand, Graph Neural Networks (GNNs) are gaining popularity in fMRI representation learning due to their powerful graph representation capabilities. However, existing methods often focus on extracting subject-specific connectivity patterns and overlook inter-subject relationships in brain functional topology. In this study, we propose a specificity-preserving federated population graph contrastive learning (SFPGCL) framework for rs-fMRI analysis and multi-site ASD identification, including a server and multiple clients/sites for federated model aggregation. At each client, our model consists of a shared branch and a personalized branch, where parameters of the shared branch are sent to the sever, while those of the personalized branch remain local. This setup facilitates invariant knowledge sharing among sites and also helps preserve site specificity. In the shared branch, we employ a spatio-temporal attention graph neural network to learn temporal dynamics in fMRI data invariant to each site, and introduce a model-contrastive learning method to mitigate client data heterogeneity. In the personalized branch, we utilize population graph structure to fully integrate demographic information and functional network connectivity to preserve site-specific characteristics. Then, a site-invariant population graph is built to derive site-invariant representations based on the dynamic representations acquired from the shared branch. Finally, representations generated by the two branches are fused for classification. Experimental results on Autism Brain Imaging Data Exchange (ABIDE) show that SFPGCL achieves 80.0 % accuracy and 79.7 % AUC for ASD identification, which outperforms several other state-of-the art approaches.
Collapse
Affiliation(s)
- Yudan Ren
- School of Information Science & Technology, Northwest University, Xi'an, China.
| | - Zihan Ma
- School of Network and Data Center, Northwest University, Xi'an, China
| | - Zhenqing Ding
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Ruonan Yang
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Xiao Li
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Xiaowei He
- School of Network and Data Center, Northwest University, Xi'an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, University of Georgia, United States
| |
Collapse
|
5
|
Opalka AN, Dougherty KJ, Wang DV. A Distinct Down-to-Up Transition Assembly in the Retrosplenial Cortex during Slow-Wave Sleep. J Neurosci 2025; 45:e1484242025. [PMID: 39952672 PMCID: PMC11968548 DOI: 10.1523/jneurosci.1484-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the intricate mechanisms underlying slow-wave sleep (SWS) is crucial for deciphering the brain's role in memory consolidation and cognitive functions. It is well established that cortical delta oscillations (0.5-4 Hz) coordinate communications among cortical, hippocampal, and thalamic regions during SWS. These delta oscillations feature periods of Up and Down states, with the latter previously thought to represent complete cortical silence; however, new evidence suggests that Down states serve important functions for information exchange during memory consolidation. The retrosplenial cortex (RSC) is pivotal for memory consolidation due to its extensive connectivity with memory-associated regions, although it remains unclear how RSC neurons engage in delta-associated consolidation processes. Here, we employed multichannel in vivo electrophysiology to study RSC neuronal activity in ad libitum behaving male mice during natural SWS. We discovered a discrete assembly of putative excitatory RSC neurons (∼20%) that initiated firing at SWS Down states and reached maximal firing at the Down-to-Up transitions. Therefore, we termed these RSC neurons the Down-to-Up transition assembly (DUA) and the remaining RSC excitatory neurons as non-DUA. Compared with non-DUA, DUA neurons appear to exhibit higher firing rates and larger cell body size and lack monosynaptic connectivity with nearby RSC neurons. Furthermore, optogenetics combined with electrophysiology revealed differential innervation of RSC excitatory neurons by memory-associated inputs. Collectively, these findings provide insight into the distinct activity patterns of RSC neuronal subpopulations during sleep and their potential role in memory processes.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
6
|
Sehgal M, Filho DA, Kastellakis G, Kim S, Lee J, Shen Y, Huang S, Lavi A, Fernandes G, Davila Mejia I, Martin SS, Pekcan A, Wu MS, Heo WD, Poirazi P, Trachtenberg JT, Silva AJ. Compartmentalized dendritic plasticity in the mouse retrosplenial cortex links contextual memories formed close in time. Nat Neurosci 2025; 28:602-615. [PMID: 39962274 PMCID: PMC11893454 DOI: 10.1038/s41593-025-01876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2024] [Indexed: 03/12/2025]
Abstract
Events occurring close in time are often linked in memory, and recent studies suggest that such memories are encoded by overlapping neuronal ensembles. However, the role of dendritic plasticity mechanisms in linking memories is unknown. Here we show that memory linking is dependent not only on neuronal ensemble overlap in the mouse retrosplenial cortex, but also on branch-specific dendritic allocation mechanisms. The same dendritic segments are preferentially activated by two linked (but not independent) contextual memories, and spine clusters added after each of two linked (but not independent) contextual memories are allocated to the same dendritic segments. Importantly, we show that the reactivation of dendrites activated during the first context exploration is sufficient to link two contextual memories. Our results demonstrate a critical role for localized dendritic plasticity in memory integration and reveal rules governing how linked and independent memories are allocated to dendritic compartments.
Collapse
Affiliation(s)
- Megha Sehgal
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| | - Daniel Almeida Filho
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI CIMATEC, Salvador, Brazil
| | - George Kastellakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), Heraklion, Greece
| | - Sungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yang Shen
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Huang
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ayal Lavi
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Irene Davila Mejia
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sunaina Soans Martin
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Asli Pekcan
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody Shana Wu
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), Heraklion, Greece.
| | - Joshua T Trachtenberg
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Psychology & Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Jiang S, Hijazi S, Sarkany B, Gautsch VG, LaChance PA, Hasselmo ME, Bannerman D, Viney TJ. Pathological tau alters head direction signaling and induces spatial disorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622548. [PMID: 39574637 PMCID: PMC11581017 DOI: 10.1101/2024.11.07.622548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Spatial disorientation, an early symptom of dementia, is emerging as an early and reliable cognitive biomarker predicting future memory problems associated with Alzheimer's disease, but the underlying neural mechanisms have yet to be fully defined. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau, a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells, which contribute to spatial navigation and orientation. Hence, their disruption may contribute to spatial disorientation. To test this, we virally expressed human mutant tau (htau) in the ADn of adult mice. HD-tau mice were defined by phosphorylated and oligomeric forms of htau in ADn somata and in axon terminals in postsynaptic target regions. Compared to controls, HD-tau mice exhibited increased looping behavior during spatial learning, and made a greater number of head turns during memory recall, indicative of spatial disorientation. Using in vivo extracellular recordings, we identified htau-expressing ADn cells and found a lower proportion of HD cells in the ADn from HD-tau mice, along with reduced directionality and altered burst firing. These findings provide evidence that expression of pathological human tau can alter HD signaling, leading to impairments in spatial orientation.
