1
|
Nurowska E, Meissner KA. Deterministic principles underlying nicotinic receptor protein function. Int J Biol Macromol 2025; 309:142769. [PMID: 40187462 DOI: 10.1016/j.ijbiomac.2025.142769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
There are no available tools to verify whether current kinetic models correctly assume that the gating of ionotropic receptors is a stochastic process. Current models place no restrictions either on receptor conformational change rates or on the number of conformational states, making them insensitive to potential constraints imposed by deterministic principles. We formulate a new, deterministic model of receptor operation, providing a complete mathematical description and analyze the consequences of applying the model to the nicotinic receptor. In our model, the probability functions have narrowly defined forms with the number of parameters determined a priori. We redefine the origin of brief and long openings and introduce a state of partial desensitization. This model, in contrast to currently used kinetic models of nicotinic receptor, provides constant receptor affinity and enables the modulation of receptor activity without binding a modulator molecule.
Collapse
Affiliation(s)
- Ewa Nurowska
- Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Krzysztof A Meissner
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Li H, Pham MC, Teng J, O'Connor KC, Noviello CM, Hibbs RE. Autoimmune mechanisms elucidated through muscle acetylcholine receptor structures. Cell 2025; 188:2390-2406.e20. [PMID: 40203823 DOI: 10.1016/j.cell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Skeletal muscle contraction is triggered by acetylcholine (ACh) binding to its ionotropic receptors (AChRs) at neuromuscular junctions. In myasthenia gravis (MG), autoantibodies target AChRs, disrupting neurotransmission and causing muscle weakness. While treatments exist, variable patient responses suggest pathogenic heterogeneity. Progress in understanding the molecular basis of MG has been limited by the absence of structures of intact human muscle AChRs. Here, we present high-resolution cryoelectron microscopy (cryo-EM) structures of the human adult AChR in different functional states. Using six MG patient-derived monoclonal antibodies, we mapped distinct epitopes involved in diverse pathogenic mechanisms, including receptor blockade, internalization, and complement activation. Electrophysiological and binding assays revealed how these autoantibodies directly inhibit AChR channel activation. These findings provide critical insights into MG immunopathogenesis, uncovering unrecognized antibody epitope diversity and modes of receptor inhibition, and provide a framework for developing personalized therapies targeting antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ryan E Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Li A, Pike ACW, Webster R, Maxwell S, Liu WW, Chi G, Palace J, Beeson D, Sauer DB, Dong YY. Structures of the human adult muscle-type nicotinic receptor in resting and desensitized states. Cell Rep 2025; 44:115581. [PMID: 40252219 DOI: 10.1016/j.celrep.2025.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
Muscle-type nicotinic acetylcholine receptor (AChR) is the key signaling molecule in neuromuscular junctions. Here, we present the structures of full-length human adult receptors in complex with Fab35 in α-bungarotoxin (αBuTx)-bound resting states and ACh-bound desensitized states. In addition to identifying the conformational changes during recovery from desensitization, we also used electrophysiology to probe the effects of eight previously unstudied AChR genetic variants found in patients with congenital myasthenic syndrome (CMS), revealing they cause either slow- or fast-channel CMS characterized by prolonged or abbreviated ion channel bursts. The combined kinetic and structural data offer a better understanding of both the AChR state transition and the pathogenic mechanisms of disease variants.
Collapse
Affiliation(s)
- Anna Li
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK.
