1
|
Zhang S, Wang T, Gao T, Liao J, Wang Y, Xu M, Lu C, Liang J, Xu Z, Sun J, Xie Q, Lin Z, Han H. Imaging probes for the detection of brain microenvironment. Colloids Surf B Biointerfaces 2025; 252:114677. [PMID: 40215639 DOI: 10.1016/j.colsurfb.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 05/18/2025]
Abstract
The brain microenvironment (BME) is a highly dynamic system that plays a critical role in neural excitation, signal transmission, development, aging, and neurological disorders. BME consists of three key components: neural cells, extracellular spaces, and physical fields, which provide structures and physicochemical properties to synergistically and antagonistically regulate cell behaviors and functions such as nutrient transport, waste metabolism and intercellular communication. Consequently, monitoring the BME is vital to acquire a better understanding of the maintenance of neural homeostasis and the mechanisms underlying neurological diseases. In recent years, researchers have developed a range of imaging probes designed to detect changes in the microenvironment, enabling precise measurements of structural and biophysical parameters in the brain. This advancement aids in the development of improved diagnostic and therapeutic strategies for brain disorders and in the exploration of cutting-edge mechanisms in neuroscience. This review summarizes and highlights recent advances in the probes for sensing and imaging BME. Also, we discuss the design principles, types, applications, challenges, and future directions of probes.
Collapse
Affiliation(s)
- Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianyu Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianzi Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Jun Liao
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Meng Xu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing 100096, PR China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Department of Radiology, Peking University Third Hospital, Beijing 100096, PR China.
| |
Collapse
|
2
|
Li H, Zhao Y, Dai R, Geng P, Weng D, Wu W, Yu F, Lin R, Wu Z, Li Y, Luo M. Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis. Mol Psychiatry 2025; 30:2475-2489. [PMID: 39578520 DOI: 10.1038/s41380-024-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Astrocytes regulate brain functions through gliotransmitters like ATP/ADP and glutamate, but their release patterns and mechanisms remain controversial. Here, we visualized ATP/ADP and glutamate response following astrocyte activation and investigated their mechanisms in vivo. Employing cOpn5-mediated optogenetic stimulation, genetically encoded fluorescent sensors, and two-photon imaging, we observed ATP/ADP released as temporally prolonged and spatially extended flashes that later converted to adenosine. This release occurs via Ca2+ and VNUT-dependent vesicular exocytosis. Additionally, astrocytes also release glutamate in flashes through TeNT-sensitive exocytosis, independent of ATP/ADP release. ATP/ADP released by astrocytes triggers further ATP/ADP release from microglia through P2Y12- and VNUT-dependent mechanisms. VNUT in astrocytes and microglia also contributes to ATP/ADP release under LPS-induced brain inflammation. These findings establish Ca2+-dependent vesicular exocytosis as a key mode of action, reveal intricate astrocyte-microglia interactions, and suggest a role for gliotransmission in brain inflammation. Furthermore, the methodologies may provide valuable tools for deciphering glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Heng Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Yuqing Zhao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Ruicheng Dai
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Peiyao Geng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Wenting Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Fengting Yu
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, 100871, Beijing, China
- New Cornerstone Science Laboratory, 518054, Shenzhen, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China.
- New Cornerstone Science Laboratory, 518054, Shenzhen, China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, 102206, Beijing, China.
| |
Collapse
|
3
|
Wang ML, Song YL, Wu DY, Li H, Li ZM, Xiong XX, Hu NY, Hu J, Li JT, Wang YX, Li XW, Yang JM, Chen YH, Gao TM. Astrocytic connexin43 in the medial prefrontal cortex regulates depressive- and anxiety-like behaviors via ATP release. Pharmacol Res 2025:107798. [PMID: 40449814 DOI: 10.1016/j.phrs.2025.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Major depressive disorder (MDD) affects 17% of the global population and is highly comorbid with anxiety disorders. Emerging evidence indicates that dysregulation of astrocytic ATP contributes to the pathophysiology of depression. However, the molecular substrates underlying the stress-induced reduction in ATP release remain poorly understood, and the basis for the comorbidity of depression and anxiety disorders is still unknown. Here, we showed that Cx43 expression and extracellular ATP levels were significantly reduced in the medial prefrontal cortex (mPFC) of chronic social defeat stress (CSDS)-susceptible mice. Astrocyte-specific knockout or knockdown of Cx43 in the mPFC induced depressive-like behaviors--including anhedonia and despair-like behavio--and anxiety-like behaviors, alongside a reduction in ATP release, whereas neuronal knockout of Cx43 showed no effects on these behaviors. Notably, exogenous ATPγS administration reversed these behavioral deficits. Furthermore, overexpression of astrocytic Cx43 in the mPFC rescued both ATP levels and emotion-related behaviors in CSDS-susceptible mice. Taken together, our study provided the first evidence that astrocytic Cx43 reduction was sufficient to induce depressive- and anxiety-like behaviors and identified a novel ATP-mediated mechanism linking astrocytic Cx43 to both depression and anxiety pathogenesis. These findings open up promising therapeutic targets for treating these comorbid disorders.
Collapse
Affiliation(s)
- Meng-Ling Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yun-Long Song
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing-Xing Xiong
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Ting Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue-Xin Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Soma S, Hayatsu N, Nomura K, Sherwood MW, Murakami T, Sugiyama Y, Suematsu N, Aoki T, Yamada Y, Asayama M, Kaneko M, Ohbayashi K, Arizono M, Ohtsuka M, Hamada S, Matsumoto I, Iwasaki Y, Ohno N, Okazaki Y, Taruno A. Channel synapse mediates neurotransmission of airway protective chemoreflexes. Cell 2025; 188:2687-2704.e29. [PMID: 40187347 DOI: 10.1016/j.cell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Neural reflexes to chemicals in the throat protect the airway from aspiration and infection. Mechanistic understanding of these reflexes remains premature, exemplified by chronic cough-a sensitized cough reflex-being a prevalent unmet clinical need. Here, in mice, a whole-body search for channel synapses-featuring CALHM1/3 channel-mediated neurotransmitter release-and single-cell transcriptomics uncovered subclasses of the Pou2f3+ chemosensory cell family in the throat communicating with vagal neurons via this synapse. They express G protein-coupled receptors (GPCRs) for noxious chemicals, T2Rs, which upon stimulation trigger swallow and cough-like expulsive reflexes in the hypopharynx and larynx, respectively. These reflexes were abolished by Calhm3 and Pou2f3 knockout and could be triggered by targeted optogenetic stimulation. Furthermore, aeroallergen exposure augmented CALHM3-dependent expulsive reflex. This study identifies Pou2f3+ epithelial cells with channel synapses as chemosensory end organs of airway protective reflexes and sites of their hyperresponsiveness, advancing mechanistic understanding of airway defense programs with distinct therapeutic potential.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mark W Sherwood
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Saga University, Saga 849-8501, Japan
| | - Naofumi Suematsu
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Takanori Aoki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yu Yamada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Moe Asayama
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Misa Arizono
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.