Collapse
|
8
|
Li Y, Ren M, Liu B, Jiang T, Jia X, Zhang H, Gong H, Wang X. Dissection of the long-range circuit of the mouse intermediate retrosplenial cortex. Commun Biol 2025; 8:56. [PMID: 39814996 PMCID: PMC11736107 DOI: 10.1038/s42003-025-07463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP. The cortical connections of the RSP show laminar organisation in which the input neurons are distributed more in the deeper layers of the upstream cortex. Although different types of neurons have similar upstream circuits, GABAergic neurons show bidirectional connections with the hippocampus, whereas glutamatergic neurons only show unidirectional connections. Moreover, GABAergic neurons receive more inputs from the primary sensory cortex than from the prefrontal cortex and association cortex. The dorsal and ventral subregions have preferred circuits such that the dorsal RSP exhibits spatially topological connections with the dorsal visual cortex and lateral thalamus. The systematic study on long-range connections across RSP subregions and cell types may provide useful information for future revealing of RSP working mechanisms.
Collapse
Affiliation(s)
- Yuxiao Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Miao Ren
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Bimin Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Haili Zhang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiaojun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
| |
Collapse
|
9
|
Zhu JS, Gong Q, Zhao MT, Jiao Y. Atypical brain network topology of the triple network and cortico-subcortical network in autism spectrum disorder. Neuroscience 2025; 564:21-30. [PMID: 39550062 DOI: 10.1016/j.neuroscience.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The default mode network (DMN), salience network (SN), and central executive control network (CEN) form the well-known triple network, providing a framework for understanding various neurodevelopmental and psychiatric disorders. However, the topology of this network remains unclear in autism spectrum disorder (ASD). To gain a more profound understanding of ASD, we explored the topology of the triple network in ASD. Additionally, the striatum and thalamus are pivotal centres of information transmission within the brain, and the realization of various brain functions requires the coordination of cortical and subcortical structures. Therefore, we also investigated the topology of the cortico-subcortical network in ASD, which consists of the DMN, SN, CEN, striatum, and thalamus. Resting-state functional magnetic resonance imaging data on 208 ASD patients and 278 typically developing (TD) controls (8-18 years old) were obtained from the Autism Brain Imaging Data Exchange database. We performed graph theory analysis on the triple network and the cortico-subcortical network. The results showed that the triple network's clustering coefficient, lambda, and network local efficiency values were significantly lower in ASD, and the nodal degree and efficiency of the medial prefrontal cortex also decreased. For the cortico-subcortical network, the sigma, clustering coefficient, gamma, and network local efficiency showed the same reduction, and the altered clustering coefficient negatively correlated with ASD manifestations. In addition, the interaction between the DMN and CEN was more robust in ASD patients. These findings enhance our understanding of ASD and suggest that subcortical structures should be more considered in future ASD related studies.
Collapse
Affiliation(s)
- Jun-Sa Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China; Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qi Gong
- Suzhou Joint Graduate School, Southeast University, Suzhou 215123, China
| | - Mei-Ting Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yun Jiao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Kim JI, Miura Y, Li MY, Revah O, Selvaraj S, Birey F, Meng X, Thete MV, Pavlov SD, Andersen J, Pașca AM, Porteus MH, Huguenard JR, Pașca SP. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 2024; 112:4048-4059.e7. [PMID: 39419023 DOI: 10.1016/j.neuron.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
Collapse
Affiliation(s)
- Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Sergey D Pavlov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Anca M Pașca
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Ling Z, Cancan H, Xinyi L, Dandan F, Haisan Z, Hongxing Z, Chunming X. Thalamic Volumes and Functional Networks Linked With Self-Regulation Dysfunction in Major Depressive Disorder. CNS Neurosci Ther 2024; 30:e70116. [PMID: 39523461 PMCID: PMC11551040 DOI: 10.1111/cns.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Self-regulation (SR) dysfunction is a crucial risk factor for major depressive disorder (MDD). However, neural substrates of SR linking MDD remain unclear. METHODS Sixty-eight healthy controls and 75 MDD patients were recruited to complete regulatory orientation assessments with the Regulatory Focus Questionnaire (RFQ) and Regulatory Mode Questionnaire (RMQ). Nodal intra and inter-network functional connectivity (FC) was defined as FC sum within networks of 46 thalamic subnuclei (TS) or 88 AAL brain regions, and between the two networks separately. Group-level volumetric and functional difference were compared by two sample t-tests. Pearson's correlation analysis and mediation analysis were utilized to investigate the relationship among imaging parameters and the two behaviors. Canonical correlation analysis (CCA) was conducted to explore the inter-network FC mode of TS related to behavioral subscales. Network-based Statistics with machine learning combining powerful brain imaging features was applied to predict individual behavioral subscales. RESULTS MDD patients showed no group-level volumetric difference in 46 TS but represented significant correlation of TS volume and nodal FC with behavioral subscales. Specially, inter-network FC of the orbital part of the right superior frontal gyrus and the left supplementary motor area mediated the correlation between RFQ/RMQ subscales and depressive severity. Furthermore, CCA identified how the two behaviors are linked via the inter-network FC mode of TS. More crucially, thalamic functional subnetworks could predict RFQ/RMQ subscales and psychomotor retardation for MDD individuals. CONCLUSION These findings provided neurological evidence for SR affecting depressive severity in the MDD patients and proposed potential biomarkers to identify the SR-based risk phenotype of MDD individuals.