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Richard Webster
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Susan Maxwell
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Wei-Wei Liu
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK; Neurology Department, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Yin Yao Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
4
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
5
|
Obiol DJ, Vietri A, Munafó JP, Costabel MD, Antollini SS. In silico exploration of cholinergic activity and neuroprotection of novel caffeine analogues. Biochem Biophys Res Commun 2025; 750:151374. [PMID: 39884004 DOI: 10.1016/j.bbrc.2025.151374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by a cholinergic deficit, prompting conventional therapies to elevate acetylcholine levels as a compensatory measure. Two main strategies involve the inhibition of acetylcholinesterase (AChE) and/or the stimulation of acetylcholine receptors (AChR). Caffeine (CFF), known as a partial agonist of nAChR and an AChE inhibitor, acts as a cholinergic enhancer. Additionally, it is suggested that CFF may exhibit neuroprotective capabilities through the inhibition of the human adenosine receptor type 2A (hA2AR) in the brain's striatum, potentially preventing cellular apoptosis. This study explores on the design and prediction of the bioactivity of CFF analogues with the aim of enhancing cholinergic signaling and providing neuroprotection to improve their therapeutic potential. We employed tools to predict pharmacokinetic and bioactivity properties, molecular docking, molecular dynamics, and target prediction to identify potential candidates among the designed CFF analogues capable of enhancing neurotransmission and providing cellular protection. In a novel approach, a normalized index is proposed for the combined analysis of the pharmacokinetic parameters and molecular docking binding affinities, which facilitates the systematic evaluation and comparison of the synthesized analogues and minimizes subjectivity in the selection of promising candidates. Results indicated that some analogues show promise in improving cholinergic activity and providing neuroprotection. These findings instill optimism, encouraging further research to corroborate their effects, while also representing a significant step towards the development of new therapeutic agents for AD.
Collapse
Affiliation(s)
- D J Obiol
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - A Vietri
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - J P Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - M D Costabel
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina.
| | - S S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Barrantes FJ. Nicotinic acetylcholine receptors in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:37-54. [PMID: 40340066 DOI: 10.1016/b978-0-443-19088-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is the archetypal neurotransmitter receptor within the superfamily of pentameric ligand-gated ion channels (pLGICs). Typically, it mediates fast synaptic transmission in response to its endogenous ligand, acetylcholine, and can also intervene in slower signaling mechanisms via intracellular metabolic cascades in association with G-protein-coupled receptors. This review covers the structural and functional aspects of the different neuronal nAChR subtypes and their cellular and anatomic distribution in the brain. The significant progress in our knowledge on the topic derives from the successful combination of biochemical, neuroanatomic, pharmacologic, and cell biology approaches, complemented by site-directed mutagenesis, single-channel electrophysiology, and structural biophysical studies. This multipronged approach provides a comprehensive description of nAChR in health and disease, offering improved chances of success in tackling neurologic and neuropsychiatric diseases involving phenotypic alterations of nAChRs, particularly in neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina; National Scientific & Technological Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Singh M, Indurthi DC, Mittal L, Auerbach A, Asthana S. Conformational dynamics of a nicotinic receptor neurotransmitter site. eLife 2024; 13:RP92418. [PMID: 39693137 DOI: 10.7554/elife.92418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center ('flip'), loop C undergoes staged downward displacement ('flop'), and a compact, stable high-affinity pocket forms ('fix'). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.
Collapse
Affiliation(s)
- Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Lovika Mittal
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
9
|
Indurthi DC. The effect of unliganded gating on agonist response in nicotinic receptors. Eur J Pharmacol 2024; 980:176830. [PMID: 39032761 DOI: 10.1016/j.ejphar.2024.176830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Understanding the agonist concentration-response curve (CRC) is the cornerstone in pharmacology. While CRC parameters, agonist potency (EC50) and efficacy (maximum response, Imax) are well-studied, the role of unliganded gating (minimum response, Imin) on CRC is often overlooked. This study explores the effect of unliganded gating on agonist response in muscle-type acetylcholine (ACh) receptors, focusing on the underexplored role of Imin in modulating EC50 and Imax. Three Gain-of-Function (GOF) mutations that increase, and two Loss-of-Function (LOF) mutations that decrease the unliganded gating equilibrium constant (L0) were studied using automated patch-clamp electrophysiology. GOF mutations enhanced agonist potency, whereas LOF mutations reduced it. The calculated CRC aligned well with empirical results, indicating that agonist CRC can be estimated from knowledge of L0. Reduction in agonist efficacy due to LOF mutations was calculated and subsequently validated using single-channel patch-clamp electrophysiology, a factor often obscured in normalized CRC. The study also evaluated the combined impact of mutations (L0) on CRC, confirming the predictive model. Further, no significant energetic coupling between distant residues (>15 Å) was found, indicating that the mutations' effects are localized and do not alter overall agonist affinity. These findings substantiate the role of unliganded gating in modulating agonist responses and establishes a predictive model for estimating CRC parameters from known changes in L0. The study highlights the importance of intrinsic activity in receptor theory.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States.