| |
Collapse
|
5
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi SH, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals. Cell 2025; 188:2794-2809.e21. [PMID: 40203826 DOI: 10.1016/j.cell.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/13/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp N Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M S Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, UK
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Weizhan Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yongkang Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - HanFei Deng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
| |
Collapse
|
6
|
Yi MH, Liu Y, Liu YU, Lee J, Hanumaihgari P, Parusel S, Bosco DB, Wang L, Zheng J, Shi W, Eauchai L, Chompoopong S, Hunt CL, Wu LJ. Optogenetic activation of cortical microglia promotes neuronal activity and pain hypersensitivity. Cell Rep 2025; 44:115717. [PMID: 40381194 DOI: 10.1016/j.celrep.2025.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/10/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Chronic pain following peripheral nerve injury is accompanied by increased neuronal activity in the somatosensory cortex. However, whether and how cortical microglia contribute to these changes is less understood. To this end, we applied an optogenetic strategy to specifically target cortical microglia and investigate their function in behavioral pain sensitization. We found that optogenetic activation of microglia in the primary somatosensory cortex (S1) via red-activated channelrhodopsin (ReaChR) triggered pain hypersensitivity and affective-motivational responses in mice. Remarkably, S1-targeted optogenetic stimulation increased microglial landscape changes and ATP release. In addition, optogenetic stimulation altered the microglial proteomic profile, upregulated neuronal c-Fos expression, and enhanced neuronal Ca2+ signaling in the S1. Our results provide mechanistic evidence linking cortical microglia with neuronal hyperactivity and chronic pain behaviors.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea; Institute for Biomedical Science (IBS) of Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 58128, Republic of Korea; BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Yi Liu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA; Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yong U Liu
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinkyung Lee
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Priyanka Hanumaihgari
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD 21205, USA
| | | | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wu Shi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lattawat Eauchai
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supin Chompoopong
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Christine L Hunt
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Rossen ND, Touhara KK, Castro J, Harrington AM, Caraballo SG, Deng F, Li Y, Brierley SM, Julius D. Population imaging of enterochromaffin cell activity reveals regulation by somatostatin. Proc Natl Acad Sci U S A 2025; 122:e2501525122. [PMID: 40327690 DOI: 10.1073/pnas.2501525122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Sensory enteroendocrine cells in the intestinal epithelium detect and relay information about the luminal environment to other cells within and outside the gut. Serotonergic enterochromaffin (EC) cells are a subset of enteroendocrine cells that detect noxious stimuli within the gut lumen, such as chemical irritants and microbial byproducts, and transduce this information to sensory nerve fibers to elicit defensive responses such as nausea and visceral pain. While much has recently been learned about the pharmacological and biophysical characteristics of EC cells, a more broadscale investigation of their properties has been hindered by their relatively low prevalence and sparse anatomical distribution within the gut epithelium. Here, we introduce a method for large-scale parallel analysis of individual EC cell activity within a physiologically relevant epithelial context. Using this approach, we identify somatostatin-28 as a potent inhibitor of both basal and stimulus-evoked serotonin release from EC cells and delineate the signaling pathway that underlies this modulatory response. Our analysis suggests that targeting this inhibitory signaling pathway may offer therapeutic avenues for treating gastrointestinal disorders associated with EC cell function and dysregulated serotonin signaling. Together with the ongoing development of specific biosensors, this platform provides a template for the efficient characterization of other rare sensory cell types and their pharmacological modulators.
Collapse
Affiliation(s)
- Nathan D Rossen
- Department of Physiology, University of California, San Francisco, CA 94158
- Tetrad Graduate Program, Graduate Division, University of California, San Francisco, CA 94158
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Joel Castro
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Sonia Garcia Caraballo
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Fei Deng
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
- International Data Group / McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
- International Data Group / McGovern Institute for Brain Research at Peking University, Beijing 100871, China
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA 94158
| |
Collapse
|
8
|
Huang H, Li H, Zhang Y, Xia X, Zhang N, Fan H, Guo L, Cao Y, Pan H, Deng R, Wang Y, Ledesma‐Amaro R, Xu J. Simultaneous Monitoring of Tyrosinase and ATP in Thick Brain Tissues Using a Single Two-Photon Fluorescent Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413220. [PMID: 40129186 PMCID: PMC12097068 DOI: 10.1002/advs.202413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/06/2025] [Indexed: 03/26/2025]
Abstract
Cellular redox homeostasis and energy metabolism in the central nervous system are associated with neurodegenerative diseases. However, their real-time and concurrent monitoring in thick tissues remains challenging. Herein, a single dual-emission two-photon fluorescent probe (named DST) is designed for the simultaneous tracking of tyrosinase (TYR) and adenosine triphosphate (ATP), thereby enabling the real-time monitoring of both neurocellular redox homeostasis and energy metabolism in brain tissue. The developed DST probe exhibits excellent sensitivity and selectivity toward TYR and ATP, with distinctive responses in the blue and red fluorescence channels being observed without spectra crosstalk. Using this probe, the correlation and regulatory mechanism between TYR and ATP during oxidative stress are uncovered. Additionally, the two-photon nature of this probe allows alterations in the TYR and ATP levels to be monitored across different brain regions in an Alzheimer's disease (AD) mouse model. Notably, a significant decrease in ATP levels is revealed within the somatosensory cortex (S1BF) and caudate putamen brain regions of an AD mouse, alongside an increase in TYR levels within the S1BF and laterodorsal thalamic nucleus brain regions. These findings indicate the potential of applying the spatially resolved regulation of neurocellular redox homeostasis and energy metabolism to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Hong Huang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Huiru Li
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Yong Zhang
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Xuhan Xia
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Ningwen Zhang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Haixin Fan
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Longhua Guo
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Yongyong Cao
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Hu Pan
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Ruijie Deng
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Yangang Wang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Rodrigo Ledesma‐Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| | - Jianguo Xu