Collapse
Affiliation(s)
- Zhang Ling
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - He Cancan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Liu Xinyi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Fan Dandan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zhang Haisan
- Department of RadiologyThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Xinxiang Key Laboratory of Multimodal Brain ImagingThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| | - Zhang Hongxing
- Department of PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Psychology School of Xinxiang Medical UniversityXinxiangHenanChina
| | - Xie Chunming
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of Neuropsychiatry, Affiliated ZhongDa HospitalSoutheast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
12
|
Guo Y, Chen SD, You J, Huang SY, Chen YL, Zhang Y, Wang LB, He XY, Deng YT, Zhang YR, Huang YY, Dong Q, Feng JF, Cheng W, Yu JT. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer's disease. Nat Hum Behav 2024; 8:2047-2066. [PMID: 38987357 DOI: 10.1038/s41562-024-01924-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Wang Z, Wang S, Li H, Wang M, Zhang X, Xu J, Xu Q, Wang J. Causal effect of COVID-19 on longitudinal volumetric changes in subcortical structures: A mendelian randomization study. Heliyon 2024; 10:e37193. [PMID: 39296245 PMCID: PMC11408012 DOI: 10.1016/j.heliyon.2024.e37193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
A few observational neuroimaging investigations have reported subcortical structural changes in the individuals who recovered from the coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the causal relationships between COVID-19 and longitudinal changes of subcortical structures remain unclear. We performed two-sample Mendelian randomization (MR) analyses to estimate putative causal relationships between three COVID-19 phenotypes (susceptibility, hospitalization, and severity) and longitudinal volumetric changes of seven subcortical structures derived from MRI. Our findings demonstrated that genetic liability to SARS-CoV-2 infection had a great long-term impact on the volumetric reduction of subcortical structures, especially caudate. Our investigation may contribute in part to the understanding of the neural mechanisms underlying COVID-19-related neurological and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siqi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Haonan Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mengdong Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
14
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Liang J, Chen L, Li Y, Chen Y, Yuan L, Qiu Y, Ma S, Fan F, Cheng Y. Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models. Schizophr Bull 2024; 50:913-923. [PMID: 38811350 PMCID: PMC11283200 DOI: 10.1093/schbul/sbae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND HYPOTHESIS This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. STUDY DESIGN This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. STUDY RESULTS Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. CONCLUSIONS Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.
Collapse
Affiliation(s)
- Jiaquan Liang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- The Third People’s Hospital of Foshan, Guangdong, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yue Qiu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| |
Collapse
|
16
|
Vellucci L, De Simone G, Morley-Fletcher S, Buonaguro EF, Avagliano C, Barone A, Maccari S, Iasevoli F, de Bartolomeis A. Perinatal stress modulates glutamatergic functional connectivity: A post-synaptic density immediate early gene-based network analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111032. [PMID: 38762163 DOI: 10.1016/j.pnpbp.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Early life stress may induce synaptic changes within brain regions associated with behavioral disorders. Here, we investigated glutamatergic functional connectivity by a postsynaptic density immediate-early gene-based network analysis. Pregnant female Sprague-Dawley rats were randomly divided into two experimental groups: one exposed to stress sessions and the other serving as a stress-free control group. Homer1 expression was evaluated by in situ hybridization technique in eighty-eight brain regions of interest of male rat offspring. Differences between the perinatal stress exposed group (PRS) (n = 5) and the control group (CTR) (n = 5) were assessed by performing the Student's t-test via SPSS 28.0.1.0 with Bonferroni correction. Additionally, all possible pairwise Spearman's correlations were computed as well as correlation matrices and networks for each experimental group were generated via RStudio and Cytoscape. Perinatal stress exposure was associated with Homer1a reduction in several cortical, thalamic, and striatal regions. Furthermore, it was found to affect functional connectivity between: the lateral septal nucleus, the central medial thalamic nucleus, the anterior part of the paraventricular thalamic nucleus, and both retrosplenial granular b cortex and hippocampal regions; the orbitofrontal cortex, amygdaloid nuclei, and hippocampal regions; and lastly, among regions involved in limbic system. Finally, the PRS networks showed a significant reduction in multiple connections for the ventrolateral part of the anteroventral thalamic nucleus after perinatal stress exposure, as well as a decrease in the centrality of ventral anterior thalamic and amygdaloid nuclei suggestive of putative reduced cortical control over these regions. Within the present preclinical setting, perinatal stress exposure is a modifier of glutamatergic early gene-based functional connectivity in neuronal circuits involved in behaviors relevant to model neurodevelopmental disorders.
Collapse
Affiliation(s)
- Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Sara Morley-Fletcher
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France
| | - Elisabetta Filomena Buonaguro
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Stefania Maccari
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France; Department of Science and Medical-Surgical Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| |
Collapse
|
17
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
18
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
19
|
Logue JB, Vilmont V, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons. Eur J Neurosci 2024; 59:3309-3321. [PMID: 38646841 DOI: 10.1111/ejn.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
Collapse
Affiliation(s)
- Jordan B Logue
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Violet Vilmont
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Jiajing Zhang
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yuying Wu
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yi Zhou
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
20
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Kapustina M, Zhang AA, Tsai JYJ, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS. The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain. Cell Rep 2024; 43:113842. [PMID: 38427564 DOI: 10.1016/j.celrep.2024.113842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.
Collapse
Affiliation(s)
- Margarita Kapustina
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Angela A Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Y J Tsai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brianna N Bristow
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Larissa Kraus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sarah R Erwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lihua Wang
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tara R Stach
- School of Biomedical Engineering, Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jody Clements
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrew L Lemire