| |
Collapse
|
10
|
Ramdas S, Beeson D, Dong YY. Congenital myasthenic syndromes: increasingly complex. Curr Opin Neurol 2024; 37:493-501. [PMID: 39051439 PMCID: PMC11377046 DOI: 10.1097/wco.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Congenital myasthenia syndromes (CMS) are treatable, inherited disorders affecting neuromuscular transmission. We highlight that the involvement of an increasing number of proteins is making the understanding of the disease mechanisms and potential treatments progressively more complex. RECENT FINDINGS Although early studies identified mutations of proteins directly involved in synaptic transmission at the neuromuscular junction, recently, next-generation sequencing has facilitated the identification of many novel mutations in genes that encode proteins that have a far wider expression profile, some even ubiquitously expressed, but whose defective function leads to impaired neuromuscular transmission. Unsurprisingly, mutations in these genes often causes a wider phenotypic disease spectrum where defective neuromuscular transmission forms only one component. This has implications for the management of CMS patients. SUMMARY Given the widening nonneuromuscular junction phenotypes in the newly identified forms of CMS, new therapies need to include disease-modifying approaches that address not only neuromuscular weakness but also the multisystem involvement. Whilst the current treatments for CMS are highly effective for many subtypes there remains, in a proportion of CMS patients, an unmet need for more efficacious therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford
- Department of Paediatric Neurology, John Radcliffe Hospital
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| | - Yin Yao Dong
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| |
Collapse
|
11
|
Liu F, Li T, Gong H, Tian F, Bai Y, Wang H, Yang C, Li Y, Guo F, Liu S, Chen Q. Structural insights into the molecular effects of the anthelmintics monepantel and betaine on the Caenorhabditis elegans acetylcholine receptor ACR-23. EMBO J 2024; 43:3787-3806. [PMID: 39009676 PMCID: PMC11377560 DOI: 10.1038/s44318-024-00165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Anthelmintics are drugs used for controlling pathogenic helminths in animals and plants. The natural compound betaine and the recently developed synthetic compound monepantel are both anthelmintics that target the acetylcholine receptor ACR-23 and its homologs in nematodes. Here, we present cryo-electron microscopy structures of ACR-23 in apo, betaine-bound, and betaine- and monepantel-bound states. We show that ACR-23 forms a homo-pentameric channel, similar to some other pentameric ligand-gated ion channels (pLGICs). While betaine molecules are bound to the classical neurotransmitter sites in the inter-subunit interfaces in the extracellular domain, monepantel molecules are bound to allosteric sites formed in the inter-subunit interfaces in the transmembrane domain of the receptor. Although the pore remains closed in betaine-bound state, monepantel binding results in an open channel by wedging into the cleft between the transmembrane domains of two neighboring subunits, which causes dilation of the ion conduction pore. By combining structural analyses with site-directed mutagenesis, electrophysiology and in vivo locomotion assays, we provide insights into the mechanism of action of the anthelmintics monepantel and betaine.
Collapse
Affiliation(s)
- Fenglian Liu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huihui Gong
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Fei Tian
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yan Bai
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Haowei Wang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chonglin Yang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Sheng Liu
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518038, China.