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
- Engineering Research Center of Bio‐processMinistry of EducationSchool of Food and Biological EngineeringHefei University of TechnologyHefei230009China
| |
Collapse
|
9
|
Ziebarth T, Pape N, Nelson JS, van Alphen FI, Kalia M, Meijer HG, Rose CR, Reiner A. Atypical plume-like events contribute to glutamate accumulation in metabolic stress conditions. iScience 2025; 28:112256. [PMID: 40241754 PMCID: PMC12002667 DOI: 10.1016/j.isci.2025.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Neural glutamate homeostasis is important for health and disease. Ischemic conditions, like stroke, cause imbalances in glutamate release and uptake due to energy depletion and depolarization. We here used the glutamate sensor SF-iGluSnFR(A184V) to probe how chemical ischemia affects the extracellular glutamate dynamics in slice cultures from mouse cortex. SF-iGluSnFR imaging showed spontaneous glutamate release indicating synchronous network activity, similar to calcium imaging with GCaMP6f. Glutamate imaging further revealed local, atypically large, and long-lasting plume-like release events. Plumes occurred with low frequency, independent of network activity, and persisted in tetrodotoxin (TTX). Blocking glutamate uptake with TFB-TBOA favored plumes, whereas blocking ionotropic glutamate receptors (iGluRs) suppressed plumes. During chemical ischemia plumes became more pronounced, overly abundant and contributed to large-scale glutamate accumulation. Similar plumes were previously observed in cortical spreading depression and migraine models, and they may thus be a more general consequence of glutamate uptake dysfunctions in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Fleur I.M. van Alphen
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Manu Kalia
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Hil G.E. Meijer
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
10
|
Cui J, Wang XR, Yu J, Zhang BR, Shi YF, So KF, Zhang L, Wei JA. Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses. Acta Pharmacol Sin 2025; 46:867-879. [PMID: 39643639 PMCID: PMC11950203 DOI: 10.1038/s41401-024-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.
Collapse
Affiliation(s)
- Jing Cui
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ran Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jie Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Bo-Rui Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ya-Fei Shi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ji-An Wei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Touhara KK, Rossen ND, Deng F, Castro J, Harrington AM, Chu T, Garcia-Caraballo S, Brizuela M, O'Donnell T, Xu J, Cil O, Brierley SM, Li Y, Julius D. Topological segregation of stress sensors along the gut crypt-villus axis. Nature 2025; 640:732-742. [PMID: 39939779 DOI: 10.1038/s41586-024-08581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier. The integrity of this barrier is monitored by the complex sensory system of the gut, in which serotonergic enterochromaffin (EC) cells play an important part1,2. These rare sensory epithelial cells surveil the mucosal environment for luminal stimuli and transmit signals both within and outside the gut3-6. However, whether EC cells in crypts and villi detect different stimuli or produce distinct physiological responses is unknown. Here we address these questions by developing a reporter mouse model to quantitatively measure the release and propagation of serotonin from EC cells in live intestines. Crypt EC cells exhibit a tonic low-level mode that activates epithelial serotonin 5-HT4 receptors to modulate basal ion secretion and a stimulus-induced high-level mode that activates 5-HT3 receptors on sensory nerve fibres. Both these modes can be initiated by the irritant receptor TRPA1, which is confined to crypt EC cells. The activation of TRPA1 by luminal irritants is enhanced when the protective mucus layer is compromised. Villus EC cells also signal damage through a distinct mechanism, whereby oxidative stress activates TRPM2 channels, which leads to the release of both serotonin and ATP and consequent excitation of sensory nerve fibres. This topological segregation of EC cell functionality along the mucosal architecture constitutes a mechanism for the surveillance, maintenance and protection of gut integrity under diverse physiological conditions.
Collapse
Affiliation(s)
- Kouki K Touhara
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| | - Nathan D Rossen
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Joel Castro
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tifany Chu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jinhao Xu
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - David Julius
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Zhang Z, Wang Y, Lu W, Wang X, Guo H, Pan X, Liu Z, Wu Z, Qin W. Spatiotemporally resolved mapping of extracellular proteomes via in vivo-compatible TyroID. Nat Commun 2025; 16:2553. [PMID: 40089463 PMCID: PMC11910615 DOI: 10.1038/s41467-025-57767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Extracellular proteins play pivotal roles in both intracellular signaling and intercellular communications in health and disease. While recent advancements in proximity labeling (PL) methods, such as peroxidase- and photocatalyst-based approaches, have facilitated the resolution of extracellular proteomes, their in vivo compatibility remains limited. Here, we report TyroID, an in vivo-compatible PL method for the unbiased mapping of extracellular proteins with high spatiotemporal resolution. TyroID employs plant- and bacteria-derived tyrosinases to produce reactive o-quinone intermediates, enabling the labeling of multiple residues on endogenous proteins with bioorthogonal handles, thereby allowing for their identification via chemical proteomics. We validate TyroID's specificity by mapping extracellular proteomes and HER2-neighboring proteins using affibody-directed recombinant tyrosinases. Demonstrating its superiority over other PL methods, TyroID enables in vivo mapping of extracellular proteomes, including mapping HER2-proximal proteins in tumor xenografts, quantifying the turnover of plasma proteins and labeling hippocampal-specific proteomes in live mouse brains. TyroID emerges as a potent tool for investigating protein localization and molecular interactions within living organisms.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zeyu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
14
|
Wang G, Wang Y, Tang X, Li D, Zhao Y, Zhang F. Identification and validation of Atp5f1c in CD4 + T cell as a hub protein in Parkinson's disease. Int J Biol Macromol 2025; 297:139858. [PMID: 39814280 DOI: 10.1016/j.ijbiomac.2025.139858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Parkinson's disease (PD) is an age-related and progressive neurodegenerative disease. Growing evidences indicate that CD4+ T cell dysfunction plays an essential role in the progress of PD. Here, in LPS-induced PD mice, we isolated midbrain CD4+ T cell and peripheral CD4+ T cell to perform proteomics, and then screened a total of 167 co-expression proteins via integrated bioinformatics analysis. In addition, the subcellular localization, GO analysis, KEGG pathways and protein-protein interaction of 167 co-expression proteins were assessed. Furthermore, GeneMANIA searched the hub proteins and their co-expression genes and found 13 overlapping hub proteins, including Ndufa3, Cox5b, Mrpl21, Ndufab1, Idh3g, Ndufb7, Cyc1, Cisd1, Atp5f1c, Sdhc, Ndufb9, Mtnd1 and Mrpl17. Next, GO analysis and KEGG analysis of the 13 overlapping hub proteins were also exhibited. Further analysis identified that 4 hub proteins (Idh3g, Cisd1, Atp5f1c and Mtnd1) were downregulated both in midbrain and peripheral CD4+ T cell from proteomics. Identification and rescue experiment analysis showed that only Atp5f1c was decreased in LPS- and 6-OHDA-induced PD mice and dopamine (DA) neuronal loss and ATP production decrease were disappeared after Atp5f1c over-expression/Atp5f1c reinfusion both in vivo and in vitro. In conclusion, Atp5f1c was verified as a potential CD4+ T cell-related hub protein for PD.