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
22
|
Shin D, Kim CN, Ross J, Hennick KM, Wu SR, Paranjape N, Leonard R, Wang JC, Keefe MG, Pavlovic BJ, Donohue KC, Moreau C, Wigdor EM, Larson HH, Allen DE, Cadwell CR, Bhaduri A, Popova G, Bearden CE, Pollen AA, Jacquemont S, Sanders SJ, Haussler D, Wiita AP, Frost NA, Sohal VS, Nowakowski TJ. Thalamocortical organoids enable in vitro modeling of 22q11.2 microdeletion associated with neuropsychiatric disorders. Cell Stem Cell 2024; 31:421-432.e8. [PMID: 38382530 PMCID: PMC10939828 DOI: 10.1016/j.stem.2024.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jayden Ross
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sih-Rong Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neha Paranjape
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Rachel Leonard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerrick C Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clara Moreau
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Emilie M Wigdor
- Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - H Hanh Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Denise E Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Nicholas A Frost
- Department of Neurology, University of Utah, Salt Lake City, UT 84108, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
24
|
Jiang LX, Huang GD, Wang HL, Zhang C, Yu X. The olfactory working memory capacity paradigm: A more sensitive and robust method of assessing cognitive function in male 5XFAD mice. J Neurosci Res 2024; 102:e25265. [PMID: 38284863 DOI: 10.1002/jnr.25265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/29/2023] [Accepted: 10/07/2023] [Indexed: 01/30/2024]
Abstract
The olfactory working memory capacity (OWMC) paradigm is able to detect cognitive deficits in 5XFAD mice (an animal model of Alzheimer's disease [TG]) as early as 3 months of age, while other behavioral paradigms detect cognitive deficits only at 4-5 months of age. Therefore, we aimed to demonstrate that the OWMC paradigm is more sensitive and consistent in the early detection of declines in cognitive function than other commonly used behavioral paradigms. The prefrontal cortex (PFC), retrosplenial cortex (RSC), subiculum (SUB), and amygdala (AMY) of 5XFAD mice were harvested and subjected to immunostaining to detect the expression of β-amyloid (Aβ). Additionally, we compared the performance of 3-month-old male 5XFAD mice on common behavioral paradigms for assessing cognitive function (i.e., the open field [OF] test, novel object recognition [NOR] test, novel object location [NOL] test, Y-maze, and Morris water maze [MWM]) with that on the OWMC task. In the testing phase of the OWMC task, we varied the delay periods to evaluate the working memory capacity (WMC) of wild-type (WT) mice. Significant amyloid plaque deposition was observed in the PFC, RSC, SUB, and AMY of 3-month-old male 5XFAD mice. However, aside from the OWMC task, the other behavioral tests failed to detect cognitive deficits in 5XFAD mice. Additionally, to demonstrate the efficacy of the OWMC task in assessing WMC, we varied the retention delay periods; we found that the WMC of WT mice decreased with longer delay periods. The OWMC task is a sensitive and robust behavioral assay for detecting changes in cognitive function.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| |
Collapse
|
25
|
Zhang J, Wang Q, Wang X, Qiao L, Liu M. Preserving specificity in federated graph learning for fMRI-based neurological disorder identification. Neural Netw 2024; 169:584-596. [PMID: 37956575 DOI: 10.1016/j.neunet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive approach to examining abnormal brain connectivity associated with brain disorders. Graph neural network (GNN) gains popularity in fMRI representation learning and brain disorder analysis with powerful graph representation capabilities. Training a general GNN often necessitates a large-scale dataset from multiple imaging centers/sites, but centralizing multi-site data generally faces inherent challenges related to data privacy, security, and storage burden. Federated Learning (FL) enables collaborative model training without centralized multi-site fMRI data. Unfortunately, previous FL approaches for fMRI analysis often ignore site-specificity, including demographic factors such as age, gender, and education level. To this end, we propose a specificity-aware federated graph learning (SFGL) framework for rs-fMRI analysis and automated brain disorder identification, with a server and multiple clients/sites for federated model aggregation and prediction. At each client, our model consists of a shared and a personalized branch, where parameters of the shared branch are sent to the server while those of the personalized branch remain local. This can facilitate knowledge sharing among sites and also helps preserve site specificity. In the shared branch, we employ a spatio-temporal attention graph isomorphism network to learn dynamic fMRI representations. In the personalized branch, we integrate vectorized demographic information (i.e., age, gender, and education years) and functional connectivity networks to preserve site-specific characteristics. Representations generated by the two branches are then fused for classification. Experimental results on two fMRI datasets with a total of 1218 subjects suggest that SFGL outperforms several state-of-the-art approaches.
Collapse
Affiliation(s)
- Junhao Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochuan Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China; School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Zhang Y, Roy DS. Memory Storage in Distributed Engram Cell Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:29-43. [PMID: 39008009 DOI: 10.1007/978-3-031-62983-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
One of the most fascinating aspects of the brain is its ability to acquire new information from experience and retain it over time as memory. The search for physical correlates of memory, the memory engram, has been a longstanding priority in modern neurobiology. Advanced genetic approaches have led to the localization of engram cells in a few brain regions, including the hippocampus and cortex. Additionally, engram cells exhibit learning-induced, persistent modifications and have at least two states, active and silent. However, it has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Recent tissue-clearing techniques have permitted high-throughput analyses of intact brain samples, which have been used to obtain a map of the engram complex for a contextual fear memory. Careful examination of these engram complex maps has revealed a potentially underappreciated contribution of subcortical regions, specifically thalamic nuclei, to memory function. These more holistic studies support the unified engram complex hypothesis for memory storage and have important implications for understanding dysfunctional engrams in the context of human disease.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Dheeraj S Roy
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
27
|
Blanco-Hernández E, Balsamo G, Preston-Ferrer P, Burgalossi A. Sensory and behavioral modulation of thalamic head-direction cells. Nat Neurosci 2024; 27:28-33. [PMID: 38177338 DOI: 10.1038/s41593-023-01506-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Head-direction (HD) neurons are thought to exclusively encode directional heading. In awake mice, we found that sensory stimuli evoked robust short-latency responses in thalamic HD cells, but not in non-HD neurons. The activity of HD cells, but not that of non-HD neurons, was tightly correlated to brain-state fluctuations and dynamically modulated during social interactions. These data point to a new role for the thalamic compass in relaying sensory and behavioral-state information.