| | - Qingfeng Chen
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Cecchini M, Corringer PJ, Changeux JP. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level. Annu Rev Biochem 2024; 93:339-366. [PMID: 38346274 DOI: 10.1146/annurev-biochem-030122-033116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France
| | - Jean-Pierre Changeux
- Department of Neuroscience, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France;
| |
Collapse
|
13
|
Li H, Teng J, Hibbs RE. Structural switch in acetylcholine receptors in developing muscle. Nature 2024; 632:1174-1180. [PMID: 39085615 PMCID: PMC12080231 DOI: 10.1038/s41586-024-07774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
During development, motor neurons originating in the brainstem and spinal cord form elaborate synapses with skeletal muscle fibres1. These neurons release acetylcholine (ACh), which binds to nicotinic ACh receptors (AChRs) on the muscle, initiating contraction. Two types of AChR are present in developing muscle cells, and their differential expression serves as a hallmark of neuromuscular synapse maturation2-4. The structural principles underlying the switch from fetal to adult muscle receptors are unknown. Here, we present high-resolution structures of both fetal and adult muscle nicotinic AChRs, isolated from bovine skeletal muscle in developmental transition. These structures, obtained in the absence and presence of ACh, provide a structural context for understanding how fetal versus adult receptor isoforms are tuned for synapse development versus the all-or-none signalling required for high-fidelity skeletal muscle contraction. We find that ACh affinity differences are driven by binding site access, channel conductance is tuned by widespread surface electrostatics and open duration changes result from intrasubunit interactions and structural flexibility. The structures further reveal pathogenic mechanisms underlying congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Auerbach A. Dynamics of receptor activation by agonists. Biophys J 2024; 123:1915-1923. [PMID: 38178577 PMCID: PMC11309968 DOI: 10.1016/j.bpj.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024] Open
Abstract
How do agonists turn on receptors? The model system we have used to address this question is the adult-type skeletal muscle nicotinic acetylcholine receptor. This ligand-gated ion channel has two orthosteric sites (for neurotransmitters) in the extracellular domain linked to an allosteric site (a gate) in the transmembrane domain. The goal of this perspective is to summarize how measurements of agonist binding energy reveal the dynamics of the neurotransmitter sites and the fundamental link between binding and gating.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
15
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Unwin N. Influence of lipid bilayer on the structure of the muscle-type nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 2024; 121:e2319913121. [PMID: 38683987 PMCID: PMC11087746 DOI: 10.1073/pnas.2319913121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The muscle-type nicotinic acetylcholine receptor is a transmitter-gated ion channel residing in the plasma membrane of electrocytes and striated muscle cells. It is present predominantly at synaptic junctions, where it effects rapid depolarization of the postsynaptic membrane in response to acetylcholine released into the synaptic cleft. Previously, cryo-EM of intact membrane from Torpedo revealed that the lipid bilayer surrounding the junctional receptor has a uniquely asymmetric and ordered structure, due to a high concentration of cholesterol. It is now shown that this special lipid environment influences the transmembrane (TM) folding of the protein. All five submembrane MX helices of the membrane-intact junctional receptor align parallel to the surface of the cholesterol-ordered lipids in the inner leaflet of the bilayer; also, the TM helices in the outer leaflet are splayed apart. However in the structure obtained from the same protein after extraction and incorporation in nanodiscs, the MX helices do not align to a planar surface, and the TM helices arrange compactly in the outer leaflet. Realignment of the MX helices of the nanodisc-solved structure to a planar surface converts their adjoining TM helices into an obligatory splayed configuration, characteristic of the junctional receptor. Thus, the form of the receptor sustained by the special lipid environment of the synaptic junction is the one that mediates fast synaptic transmission; whereas, the nanodisc-embedded protein may be like the extrajunctional form, existing in a disordered lipid environment.
Collapse
Affiliation(s)
- Nigel Unwin
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
17
|
Alhalhooly L, Sine SM. Ion transport in muscle acetylcholine receptor maintained by conserved salt bridges between the pore and lipid membrane. Proc Natl Acad Sci U S A 2024; 121:e2320416121. [PMID: 38588428 PMCID: PMC11032472 DOI: 10.1073/pnas.2320416121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.