Collapse
Affiliation(s)
- Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanyuan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianjin Tang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yujia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
15
|
Xiao L, Wang X, Liu D, Yan C, Zhang XE, Chen M. Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells. ACS Sens 2025; 10:1398-1406. [PMID: 39961037 DOI: 10.1021/acssensors.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Adenosine 5'-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus-host interaction process. OAS1.0 also worked well with a Ca2+ sensor to concurrently monitor ATP and Ca2+ dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Lu Xiao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuexi Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Dujuan Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Chuang Yan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minghai Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
16
|
Hauglund NL, Andersen M, Tokarska K, Radovanovic T, Kjaerby C, Sørensen FL, Bojarowska Z, Untiet V, Ballestero SB, Kolmos MG, Weikop P, Hirase H, Nedergaard M. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep. Cell 2025; 188:606-622.e17. [PMID: 39788123 DOI: 10.1016/j.cell.2024.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep. Optogenetic stimulation of the locus coeruleus induced anti-correlated changes in vasomotion and CSF signal. Furthermore, stimulation of arterial oscillations enhanced CSF inflow, demonstrating that vasomotion acts as a pump driving CSF into the brain. On the contrary, the sleep aid zolpidem suppressed norepinephrine oscillations and glymphatic flow, highlighting the critical role of norepinephrine-driven vascular dynamics in brain clearance. Thus, the micro-architectural organization of NREM sleep, driven by norepinephrine fluctuations and vascular dynamics, is a key determinant for glymphatic clearance.
Collapse
Affiliation(s)
- Natalie L Hauglund
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, 2600 Glostrup, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Klaudia Tokarska
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tessa Radovanovic
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Frederikke L Sørensen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zuzanna Bojarowska
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Verena Untiet
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sheyla B Ballestero
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mie G Kolmos
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
17
|
Xiao Q, Chen Y, Yu X, Nie W, Liu B, Ma C. Fluorescence detection of adenosine triphosphate based on dimeric G-quadruplex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125267. [PMID: 39406029 DOI: 10.1016/j.saa.2024.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 11/28/2024]
Abstract
Adenosine triphosphate (ATP) is a major chemical energy carrier in organisms and is involved in numerous biological processes. ATP levels are associated with many diseases, cell viability, and food freshness. Thus, it has become an important biomarker. Many strategies have been used to detect ATP. However, the problems of difficult-to-prepare materials, too much dependence on instruments, and complicated processes restrict the application of these methods. In this study, we proposed a novel ATP detection sensor. The method is based on the fluorescence enhancement effect of dimeric G-quadruplex (Di-G4) on thioflavin T (ThT). First, the cleavage of Di-G4 by S1 nuclease decreases system fluorescence. However, it can be recovered by increases in ATP concentrations, which act as an inhibitor of S1 nuclease. Under the optimized conditions, a good linear relationship was observed between fluorescence intensity and ATP concentrations within the range of 0.5-120 µM. The detection limit was 245 nM. The method was utilized to measure the ATP content in apples and compared with ATP assay kits, resulting in satisfactory results.
Collapse
Affiliation(s)
- Qiangsheng Xiao
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Chen
- School of Life Sciences, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Birong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
18
|
Cook MA, Phelps SM, Tutol JN, Adams DA, Dodani SC. Illuminating anions in biology with genetically encoded fluorescent biosensors. Curr Opin Chem Biol 2025; 84:102548. [PMID: 39657518 PMCID: PMC11788029 DOI: 10.1016/j.cbpa.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Anions are critical to all life forms. Anions can be absorbed as nutrients or biosynthesized. Anions shape a spectrum of fundamental biological processes at the organismal, cellular, and subcellular scales. Genetically encoded fluorescent biosensors can capture anions in action across time and space dimensions with microscopy. The firsts of such technologies were reported more than 20 years for monoatomic chloride and polyatomic cAMP anions. However, the recent boom of anion biosensors illuminates the unknowns and opportunities that remain for toolmakers and end users to meet across the aisle to spur innovations in biosensor designs and applications for discovery anion biology. In this review, we will canvas progress made over the last three years for biologically relevant anions that are classified as halides, oxyanions, carboxylates, and nucleotides.
Collapse
Affiliation(s)
- Mariah A Cook
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Derik A Adams
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
19
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2025; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
20
|
Kalugin PN, Soden PA, Massengill CI, Amsalem O, Porniece M, Guarino DC, Tingley D, Zhang SX, Benson JC, Hammell MF, Tong DM, Ausfahl CD, Lacey TE, Courtney Y, Hochstetler A, Lutas A, Wang H, Geng L, Li G, Li B, Li Y, Lehtinen MK, Andermann ML. Simultaneous, real-time tracking of many neuromodulatory signals with Multiplexed Optical Recording of Sensors on a micro-Endoscope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634931. [PMID: 39896634 PMCID: PMC11785251 DOI: 10.1101/2025.01.26.634931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Dozens of extracellular molecules jointly impact a given neuron, yet we lack methods to simultaneously record many such signals in real time. We developed a probe to track ten or more neuropeptides and neuromodulators using spatial multiplexing of genetically encoded fluorescent sensors. Cultured cells expressing one sensor at a time are immobilized at the front of a gradient refractive index (GRIN) lens for 3D two-photon imaging in vitro and in vivo . The sensor identity and detection sensitivity of each cell are determined via robotic dipping of the probe into wells containing various ligands and concentrations. Using this probe, we detected stimulation-evoked release of multiple neuromodulators in acute brain slices. We also tracked endogenous and drug-evoked changes in cerebrospinal fluid composition in the awake mouse lateral ventricle, which triggered downstream activation of the choroid plexus epithelium. Our approach offers a first step towards quantitative, real-time, high-dimensional tracking of brain fluid composition.