Collapse
Affiliation(s)
- Eduardo Blanco-Hernández
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, IMPRS, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
28
|
Zhang C, Li S, Wang Y, Shi J. Photochemically induced thalamus infarction impairs cognition in a mouse model. Stroke Vasc Neurol 2023; 8:444-452. [PMID: 37185137 PMCID: PMC10800257 DOI: 10.1136/svn-2022-002235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Small subcortical infarcts account for up to 25% of ischaemic strokes. Thalamus is one of the subcortical structures that commonly manifest with lacunar infarcts on MRI of the brain. Studies have shown that thalamus infarction is associated with cognitive decline. However, due to the lack of proper animal models, little is known about the mechanism. We aimed to establish a focal thalamus infarction model, characterise the infarct lesion and assess functional effects. METHODS Male C57BL/6J mice were anaesthetised, and Rose Bengal dye was injected through the tail vein. The right thalamus was illuminated with green laser light by stereotactic implantation of optic fibre. Characteristics of the infarct and lesion evolution were evaluated by histological analysis and 7T MRI at various times. The cognitive and neurological functions were assessed by behavioural tests. Retrograde tracing was performed to analyse neural connections. RESULTS An ischaemic lesion with small vessel occlusion was observed in the thalamus. It became a small circumscribed infarct with reactive astrocytes accumulated in the infarct periphery on day 21. The mice with thalamic infarction demonstrated impaired learning and memory without significant neurological deficits. Retrogradely labelled neurons in the retrosplenial granular cortex were reduced. CONCLUSION This study established a mouse model of thalamic lacunar infarction that exhibits cognitive impairment. Neural connection dysfunctions may play a potential role in post-stroke cognitive impairment. This model helps to clarify the pathophysiology of post-stroke cognitive impairment and to develop potential therapies.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Bird CW, Mayfield SS, Lopez KM, Dunn BR, Feng A, Roberts BT, Almeida RN, Chavez GJ, Valenzuela CF. Binge-like ethanol exposure during the brain growth spurt disrupts the function of retrosplenial cortex-projecting anterior thalamic neurons in adolescent mice. Neuropharmacology 2023; 241:109738. [PMID: 37778437 PMCID: PMC10842955 DOI: 10.1016/j.neuropharm.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Ethanol (EtOH) exposure during late pregnancy leads to enduring impairments in learning and memory that may stem from damage to components of the posterior limbic memory system, including the retrosplenial cortex (RSC) and anterior thalamic nuclei (ATN). In rodents, binge-like EtOH exposure during the first week of life (equivalent to the third trimester of human pregnancy) triggers apoptosis in these brain regions. We hypothesized that this effect induces long-lasting alterations in the function of RSC-projecting ATN neurons. To test this hypothesis, vesicular GABA transporter-Venus mice (expressing fluorescently tagged GABAergic interneurons) were subjected to binge-like EtOH vapor exposure on postnatal day (P) 7. This paradigm activated caspase 3 in the anterodorsal (AD), anteroventral (AV), and reticular thalamic nuclei at P7 but did not reduce neuronal density in these areas at P60-70. At P40-60, we injected red retrobeads into the RSC and performed patch-clamp slice electrophysiological recordings from retrogradely labeled neurons in the AD and AV nuclei 3-4 days later. We found significant effects of treatment on instantaneous action potential (AP) frequency and AP overshoot, as well as sex × treatment interactions for AP threshold and overshoot in AD neurons. A sex × treatment interaction was detected for AP number in AV neurons. EtOH exposure also reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents and increased the charge transfer of spontaneous inhibitory postsynaptic currents. These results highlight a novel cellular mechanism that could contribute to the lasting learning and memory deficits associated with developmental EtOH exposure.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Stefanie S Mayfield
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Katalina M Lopez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brooke R Dunn
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Angela Feng
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Bryce T Roberts
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Roberto N Almeida
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
30
|
Pastore SF, Muhammad T, Stan C, Frankland PW, Hamel PA, Vincent JB. Neuronal transcription of autism gene PTCHD1 is regulated by a conserved downstream enhancer sequence. Sci Rep 2023; 13:20391. [PMID: 37990104 PMCID: PMC10663455 DOI: 10.1038/s41598-023-46673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Patched domain-containing 1 (PTCHD1) is a well-established susceptibility gene for autism spectrum disorder (ASD) and intellectual disability (ID). Previous studies have suggested that alterations in the dosage of PTCHD1 may contribute to the etiology of both ASD and ID. However, there has not yet been a thorough investigation regarding mechanisms that regulate PTCHD1 expression. We sought to characterize the Ptchd1 promoter in a mouse neuronal model, as well as to identify and validate cis regulatory elements. We defined specific regions of the Ptchd1 promoter essential for robust expression in P19-induced neurons. Evolutionarily-conserved putative transcription factor binding sites within these regions were subsequently identified. Using a pairwise comparison of chromatin accessibility between mouse forebrain and liver tissues, a candidate regulatory region, ~ 9.1 kbp downstream of the Ptchd1 stop codon was defined. This region harbours two ENCODE-predicted enhancer cis-regulatory elements. Further, using DNase footprint analysis, a putative YY1-binding motif was also identified. Genomic deletion of the entire 8 kbp downstream open chromatin region attenuated Ptchd1 transcription by over 60% in our neuronal model, corroborating its predicted regulatory function. This study provides mechanistic insights related to the expression of PTCHD1, and provides important context to interpret genetic and genomic variation at this locus which may influence neurodevelopment.
Collapse
Affiliation(s)
- Stephen F Pastore
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tahir Muhammad
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cassandra Stan
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
| | - Paul W Frankland
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Paul A Hamel
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
31
|
Jin L, Sullivan HA, Zhu M, Lea NE, Lavin TK, Fu X, Matsuyama M, Hou Y, Feng G, Wickersham IR. Third-generation rabies viral vectors allow nontoxic retrograde targeting of projection neurons with greatly increased efficiency. CELL REPORTS METHODS 2023; 3:100644. [PMID: 37989085 PMCID: PMC10694603 DOI: 10.1016/j.crmeth.2023.100644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Rabies viral vectors have become important components of the systems neuroscience toolkit, allowing both direct retrograde targeting of projection neurons and monosynaptic tracing of inputs to defined postsynaptic populations, but the rapid cytotoxicity of first-generation (ΔG) vectors limits their use to short-term experiments. We recently introduced second-generation, double-deletion-mutant (ΔGL) rabies viral vectors, showing that they efficiently retrogradely infect projection neurons and express recombinases effectively but with little to no detectable toxicity; more recently, we have shown that ΔGL viruses can be used for monosynaptic tracing with far lower cytotoxicity than the first-generation system. Here, we introduce third-generation (ΔL) rabies viral vectors, which appear to be as nontoxic as second-generation ones but have the major advantage of growing to much higher titers, resulting in significantly increased numbers of retrogradely labeled neurons in vivo.
Collapse
Affiliation(s)
- Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mulangma Zhu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas K Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - YuanYuan Hou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
32
|
Ma J, Song XQ. Correlation between cognitive impairment and metabolic imbalance of gut microbiota in patients with schizophrenia. World J Psychiatry 2023; 13:724-731. [PMID: 38058688 PMCID: PMC10696291 DOI: 10.5498/wjp.v13.i10.724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND The gut microbiome interacts with the central nervous system through the gut-brain axis, and this interaction involves neuronal, endocrine, and immune mechanisms, among others, which allow the microbiota to influence and respond to a variety of behavioral and mental conditions. AIM To explore the correlation between cognitive impairment and gut microbiota imbalance in patients with schizophrenia. METHODS A total of 498 untreated patients with schizophrenia admitted to our hospital from July 2020 to July 2022 were selected as the case group, while 498 healthy volunteers who underwent physical examinations at our hospital during the same period were selected as a control group. Fluorescence in situ hybridization was employed to determine the total number of bacteria in the feces of the two groups. The cognitive function test package was used to assess the score of cognitive function in each dimension. Then, the relationship between gut microbiota and cognitive function was analyzed. RESULTS There were statistically significant differences in the relative abundance of gut microbiota at both phylum and class levels between the case group and the control group. In addition, the scores of cognitive function, such as atten-tion/alertness and learning ability, were significantly lower in the case group than in the control group (all P < 0.05). The cognitive function was positively correlated with Actinomycetota, Bacteroidota, Euryarchaeota, Fusobacteria, Pseudomonadota, and Saccharibacteria, while negatively correlated with Bacillota, Tenericutes, and Verrucomicrobia at the phylum level. While at the class level, the cognitive function was positively correlated with Class Actinobacteria, Bacteroidia, Betaproteobacteria, Proteobacteria, Blastomycetes, and Gammaproteobacteria, while negatively correlated with Bacilli, Clostridia, Coriobacteriia, and Verrucomicrobiae. CONCLUSION There is a relationship between the metabolic results of gut microbiota and cognitive function in patients with schizophrenia. When imbalances occur in the gut microbiota of patients, it leads to more severe cognitive impairment.