Collapse
Affiliation(s)
- Lina Alhalhooly
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN55905
| | - Steven M. Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN55905
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN55905
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN55905
| |
Collapse
|
18
|
Ananchenko A, Gao RY, Dehez F, Baenziger JE. State-dependent binding of cholesterol and an anionic lipid to the muscle-type Torpedo nicotinic acetylcholine receptor. Commun Biol 2024; 7:437. [PMID: 38600247 PMCID: PMC11006840 DOI: 10.1038/s42003-024-06106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The ability of the Torpedo nicotinic acetylcholine receptor (nAChR) to undergo agonist-induced conformational transitions requires the presence of cholesterol and/or anionic lipids. Here we use recently solved structures along with multiscale molecular dynamics simulations to examine lipid binding to the nAChR in bilayers that have defined effects on nAChR function. We examine how phosphatidic acid and cholesterol, lipids that support conformational transitions, individually compete for binding with phosphatidylcholine, a lipid that does not. We also examine how the two lipids work synergistically to stabilize an agonist-responsive nAChR. We identify rapidly exchanging lipid binding sites, including both phospholipid sites with a high affinity for phosphatidic acid and promiscuous cholesterol binding sites in the grooves between adjacent transmembrane α-helices. A high affinity cholesterol site is confirmed in the inner leaflet framed by a key tryptophan residue on the MX α-helix. Our data provide insight into the dynamic nature of lipid-nAChR interactions and set the stage for a detailed understanding of the mechanisms by which lipids facilitate nAChR function at the neuromuscular junction.
Collapse
Affiliation(s)
- Anna Ananchenko
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rui Yan Gao
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - François Dehez
- CNRS, LPCT, Université de Lorraine, F-54000 Nancy, France.
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Bharambe N, Li Z, Seiferth D, Balakrishna AM, Biggin PC, Basak S. Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment. Nat Commun 2024; 15:2967. [PMID: 38580666 PMCID: PMC10997623 DOI: 10.1038/s41467-024-47370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.
Collapse
Affiliation(s)
- Nikhil Bharambe
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - David Seiferth
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
20
|
Obiol DJ, Amundarain MJ, Zamarreño F, Vietri A, Antollini SS, Costabel MD. Oleic Acid Could Act as a Channel Blocker in the Inhibition of nAChR: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2398-2411. [PMID: 38445598 DOI: 10.1021/acs.jpcb.3c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The activation of the muscular nicotinic acetylcholine receptor (nAChR) produces the opening of the channel, with the consequent increase in the permeability of cations, triggering an excitatory signal. Free fatty acids (FFA) are known to modulate the activity of the receptor as noncompetitive antagonists, acting at the membrane-AChR interface. We present molecular dynamics simulations of a model of nAChR in a desensitized closed state embedded in a lipid bilayer in which distinct membrane phospholipids were replaced by two different monounsaturated FFA that differ in the position of a double bond. This allowed us to detect and describe that the cis-18:1ω-9 FFA were located at the interface between the transmembrane segments of α2 and γ subunits diffused into the channel lumen with the consequent potential ability to block the channel to the passage of ions.
Collapse
Affiliation(s)
- Diego J Obiol
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - María J Amundarain
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB Bahía Blanca, Argentina
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Fernando Zamarreño
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Agustín Vietri
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, B8000FWB Bahía Blanca, Argentina
| | - Marcelo D Costabel
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| |
Collapse
|
21
|
Munafó JP, Biscussi B, Obiol D, Costabel M, Bouzat C, Murray AP, Antollini S. New Multitarget Molecules Derived from Caffeine as Potentiators of the Cholinergic System. ACS Chem Neurosci 2024; 15:994-1009. [PMID: 38407056 DOI: 10.1021/acschemneuro.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Cholinergic deficit is a characteristic factor of several pathologies, such as myasthenia gravis, some types of congenital myasthenic syndromes, and Alzheimer's Disease. Two molecular targets for its treatment are acetylcholinesterase (AChE) and nicotinic acetylcholine receptor (nAChR). In previous studies, we found that caffeine behaves as a partial nAChR agonist and confirmed that it inhibits AChE. Here, we present new bifunctional caffeine derivatives consisting of a theophylline ring connected to amino groups by different linkers. All of them were more potent AChE inhibitors than caffeine. Furthermore, although some of them also activated muscle nAChR as partial agonists, not all of them stabilized nAChR in its desensitized conformation. To understand the molecular mechanism underlying these results, we performed docking studies on AChE and nAChR. The nAChR agonist behavior of the compounds depends on their accessory group, whereas their ability to stabilize the receptor in a desensitized state depends on the interactions of the linker at the binding site. Our results show that the new compounds can inhibit AChE and activate nAChR with greater potency than caffeine and provide further information on the modulation mechanisms of pharmacological targets for the design of novel therapeutic interventions in cholinergic deficit.