Collapse
|
21
|
Xia X, Li Y. A high-performance GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. Nat Commun 2025; 16:819. [PMID: 39827209 PMCID: PMC11743212 DOI: 10.1038/s41467-025-56129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we investigate the in vivo dynamics and molecular regulation differences between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, our findings reveal distinct spatiotemporal dynamics in the release of sNPF and ACh. Notably, our results indicate that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this high-performance GRAB sensor provides a robust tool for studying neuropeptide release and shedding insights into the unique release dynamics and molecular regulation that distinguish neuropeptides from small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
22
|
Park GY, Lee G, Yoon J, Han J, Choi P, Kim M, Lee S, Park C, Wu Z, Li Y, Choi M. Glia-like taste cells mediate an intercellular mode of peripheral sweet adaptation. Cell 2025; 188:141-156.e16. [PMID: 39561773 DOI: 10.1016/j.cell.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
The sense of taste generally shows diminishing sensitivity to prolonged sweet stimuli, referred to as sweet adaptation. Yet, its mechanistic landscape remains incomplete. Here, we report that glia-like type I cells provide a distinct mode of sweet adaptation via intercellular crosstalk with chemosensory type II cells. Using the microfluidic-based intravital tongue imaging system, we found that sweet adaptation is facilitated along the synaptic transduction from type II cells to gustatory afferent nerves, while type I cells display temporally delayed and prolonged activities. We identified that type I cells receive purinergic input from adjacent type II cells via P2RY2 and provide inhibitory feedback to the synaptic transduction of sweet taste. Aligning with our cellular-level findings, purinergic activation of type I cells attenuated sweet licking behavior, and P2RY2 knockout mice showed decelerated adaptation behavior. Our study highlights a veiled intercellular mode of sweet adaptation, potentially contributing to the efficient encoding of prolonged sweetness.
Collapse
Affiliation(s)
- Gha Yeon Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Geehyun Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jongmin Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Pyonggang Choi
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Minjae Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Chaeri Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea.
| |
Collapse
|
23
|
Deguchi E, Matsuda M, Terai K. Live imaging of paracrine signaling: Advances in visualization and tracking techniques. Cell Struct Funct 2025; 50:1-14. [PMID: 39842816 DOI: 10.1247/csf.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors. Diffusion of paracrine factors has been studied using techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence decay after photoactivation (FDAP), and single-molecule tracking. Binding of paracrine factors to target cells has been visualized through various biosensors, including GPCR-activation-based (GRAB) sensors and Förster resonance energy transfer (FRET) probes for receptor tyrosine kinases. Finally, activation of intracellular signaling is monitored within the target cells by biosensors for second messengers, transcription factors, and so on. In addition to the imaging tools, the review also highlights emerging optogenetic and chemogenetic tools for triggering the release of paracrine factors, which is essential for associating the paracrine factor secretion to biological outcomes during the bioimaging of paracrine factor signaling.Key words: paracrine signaling, live imaging, biosensors, optogenetics, chemogenetics.
Collapse
Affiliation(s)
- Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Department of Histology, Graduate School of Medicine, Tokushima University
| |
Collapse
|
24
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Zheng Y, Cai R, Wang K, Zhang J, Zhuo Y, Dong H, Zhang Y, Wang Y, Deng F, Ji E, Cui Y, Fang S, Zhang X, Zhang K, Wang J, Li G, Miao X, Wang Z, Yang Y, Li S, Grimm J, Johnsson K, Schreiter E, Lavis L, Chen Z, Mu Y, Li Y. In vivo multiplex imaging of dynamic neurochemical networks with designed far-red dopamine sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629999. [PMID: 39763912 PMCID: PMC11703222 DOI: 10.1101/2024.12.22.629999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Neurochemical signals like dopamine (DA) play a crucial role in a variety of brain functions through intricate interactions with other neuromodulators and intracellular signaling pathways. However, studying these complex networks has been hindered by the challenge of detecting multiple neurochemicals in vivo simultaneously. To overcome this limitation, we developed a single-protein chemigenetic DA sensor, HaloDA1.0, which combines a cpHaloTag-chemical dye approach with the G protein-coupled receptor activation-based (GRAB) strategy, providing high sensitivity for DA, sub-second response kinetics, and an extensive spectral range from far-red to near-infrared. When used together with existing green and red fluorescent neuromodulator sensors, Ca2+ indicators, cAMP sensors, and optogenetic tools, HaloDA1.0 provides high versatility for multiplex imaging in cultured neurons, brain slices, and behaving animals, facilitating in-depth studies of dynamic neurochemical networks.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Kui Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junwei Zhang
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
| | - Yizhou Zhuo
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Hui Dong
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yuqi Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, USA
| | - Fei Deng
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - En Ji
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yiwen Cui
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Shilin Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kecheng Zhang
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
| | - Jinxu Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenghua Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yuqing Yang
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Shaochuang Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Jonathan Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Eric Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Zhixing Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Liu Y, Weidle C, Mihaljević L, Watson JL, Li Z, Yu LT, Majumder S, Borst AJ, Carr KD, Kibler RD, El-Din TMG, Catterall WA, Baker D. Bottom-up design of calcium channels from defined selectivity filter geometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629320. [PMID: 39763961 PMCID: PMC11702685 DOI: 10.1101/2024.12.19.629320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices1,2. Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels3, has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca2+ channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca2+ selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices. The designed channel proteins assemble into homogenous pore-containing particles, and for both tetrameric and hexameric ion-coordinating configurations, patch-clamp experiments show that the designed channels have higher conductances for Ca2+ than for Na+ and other divalent ions (Sr2+ and Mg2+). Cryo-electron microscopy indicates that the design method has high accuracy: the structure of the hexameric Ca2+ channel is nearly identical to the design model. Our bottom-up design approach now enables the testing of hypotheses relating filter geometry to ion selectivity by direct construction, and provides a roadmap for creating selective ion channels for a wide range of applications.