Collapse
Affiliation(s)
- Jing Ma
- First Department of Mood Disorders, The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, Henan Province, China
| | - Xue-Qin Song
- Department of Psychiatry, The First Affiliated of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
33
|
Kim CN, Shin D, Wang A, Nowakowski TJ. Spatiotemporal molecular dynamics of the developing human thalamus. Science 2023; 382:eadf9941. [PMID: 37824646 PMCID: PMC10758299 DOI: 10.1126/science.adf9941] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.
Collapse
Affiliation(s)
- Chang N Kim
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
34
|
Sullivan KE, Kraus L, Kapustina M, Wang L, Stach TR, Lemire AL, Clements J, Cembrowski MS. Sharp cell-type-identity changes differentiate the retrosplenial cortex from the neocortex. Cell Rep 2023; 42:112206. [PMID: 36881508 DOI: 10.1016/j.celrep.2023.112206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The laminae of the neocortex are fundamental processing layers of the mammalian brain. Notably, such laminae are believed to be relatively stereotyped across short spatial scales such that shared laminae between nearby brain regions exhibit similar constituent cells. Here, we consider a potential exception to this rule by studying the retrosplenial cortex (RSC), a brain region known for sharp cytoarchitectonic differences across its granular-dysgranular border. Using a variety of transcriptomics techniques, we identify, spatially map, and interpret the excitatory cell-type landscape of the mouse RSC. In doing so, we uncover that RSC gene expression and cell types change sharply at the granular-dysgranular border. Additionally, supposedly homologous laminae between the RSC and the neocortex are effectively wholly distinct in their cell-type composition. In collection, the RSC exhibits a variety of intrinsic cell-type specializations and embodies an organizational principle wherein cell-type identities can vary sharply within and between brain regions.
Collapse
Affiliation(s)
- Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Boulevard, Vancouver, BC, Canada
| | - Larissa Kraus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Boulevard, Vancouver, BC, Canada
| | - Margarita Kapustina
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Boulevard, Vancouver, BC, Canada
| | - Lihua Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada
| | - Tara R Stach
- School of Biomedical Engineering, Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, Canada
| | - Andrew L Lemire
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada
| | - Jody Clements
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Boulevard, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada; Janelia Research Campus, HHMI, 19700 Helix Dr, Ashburn, VA, USA.
| |
Collapse
|
35
|
Jiang J, Wang A, Liu Y, Yao Z, Sun M, Jiang T, Li W, Jiang S, Zhang X, Wang Y, Zhang Y, Jia Z, Zou X, Xu J. Spatiotemporal Characteristics of Regional Brain Perfusion Associated with Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 95:981-993. [PMID: 37638444 DOI: 10.3233/jad-230499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Current technology for exploring neuroimaging markers and neural circuits of neuropsychiatric symptoms (NPS) in patients with Alzheimer's disease (AD) is expensive and usually invasive, limiting its use in clinical practice. OBJECTIVE To investigate the cerebral morphology and perfusion characteristics of NPS and identify the spatiotemporal perfusion circuits of NPS sub-symptoms. METHODS This nested case-control study included 102 AD patients with NPS and 51 age- and sex-matched AD patients without NPS. Gray matter volume, cerebral blood flow (CBF), and arterial transit time (ATT) were measured and generated using time-encoded 7-delay pseudo-continuous arterial spin labeling (pCASL). Multiple conditional logistic regression analysis was used to identify neuroimaging markers of NPS. The associations between the CBF or ATT of affected brain areas and NPS sub-symptoms were evaluated after adjusting for confounding factors. The neural circuits of sub-symptoms were identified based on spatiotemporal perfusion sequencing. RESULTS Lower Mini-Mental State Examination scores (p < 0.001), higher Caregiver Burden Inventory scores (p < 0.001), and higher CBF (p = 0.001) and ATT values (p < 0.003) of the right anteroventral thalamic nucleus (ATN) were risk factors for NPS in patients with AD. Six spatiotemporal perfusion circuits were found from 12 sub-symptoms, including the anterior cingulate gyri-temporal pole/subcortical thalamus-cerebellum circuit, insula-limbic-cortex circuit, subcortical thalamus-temporal pole-cortex circuit, subcortical thalamus-cerebellum circuit, frontal cortex-cerebellum-occipital cortex circuit, and subcortical thalamus-hippocampus-dorsal raphe nucleus circuit. CONCLUSIONS Prolonged ATT and increased CBF of the right ATN may be neuroimaging markers for detecting NPS in patients with AD. Time-encoded pCASL could be a reliable technique to explore the neural perfusional circuits of NPS.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaou Liu
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zeshan Yao
- Beijing Institute of Collaborative Innovation Beijing Institute of Collaborative Innovation, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoli Zhang
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
36
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Hamilton JJ, Dalrymple‐Alford JC. Anterior thalamic nuclei: A critical substrate for non-spatial paired-associate memory in rats. Eur J Neurosci 2022; 56:5014-5032. [PMID: 35985792 PMCID: PMC9804733 DOI: 10.1111/ejn.15802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
Injury or dysfunction in the anterior thalamic nuclei (ATN) may be the key contributory factor in many instances of diencephalic amnesia. Experimental ATN lesions impair spatial memory and temporal discriminations, but there is only limited support for a more general role in non-spatial memory. To extend evidence on the effects of ATN lesions, we examined the acquisition of biconditional associations between odour and object pairings presented in a runway, either with or without a temporal gap between these items. Intact adult male rats acquired both the no-trace and 10-s trace versions of this non-spatial task. Intact rats trained in the trace version showed elevated Zif268 activation in the dorsal CA1 of the hippocampus, suggesting that the temporal component recruited additional neural processing. ATN lesions completely blocked acquisition on both versions of this association-memory task. This deficit was not due to poor inhibition to non-rewarded cues or impaired sensory processing, because rats with ATN lesions were unimpaired in the acquisition of simple odour discriminations and simple object discriminations using similar task demands in the same apparatus. This evidence challenges the view that impairments in arbitrary paired-associate learning after ATN lesions require the use of multimodal spatial stimuli. It suggests that diencephalic amnesia associated with the ATN stems from degraded attention to stimulus-stimulus associations and their representation across a distributed memory system.