Collapse
Affiliation(s)
- Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| | - Brunella Biscussi
- Instituto de Química del Sur, Departamento de Química, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Diego Obiol
- Grupo de Biofísica, Instituto de Física del Sur, Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Marcelo Costabel
- Grupo de Biofísica, Instituto de Física del Sur, Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| | - Ana Paula Murray
- Instituto de Química del Sur, Departamento de Química, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| |
Collapse
|
22
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
23
|
Thompson MJ, Mansoub Bekarkhanechi F, Ananchenko A, Nury H, Baenziger JE. A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor. Nat Commun 2024; 15:1803. [PMID: 38413583 PMCID: PMC10899235 DOI: 10.1038/s41467-024-46028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Anna Ananchenko
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
24
|
Antollini SS, Barrantes FJ. Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research. Molecules 2024; 29:820. [PMID: 38398572 PMCID: PMC10893188 DOI: 10.3390/molecules29040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.
Collapse
Affiliation(s)
- Silvia S. Antollini
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, BIOMED UCA-CONICET, Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
25
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
26
|
Yin C, O’Reilly AO, Liu SN, Du TH, Gong PP, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Liang JJ, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Tan QM, Lu HT, Xie W, Chu D, Zhou XG, Nauen R, Gui LY, Bass C, Yang X, Zhang YJ. Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides. PLoS Genet 2024; 20:e1011163. [PMID: 38377137 PMCID: PMC10906874 DOI: 10.1371/journal.pgen.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTβ1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dβ1 was replaced with BTβ1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dβ1 were replaced with the wildtype BTβ1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Collapse
Affiliation(s)
- Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Andrias O. O’Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qi-Mei Tan
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Han-Tang Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, School of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
27
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Dalal V, Arcario MJ, Petroff JT, Tan BK, Dietzen NM, Rau MJ, Fitzpatrick JAJ, Brannigan G, Cheng WWL. Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel. Nat Commun 2024; 15:25. [PMID: 38167383 PMCID: PMC10762164 DOI: 10.1038/s41467-023-44366-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid nanodiscs have become a standard tool for studying membrane proteins, including using single particle cryo-electron microscopy (cryo-EM). We find that reconstituting the pentameric ligand-gated ion channel (pLGIC), Erwinia ligand-gated ion channel (ELIC), in different nanodiscs produces distinct structures by cryo-EM. The effect of the nanodisc on ELIC structure extends to the extracellular domain and agonist binding site. Additionally, molecular dynamic simulations indicate that nanodiscs of different size impact ELIC structure and that the nanodisc scaffold directly interacts with ELIC. These findings suggest that the nanodisc plays a crucial role in determining the structure of pLGICs, and that reconstitution of ion channels in larger nanodiscs may better approximate a lipid membrane environment.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark J Arcario
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John T Petroff
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brandon K Tan
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Noah M Dietzen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
- Department of Physics, Rutgers University, Camden, NJ, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
29
|
Raisch T, Raunser S. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nat Struct Mol Biol 2023; 30:1411-1427. [PMID: 37845413 DOI: 10.1038/s41594-023-01113-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/31/2023] [Indexed: 10/18/2023]
Abstract
Insecticides are indispensable tools for plant protection in modern agriculture. Despite having highly heterogeneous structures, many neurotoxic insecticides use similar principles to inhibit or deregulate neuronal ion channels. Insecticides targeting pentameric ligand-gated channels are structural mimetics of neurotransmitters or manipulate and deregulate the proteins. Those binding to (pseudo-)tetrameric voltage-gated(-like) channels, on the other hand, are natural or synthetic compounds that directly block the ion-conducting pore or prevent conformational changes in the transmembrane domain necessary for opening and closing the pore. The use of a limited number of inhibition mechanisms can be problematic when resistances arise and become more widespread. Therefore, there is a rising interest in the development of insecticides with novel mechanisms that evade resistance and are pest-insect-specific. During the last decade, most known insecticide targets, many with bound compounds, have been structurally characterized, bringing the rational design of novel classes of agrochemicals within closer reach than ever before.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
30
|
Araujo-Silva H, de Souza AM, Mamede JPM, de Medeiros SRB, Luchiari AC. Individual differences in response to alcohol and nicotine in zebrafish: Gene expression and behavior. Dev Growth Differ 2023; 65:434-445. [PMID: 37435714 DOI: 10.1111/dgd.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- Department of Molecular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - João Paulo Medeiros Mamede
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
31
|
Noonan JD, Beech RN. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Protein Sci 2023; 32:e4718. [PMID: 37417463 PMCID: PMC10443321 DOI: 10.1002/pro.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.