Collapse
Affiliation(s)
- Yulai Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ljubica Mihaljević
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Le Tracy Yu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kenneth D Carr
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Li YC, Zhang FC, Li D, Weng RX, Yu Y, Gao R, Xu GY. Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Neuron 2024; 112:3734-3749.e5. [PMID: 39326407 DOI: 10.1016/j.neuron.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Visceral and somatic pain serve as protective mechanisms against external threats. Accumulated evidence has confirmed that the paraventricular hypothalamus (PVH) plays an important role in the perception of visceral and somatic pain, whereas the exact neural pathways and molecules distinguishing them remain unclear. Here, we report distinct neuronal ensembles within the PVH dedicated to processing visceral and somatic pain signals. An essential discovery is the distinct expression of P2X3R and VIPR2 in visceral and somatic pain-activated PVH neuronal ensembles. Furthermore, visceral pain- and somatic pain-responsive PVH neuronal ensembles project to specific downstream regions, the ventral part of the lateral septal nucleus (LSV) and the caudal part of the zona incerta (ZIC), respectively. These findings unveil that the PVH acts as a pain sorting center that distinctly processes visceral and somatic pain, identifying potential molecular targets for specific pain processing and providing a new framework for comprehending how the brain processes nociceptive information.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China; Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Di Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Rui-Xia Weng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Yang Yu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, Jiangsu, P.R. China.
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China.
| |
Collapse
|
28
|
Li X, Wen X, Tang W, Wang C, Chen Y, Yang Y, Zhang Z, Zhao Y. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. CELL REPORTS METHODS 2024; 4:100904. [PMID: 39536758 PMCID: PMC11705769 DOI: 10.1016/j.crmeth.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glucose metabolism has been well understood for many years, but some intriguing questions remain regarding the subcellular distribution, transport, and functions of glycolytic metabolites. To address these issues, a living cell metabolic monitoring technology with high spatiotemporal resolution is needed. Genetically encoded fluorescent sensors can achieve specific, sensitive, and spatiotemporally resolved metabolic monitoring in living cells and in vivo, and dozens of glucose metabolite sensors have been developed recently. Here, we highlight the importance of tracking specific intermediate metabolites of glycolysis and glycolytic flux measurements, monitoring the spatiotemporal dynamics, and quantifying metabolite abundance. We then describe the working principles of fluorescent protein sensors and summarize the existing biosensors and their application in understanding glucose metabolism. Finally, we analyze the remaining challenges in developing high-quality biosensors and the huge potential of biosensor-based metabolic monitoring at multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xueyi Wen
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
29
|
Mo J, Kong P, Ding L, Fan J, Ren J, Lu C, Guo F, Chen L, Mo R, Zhong Q, Wen Y, Gu T, Wang Q, Li S, Guo T, Gao T, Cao X. Lysosomal TFEB-TRPML1 Axis in Astrocytes Modulates Depressive-like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403389. [PMID: 39264289 PMCID: PMC11538709 DOI: 10.1002/advs.202403389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.
Collapse
Affiliation(s)
- Jia‐Wen Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng‐Li Kong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Ding
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jun Fan
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Cheng‐Lin Lu
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Fang Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Liang‐Yu Chen
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiu‐Ling Zhong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - You‐Lu Wen
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Ting‐Ting Gu
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Qian‐Wen Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Shu‐Ji Li
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ting Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Tian‐Ming Gao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
30
|
Li L, Li M, Wang S, Dong Y. Development of a CRISPR/Cas12a-facilitated fluorescent aptasensor for sensitive detection of small molecules. Int J Biol Macromol 2024; 280:136041. [PMID: 39341318 DOI: 10.1016/j.ijbiomac.2024.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas) exhibits superior performance in biosensor construction. And the distinctive role of aptamers in target recognition has long been a focal point of research. Through the combination of Cas12a with cis-cleavage activity and aptamer with specific recognition, a simple and rapid fluorescent biosensor has been constructed. Interestingly, with modified fluorescent and quenching groups at two ends, aptamers play a dual role: primarily as the elements for target recognition and additionally functioning act as the fluorescent probe for signal output. Coupling with cis-cleavage of Cas12a, the demand of additional signal probes is eliminated, thus simplifying the reaction system and enhancing result accuracy. Taking okadaic acid (OA) as a representative small molecule model to evaluate the sensor's performance, a simple and straightforward detection method was established. Following this, the universality of the constructed fluorescent aptasensor was validated by incorporating an adenosine triphosphate (ATP) aptamer. Consequently, the CRISPR/Cas12a-assisted aptasensor was demonstrated to serve as a versatile detection platform for small molecules in food safety and clinical diagnostics. In the forthcoming research endeavors, it can be further extended for applications in environmental analysis and various other fields.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Menglei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
31
|
Wu W, He Y, Chen Y, Fu Y, He S, Liu K, Qu JY. In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons. Nat Commun 2024; 15:8837. [PMID: 39397028 PMCID: PMC11471772 DOI: 10.1038/s41467-024-53218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.
Collapse
Grants
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- 32101211, 32192400 National Natural Science Foundation of China (National Science Foundation of China)
- 82171384 National Natural Science Foundation of China (National Science Foundation of China)
- the Hong Kong Research Grants Council through grants (16102122, 16102123, 16102421, 16102518, 16102920, T13-607/12R, T13-605/18W, T13-602/21N, C6002-17GF, C6001-19E);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16, AOE/M-09/12) and the Hong Kong University of Science & Technology (HKUST) through grant 30 for 30 Research Initiative Scheme.
- Guangdong Basic and Applied Basic Research Foundation 2024A1515012414 Shenzhen Medical Research Fund (B2301004)
- Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0001);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16); Hong Kong Research Grants Council through grants (T13-602/21N, C6034-21G)
Collapse
Affiliation(s)
- Wanjie Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yujun Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Sicong He
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- StateKey Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen, Guangdong, China.