Collapse
Affiliation(s)
- Jennifer J. Hamilton
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| | - John C. Dalrymple‐Alford
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| |
Collapse
|
38
|
Social defeat drives hyperexcitation of the piriform cortex to induce learning and memory impairment but not mood-related disorders in mice. Transl Psychiatry 2022; 12:380. [PMID: 36088395 PMCID: PMC9464232 DOI: 10.1038/s41398-022-02151-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.
Collapse
|
39
|
Jung S, Park M. Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their dysfunctions in behaviors, synapses, and molecules. Pharmacol Res 2022; 182:106340. [DOI: 10.1016/j.phrs.2022.106340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023]
|
40
|
Zhang Y, Roy DS, Zhu Y, Chen Y, Aida T, Hou Y, Shen C, Lea NE, Schroeder ME, Skaggs KM, Sullivan HA, Fischer KB, Callaway EM, Wickersham IR, Dai J, Li XM, Lu Z, Feng G. Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature 2022; 607:321-329. [PMID: 35676479 PMCID: PMC9403858 DOI: 10.1038/s41586-022-04806-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2022] [Indexed: 01/03/2023]
Abstract
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Collapse
Affiliation(s)
- Ying Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yefei Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuanyuan Hou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenjie Shen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret E Schroeder
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith M Skaggs
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji Dai
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Zhejiang University, Hangzhou, China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
41
|
McNaughton N, Vann SD. Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends Neurosci 2022; 45:550-562. [PMID: 35599065 PMCID: PMC7612902 DOI: 10.1016/j.tins.2022.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin, New Zealand.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
42
|
Roy DS, Zhang Y, Aida T, Shen C, Skaggs KM, Hou Y, Fleishman M, Mosto O, Weninger A, Feng G. Anterior thalamic circuits crucial for working memory. Proc Natl Acad Sci U S A 2022; 119:e2118712119. [PMID: 35537049 PMCID: PMC9171768 DOI: 10.1073/pnas.2118712119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alterations in the structure and functional connectivity of anterior thalamic nuclei (ATN) have been linked to reduced cognition during aging. However, ATN circuits that contribute to higher cognitive functions remain understudied. We found that the anteroventral (AV) subdivision of ATN is necessary specifically during the maintenance phase of a spatial working memory task. This function engages the AV→parasubiculum (PaS)→entorhinal cortex (EC) circuit. Aged mice showed a deficit in spatial working memory, which was associated with a decrease in the excitability of AV neurons. Activation of AV neurons or the AV→PaS circuit in aged mice was sufficient to rescue their working memory performance. Furthermore, rescued aged mice showed improved behavior-induced neuronal activity in prefrontal cortex (PFC), a critical site for working memory processes. Although the direct activation of PFC neurons in aged mice also rescued their working memory performance, we found that these animals exhibited increased levels of anxiety, which was not the case for AV→PaS circuit manipulations in aged mice. These results suggest that targeting AV thalamus in aging may not only be beneficial for cognitive functions but that this approach may have fewer unintended effects compared to direct PFC manipulations.
Collapse
Affiliation(s)
- Dheeraj S. Roy
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142
| | - Ying Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chenjie Shen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Keith M. Skaggs
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yuanyuan Hou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142
| | - Olivia Mosto
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alyssa Weninger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
43
|
Chen Y, Li X, Meng S, Huang S, Chang S, Shi J. Identification of Functional CircRNA–miRNA–mRNA Regulatory Network in Dorsolateral Prefrontal Cortex Neurons of Patients With Cocaine Use Disorder. Front Mol Neurosci 2022; 15:839233. [PMID: 35493321 PMCID: PMC9048414 DOI: 10.3389/fnmol.2022.839233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence has indicated that circular RNAs (circRNAs) act as competing endogenous RNAs (ceRNAs) regulatory network to regulate the expression of target genes by sponging microRNAs (miRNAs), and therefore play an essential role in many neuropsychiatric disorders, including cocaine use disorder. However, the functional roles and regulatory mechanisms of circRNAs as ceRNAs in dorsolateral prefrontal cortex (dlPFC) of patients with cocaine use disorder remain to be determined. In this study, an expression profiling for dlPFC in 19 patients with cocaine use disorder and 17 controls from Gene Expression Omnibus datasets was used for the differentially expressed circRNAs analysis and the differentially expressed mRNAs analysis. Several tools were used to predict the miRNAs targeted by the circRNAs and the miRNAs targeted mRNAs, which then overlapped with the cocaine-associated differentially expressed mRNAs to determine the functional roles of circRNAs. Functional analysis for the obtained mRNAs was performed via Gene Ontology (GO) in Metascape database. Integrated bioinformatics analysis was conducted to further characterize the circRNA–miRNA–mRNA regulatory network and identify the functions of distinct circRNAs. We found a total of 41 differentially expressed circRNAs, and 98 miRNAs were targeted by these circRNAs. The overlapped mRNAs targeted by the miRNAs and the differentially expressed mRNAs constructed a circRNA–miRNA–mRNA regulation network including 24 circRNAs, 43 miRNAs, and 82 mRNAs in the dlPFC of patients with cocaine use disorder. Functional analysis indicated the regulation network mainly participated in cell response-related, receptor signaling-related, protein modification-related and axonogenesis-related pathways, which might be involved with cocaine use disorder. Additionally, we determined four hub genes (HSP90AA1, HSPA1B, YWHAG, and RAB8A) from the protein–protein interaction network and constructed a circRNA–miRNA-hub gene subnetwork based on the four hub genes. In conclusion, our findings provide a deeper understanding of the circRNAs-related ceRNAs regulatory mechanisms in the pathogenesis of cocaine use disorder.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory on Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xianfeng Li
- Department of Gastroenterology of Dapping Hospital, Third Military Medical University, Chongqing, China
| | - Shiqiu Meng
- Beijing Key Laboratory on Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Suhua Chang
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China
- Suhua Chang,
| | - Jie Shi
- Beijing Key Laboratory on Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University, Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jie Shi,
| |
Collapse
|
44
|
Leow YN, Zhou B, Sullivan HA, Barlowe AR, Wickersham IR, Sur M. Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus-anterior cingulate cortex network. J Comp Neurol 2022; 530:1992-2013. [PMID: 35383929 PMCID: PMC9167239 DOI: 10.1002/cne.25317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/29/2023]
Abstract
The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is extensively interconnected with multiple cortical areas. While these cortical interactions can span the entire LP, subdivisions of the LP are characterized by differential connections with specific cortical regions. In particular, the medial LP has reciprocal connections with frontoparietal cortical areas, including the anterior cingulate cortex (ACC). The ACC plays an integral role in top‐down sensory processing and attentional regulation, likely exerting some of these functions via the LP. However, little is known about how ACC and LP interact, and about the information potentially integrated in this reciprocal network. Here, we address this gap by employing a projection‐specific monosynaptic rabies tracing strategy to delineate brain‐wide inputs to bottom‐up LP→ACC and top‐down ACC→LP neurons. We find that LP→ACC neurons receive inputs from widespread cortical regions, including primary and higher order sensory and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs, particularly from the intermediate and deep layers of the superior colliculus (SC). Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addition, ACC→LP neurons integrate cross‐hemispheric prefrontal cortex inputs as well as inputs from higher order medial cortex. Our brain‐wide anatomical mapping of inputs to the reciprocal LP‐ACC pathways provides a roadmap for understanding how LP and ACC communicate different sources of information to mediate attentional control and visuomotor functions.