Collapse
Affiliation(s)
- Jennifer D. Noonan
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| | - Robin N. Beech
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| |
Collapse
|
32
|
Oishi K, Nagamori M, Kashino Y, Sekiguchi H, Sasaki YC, Miyazawa A, Nishino Y. Ligand-Dependent Intramolecular Motion of Native Nicotinic Acetylcholine Receptors Determined in Living Myotube Cells via Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:12069. [PMID: 37569445 PMCID: PMC10418694 DOI: 10.3390/ijms241512069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).
Collapse
Affiliation(s)
- Koichiro Oishi
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Mayu Nagamori
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Yasuhiro Kashino
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Sayo 679-5198, Hyogo, Japan; (H.S.); (Y.C.S.)
| | - Yuji C. Sasaki
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Sayo 679-5198, Hyogo, Japan; (H.S.); (Y.C.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 6-2-3 Kashiwanoha, Kashiwa 277-0882, Chiba, Japan
| | - Atsuo Miyazawa
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| | - Yuri Nishino
- Graduate School of Sciences, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Kobe 678-1297, Hyogo, Japan; (K.O.); (Y.K.)
| |
Collapse
|
33
|
Indurthi DC, Auerbach A. Agonist efficiency links binding and gating in a nicotinic receptor. eLife 2023; 12:e86496. [PMID: 37399234 DOI: 10.7554/elife.86496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating. In this receptor, free energy changes in gating and binding can be interchanged by the conversion factor η. Efficiencies estimated from concentration-response curves (23 agonists, 53 mutations) sort into five discrete classes (%): 0.56 (17), 0.51(32), 0.45(13), 0.41(26), and 0.31(12), implying that there are 5 C versus O binding site structural pairs. Within each class efficacy and affinity are corelated linearly, but multiple classes hide this relationship. η unites agonist binding with receptor gating and calibrates one link in a chain of coupled domain rearrangements that comprises the allosteric transition of the protein.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| |
Collapse
|
34
|
Strikwerda JR, Natarajan K, Sine SM. Impact on AChR open channel noise by pore-peripheral salt bridge depends on voltage and divalent cations. Biophys J 2023; 122:2430-2444. [PMID: 37113056 PMCID: PMC10322898 DOI: 10.1016/j.bpj.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanisms behind the fluctuations in the ionic current through single acetylcholine receptor (AChR) channels have remained elusive. In a recent study of muscle AChR we showed that mutation of a conserved intramembrane salt bridge in the β- and δ-subunits markedly increased fluctuations in the open channel current that extended from low to high frequency. Here, we show that extracellular divalent cations reduce the high-frequency fluctuations and increase the low-frequency fluctuations. The low-frequency fluctuations are shown to arise from steps between two current levels, with the ratio of the time at each level changing e-fold for a 70 mV increase in membrane potential, indicating modulation by a charged element within the membrane field. Increasing the charge on the ion selectivity filter biases the ratio of current levels equivalent to a 50 mV increase in membrane potential but does not alter the voltage dependence of the ratio. The magnitudes of the voltage dependence and voltage bias allow estimates of the distance between the ion selectivity filter and the voltage-sensing element. Studies with either calcium or magnesium show that the two divalent cations synergize to increase the low-frequency fluctuations, whereas they act independently to decrease the high-frequency fluctuations, indicating multiple divalent cation binding sites. Molecular dynamics simulations applied to the structure of the Torpedo AChR reveal that mutation of the salt bridge alters the equilibrium positions and dynamics of residues local to the site of the mutation and within the adjacent ion selectivity filter in a calcium-dependent manner. Thus, disruption of a conserved intramembrane salt bridge in the muscle AChR induces fluctuations in open channel current that are sensitive to divalent cation binding at multiple sites and modulated by a charged element within the membrane field.