- HKUST Shenzhen Research Institute, Guangdong, China.
- Shenzhen-Hong Kong Institute of Brain Science, Guangdong, China.
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
| |
Collapse
|
32
|
Wei B, Cheng G, Bi Q, Lu C, Sun Q, Li L, Chen N, Hu M, Lu H, Xu X, Mao G, Wan S, Hu Z, Gu Y, Zheng J, Zhao L, Shen XZ, Liu X, Shi P. Microglia in the hypothalamic paraventricular nucleus sense hemodynamic disturbance and promote sympathetic excitation in hypertension. Immunity 2024; 57:2030-2042.e8. [PMID: 39116878 DOI: 10.1016/j.immuni.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Hypertension is usually accompanied by elevated sympathetic tonicity, but how sympathetic hyperactivity is triggered is not clear. Recent advances revealed that microglia-centered neuroinflammation contributes to sympathetic excitation in hypertension. In this study, we performed a temporospatial analysis of microglia at both morphological and transcriptomic levels and found that microglia in the hypothalamic paraventricular nucleus (PVN), a sympathetic center, were early responders to hypertensive challenges. Vasculature analyses revealed that the PVN was characterized by high capillary density, thin vessel diameter, and complex vascular topology relative to other brain regions. As such, the PVN was susceptible to the penetration of ATP released from the vasculature in response to hemodynamic disturbance after blood pressure increase. Mechanistically, ATP ligation to microglial P2Y12 receptor was responsible for microglial inflammatory activation and the eventual sympathetic overflow. Together, these findings identified a distinct vasculature pattern rendering vulnerability of PVN pre-sympathetic neurons to hypertension-associated microglia-mediated inflammatory insults.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qihang Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Miner Hu
- Department of Cardiology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Haoran Lu
- Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xuancheng Xu
- Zhejiang Chinese Medical University, Hangzhou 310013, China; Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Zhechun Hu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Zheng
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China.
| |
Collapse
|
33
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
34
|
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, Koga K, Tateoka T, Yoshioka H, Shinozaki Y, Kinouchi H, Tanaka KF, Bito H, Tsuda M, Koizumi S. Disease-relevant upregulation of P2Y 1 receptor in astrocytes enhances neuronal excitability via IGFBP2. Nat Commun 2024; 15:6525. [PMID: 39117630 PMCID: PMC11310333 DOI: 10.1038/s41467-024-50190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Hideaki Suzuki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuki Nagai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Toru Tateoka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
35
|
Chen Y, Luan P, Liu J, Wei Y, Wang C, Wu R, Wu Z, Jing M. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice. Nat Neurosci 2024; 27:1522-1533. [PMID: 38862791 DOI: 10.1038/s41593-024-01680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Injuries to the brain result in tunable cell responses paired with stimulus properties, suggesting the existence of intrinsic processes that encode and transmit injury information; however, the molecular mechanism of injury information encoding is unclear. Here, using ATP fluorescent indicators, we identify injury-evoked spatiotemporally selective ATP dynamics, Inflares, in adult mice of both sexes. Inflares are actively released from astrocytes and act as the internal representations of injury. Inflares encode injury intensity and position at their population level through frequency changes and are further decoded by microglia, driving changes in their activation state. Mismatches between Inflares and injury severity lead to microglia dysfunction and worsening of injury outcome. Blocking Inflares in ischemic stroke in mice reduces secondary damage and improves recovery of function. Our results suggest that astrocytic ATP dynamics encode injury information and are sensed by microglia.
Collapse
Affiliation(s)
- Yue Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Pengwei Luan
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yelan Wei
- Chinese Institute for Brain Research, Beijing, China
- Department of College of Physical Education and Sport, Beijing Normal University, Beijing, China
| | - Chenyu Wang
- Chinese Institute for Brain Research, Beijing, China
- Capital Medical University, Basic Medical Sciences, Beijing, China
| | - Rui Wu
- Chinese Institute for Brain Research, Beijing, China
- China Agricultural University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
36
|
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku NO, Liu Q, Fang LP, Gampfer TM, Meyer MR, Zhao R, Bai X, Bian S, Scheller A, Kirchhoff F, Huang W. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat Commun 2024; 15:6340. [PMID: 39068155 PMCID: PMC11283516 DOI: 10.1038/s41467-024-50466-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
| | - Hong Zhang
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Nana-Oye Awuku
- Molecular Neurophysiology, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Qing Liu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Renping Zhao
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
37
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
38
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
39
|
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, Kellermayer A, Nyerges M, Wei X, Mody I, Kunihiko A, Beck H, Kaikai H, Ya W, Lénárt N, Wu Z, Jing M, Li Y, Gulyás AI, Dénes Á. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices. Nat Commun 2024; 15:5402. [PMID: 38926390 PMCID: PMC11208608 DOI: 10.1038/s41467-024-49773-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.
Collapse
Affiliation(s)
- Péter Berki
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, H-1083, Hungary
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Neuronal Network and Behaviour, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Andor Domonkos
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miklós Nyerges
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Araki Kunihiko
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - He Kaikai
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wang Ya
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary.
| |
Collapse
|
40
|
Zhou X, Stine C, Prada PO, Fusca D, Assoumou K, Dernic J, Bhat MA, Achanta AS, Johnson JC, Pasqualini AL, Jadhav S, Bauder CA, Steuernagel L, Ravotto L, Benke D, Weber B, Suko A, Palmiter RD, Stoeber M, Kloppenburg P, Brüning JC, Bruchas MR, Patriarchi T. Development of a genetically encoded sensor for probing endogenous nociceptin opioid peptide release. Nat Commun 2024; 15:5353. [PMID: 38918403 PMCID: PMC11199706 DOI: 10.1038/s41467-024-49712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.
Collapse
Affiliation(s)
- Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Carrie Stine
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patricia Oliveira Prada
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Sao Paulo, Brazil
| | - Debora Fusca
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Ananya S Achanta
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
| | - Joseph C Johnson
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
| | - Amanda Loren Pasqualini
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
| | - Sanjana Jadhav
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
| | - Corinna A Bauder
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Azra Suko
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
- Departments of Anesthesiology and Pharmacology and Bioengineering, University of Washington, Seattle, WA, USA.
- Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
41
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Zheng W, Wang M, Reitman ME, Wang Y, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592259. [PMID: 38766026 PMCID: PMC11100599 DOI: 10.1101/2024.05.02.592259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
- These authors contributed equally
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R. Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Philipp N. Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M. S. Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E. Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Lead contact
| |
Collapse
|
42
|
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB. Norepinephrine changes behavioral state via astroglial purinergic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595576. [PMID: 38826423 PMCID: PMC11142163 DOI: 10.1101/2024.05.23.595576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.
Collapse
Affiliation(s)
- Alex B. Chen
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Marc Duque
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Vickie M. Wang
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Mahalakshmi Dhanasekar
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering; Virginia Polytechnic Institute and State University; Arlington, VA 22203, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Loeva Tocquer
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Present address: Allen Institute for Neural Dynamics; Seattle, WA 98109, USA
| | - David Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University; Beijing 100084, P.R. China
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| |
Collapse
|
43
|
Zhou X, Stine C, Prada PO, Fusca D, Assoumou K, Dernic J, Bhat MA, Achanta AS, Johnson JC, Pasqualini AL, Jadhav S, Bauder CA, Steuernagel L, Ravotto L, Benke D, Weber B, Suko A, Palmiter RD, Stoeber M, Kloppenburg P, Brüning JC, Bruchas MR, Patriarchi T. Development of a genetically encoded sensor for probing endogenous nociceptin opioid peptide release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542102. [PMID: 37292957 PMCID: PMC10245933 DOI: 10.1101/2023.05.26.542102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.
Collapse
Affiliation(s)
- Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, CH
| | - Carrie Stine
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patricia Oliveira Prada
- Max Planck Institute for Metabolism Research, Cologne, DE
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Sao Paulo, BR
| | - Debora Fusca
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
- Institute of Zoology, Department of Biology, University of Cologne, DE
| | - Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, CH
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
| | - Ananya S Achanta
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
| | - Joseph C Johnson
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
| | - Amanda Loren Pasqualini
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
| | - Sanjana Jadhav
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
| | - Corinna A Bauder
- Max Planck Institute for Metabolism Research, Cologne, DE
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Cologne, DE
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, CH
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, CH
| | - Azra Suko
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, CH
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
- Institute of Zoology, Department of Biology, University of Cologne, DE
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, DE
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, DE
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, DE
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Departments of Anesthesiology, Pharmacology, and Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, CH
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, CH
| |
Collapse
|
44
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. Natl Sci Rev 2024; 11:nwae112. [PMID: 38798960 PMCID: PMC11126161 DOI: 10.1093/nsr/nwae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
45
|
Touhara KK, Rossen ND, Deng F, Chu T, Harrington AM, Garcia Caraballo S, Brizuela M, O'Donnell T, Cil O, Brierley SM, Li Y, Julius D. Crypt and Villus Enterochromaffin Cells are Distinct Stress Sensors in the Gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579180. [PMID: 38370814 PMCID: PMC10871270 DOI: 10.1101/2024.02.06.579180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier, with its integrity monitored by the gut's sensory system. Enterochromaffin (EC) cells, which are rare sensory epithelial cells that release serotonin (5-HT), surveil the mucosal environment and signal both within and outside the gut. However, it remains unclear whether EC cells in intestinal crypts and villi respond to different stimuli and elicit distinct responses. In this study, we introduce a new reporter mouse model to observe the release and propagation of serotonin in live intestines. Using this system, we show that crypt EC cells exhibit two modes of serotonin release: transient receptor potential A1 (TRPA1)-dependent tonic serotonin release that controls basal ionic secretion, and irritant-evoked serotonin release that activates gut sensory neurons. Furthermore, we find that a thick protective mucus layer prevents TRPA1 receptors on crypt EC cells from responding to luminal irritants such as reactive electrophiles; if this mucus layer is compromised, then crypt EC cells become susceptible to activation by luminal irritants. On the other hand, villus EC cells detect oxidative stress through TRPM2 channels and co-release serotonin and ATP to activate nearby gut sensory fibers. Our work highlights the physiological importance of intestinal architecture and differential TRP channel expression in sensing noxious stimuli that elicit nausea and/or pain sensations in the gut.
Collapse
|
46
|
Seeholzer LF, Julius D. Neuroendocrine cells initiate protective upper airway reflexes. Science 2024; 384:295-301. [PMID: 38669574 PMCID: PMC11407116 DOI: 10.1126/science.adh5483] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Airway neuroendocrine (NE) cells have been proposed to serve as specialized sensory epithelial cells that modulate respiratory behavior by communicating with nearby nerve endings. However, their functional properties and physiological roles in the healthy lung, trachea, and larynx remain largely unknown. In this work, we show that murine NE cells in these compartments have distinct biophysical properties but share sensitivity to two commonly aspirated noxious stimuli, water and acid. Moreover, we found that tracheal and laryngeal NE cells protect the airways by releasing adenosine 5'-triphosphate (ATP) to activate purinoreceptive sensory neurons that initiate swallowing and expiratory reflexes. Our work uncovers the broad molecular and biophysical diversity of NE cells across the airways and reveals mechanisms by which these specialized excitable cells serve as sentinels for activating protective responses.
Collapse
Affiliation(s)
- Laura F. Seeholzer
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| |
Collapse
|
47
|
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R. Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Sci Rep 2024; 14:7813. [PMID: 38565862 PMCID: PMC10987586 DOI: 10.1038/s41598-024-58043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.
Collapse
Affiliation(s)
- Tomoko Tokumaru
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Advanced Medical Science, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koichi Honda
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University, Kurume, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Kazunari Murakami
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan.
| |
Collapse
|
48
|
Ghaffari Zaki A, Yiğit EN, Aydın MŞ, Vatandaslar E, Öztürk G, Eroglu E. Genetically Encoded Biosensors Unveil Neuronal Injury Dynamics via Multichromatic ATP and Calcium Imaging. ACS Sens 2024; 9:1261-1271. [PMID: 38293866 DOI: 10.1021/acssensors.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.
Collapse
Affiliation(s)
- Asal Ghaffari Zaki
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Esra N Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Mehmet Ş Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emre Vatandaslar
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
49
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584200. [PMID: 38559104 PMCID: PMC10979849 DOI: 10.1101/2024.03.09.584200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real-time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
50
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|