Collapse
Affiliation(s)
- Yi Ning Leow
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Blake Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandria R Barlowe
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Roy DS, Park YG, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, Gu X, Cho JH, Choi H, Kamentsky L, Martin J, Mosto O, Aida T, Chung K, Tonegawa S. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun 2022; 13:1799. [PMID: 35379803 PMCID: PMC8980018 DOI: 10.1038/s41467-022-29384-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, or cortex. However, it has been hypothesized that engrams of a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Here, we report a partial map of the engram complex for contextual fear conditioning memory by characterizing encoding activated neuronal ensembles in 247 regions using tissue phenotyping in mice. The mapping was aided by an engram index, which identified 117 cFos+ brain regions holding engrams with high probability, and brain-wide reactivation of these neuronal ensembles by recall. Optogenetic manipulation experiments revealed engram ensembles, many of which were functionally connected to hippocampal or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engram ensembles conferred a greater level of memory recall than reactivation of a single engram ensemble, reflecting the natural memory recall process. Overall, our study supports the unified engram complex hypothesis for memory storage.
Collapse
Affiliation(s)
- Dheeraj S Roy
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Young-Gyun Park
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Minyoung E Kim
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ying Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sachie K Ogawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nicholas DiNapoli
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xinyi Gu
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jae H Cho
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lee Kamentsky
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jared Martin
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Olivia Mosto
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kwanghun Chung
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Yonsei-IBS Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
46
|
Pastore SF, Ko SY, Frankland PW, Hamel PA, Vincent JB. PTCHD1: Identification and Neurodevelopmental Contributions of an Autism Spectrum Disorder and Intellectual Disability Susceptibility Gene. Genes (Basel) 2022; 13:527. [PMID: 35328080 PMCID: PMC8953913 DOI: 10.3390/genes13030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last one and a half decades, copy number variation and whole-genome sequencing studies have illuminated the considerable genetic heterogeneity that underlies the etiologies of autism spectrum disorder (ASD) and intellectual disability (ID). These investigations support the idea that ASD may result from complex interactions between susceptibility-related genetic variants (single nucleotide variants or copy number variants) and the environment. This review outlines the identification and neurobiological characterization of two such genes located in Xp22.11, Patched domain-containing 1 (PTCHD1), and its antisense lncRNA PTCHD1-AS. Animal models of Ptchd1 disruption have recapitulated a subset of clinical symptoms related to ASD as well as to ID. Furthermore, these Ptchd1 mouse knockout studies implicate the expression of Ptchd1 in both the thalamic and the hippocampal brain regions as being crucial for proper neurodevelopment and cognitive function. Altered kynurenine metabolic signalling has been postulated as a disease mechanism in one of these animal studies. Additionally, ASD patient-derived induced pluripotent stem cells (iPSCs) carrying a copy number loss impacting the antisense non-coding RNA PTCHD1-AS have been used to generate 2D neuronal cultures. While copy number loss of PTCHD1-AS does not affect the transcription of PTCHD1, the neurons exhibit diminished miniature excitatory postsynaptic current frequency, supporting its role in ASD etiology. A more thorough understanding of risk factor genes, such as PTCHD1 and PTCHD1-AS, will help to clarify the intricate genetic and biological mechanisms that underlie ASD and ID, providing a foundation for meaningful therapeutic interventions to enhance the quality of life of individuals who experience these conditions.
Collapse
Affiliation(s)
- Stephen F. Pastore
- Molecular Neuropsychiatry and Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1RS, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sangyoon Y. Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W. Frankland
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Paul A. Hamel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - John B. Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1RS, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
47
|
Roy DS, Zhang Y, Halassa MM, Feng G. Thalamic subnetworks as units of function. Nat Neurosci 2022; 25:140-153. [PMID: 35102334 PMCID: PMC9400132 DOI: 10.1038/s41593-021-00996-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/07/2021] [Indexed: 01/15/2023]
Abstract
The thalamus engages in various functions including sensory processing, attention, decision making and memory. Classically, this diversity of function has been attributed to the nuclear organization of the thalamus, with each nucleus performing a well-defined function. Here, we highlight recent studies that used state-of-the-art expression profiling, which have revealed gene expression gradients at the single-cell level within and across thalamic nuclei. These gradients, combined with anatomical tracing and physiological analyses, point to previously unappreciated heterogeneity and redefine thalamic units of function on the basis of unique input-output connectivity patterns and gene expression. We propose that thalamic subnetworks, defined by the intersection of genetics, connectivity and computation, provide a more appropriate level of functional description; this notion is supported by behavioral phenotypes resulting from appropriately tailored perturbations. We provide several examples of thalamic subnetworks and suggest how this new perspective may both propel progress in basic neuroscience and reveal unique targets with therapeutic potential.
Collapse
Affiliation(s)
- Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| |
Collapse
|