Collapse
Affiliation(s)
- John R Strikwerda
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Rochester, Minnesota
| | - Kathiresan Natarajan
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Rochester, Minnesota
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, Minnesota; Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
35
|
Goswami U, Rahman MM, Teng J, Hibbs RE. Structural interplay of anesthetics and paralytics on muscle nicotinic receptors. Nat Commun 2023; 14:3169. [PMID: 37264005 DOI: 10.1038/s41467-023-38827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
General anesthetics and neuromuscular blockers are used together during surgery to stabilize patients in an unconscious state. Anesthetics act mainly by potentiating inhibitory ion channels and inhibiting excitatory ion channels, with the net effect of dampening nervous system excitability. Neuromuscular blockers act by antagonizing nicotinic acetylcholine receptors at the motor endplate; these excitatory ligand-gated ion channels are also inhibited by general anesthetics. The mechanisms by which anesthetics and neuromuscular blockers inhibit nicotinic receptors are poorly understood but underlie safe and effective surgeries. Here we took a direct structural approach to define how a commonly used anesthetic and two neuromuscular blockers act on a muscle-type nicotinic receptor. We discover that the intravenous anesthetic etomidate binds at an intrasubunit site in the transmembrane domain and stabilizes a non-conducting, desensitized-like state of the channel. The depolarizing neuromuscular blocker succinylcholine also stabilizes a desensitized channel but does so through binding to the classical neurotransmitter site. Rocuronium binds in this same neurotransmitter site but locks the receptor in a resting, non-conducting state. Together, this study reveals a structural mechanism for how general anesthetics work on excitatory nicotinic receptors and further rationalizes clinical observations in how general anesthetics and neuromuscular blockers interact.
Collapse
Affiliation(s)
- Umang Goswami
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Md Mahfuzur Rahman
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Thermo Fisher Scientific, Rockford, IL, 61101, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan E Hibbs
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
36
|
Tessier CJG, Emlaw JR, Sturgeon RM, daCosta CJB. Derepression may masquerade as activation in ligand-gated ion channels. Nat Commun 2023; 14:1907. [PMID: 37019877 PMCID: PMC10076327 DOI: 10.1038/s41467-023-36770-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/16/2023] [Indexed: 04/07/2023] Open
Abstract
Agonists are ligands that bind to receptors and activate them. In the case of ligand-gated ion channels, such as the muscle-type nicotinic acetylcholine receptor, mechanisms of agonist activation have been studied for decades. Taking advantage of a reconstructed ancestral muscle-type β-subunit that forms spontaneously activating homopentamers, here we show that incorporation of human muscle-type α-subunits appears to repress spontaneous activity, and furthermore that the presence of agonist relieves this apparent α-subunit-dependent repression. Our results demonstrate that rather than provoking channel activation/opening, agonists may instead 'inhibit the inhibition' of intrinsic spontaneous activity. Thus, agonist activation may be the apparent manifestation of agonist-induced derepression. These results provide insight into intermediate states that precede channel opening and have implications for the interpretation of agonism in ligand-gated ion channels.
Collapse
Affiliation(s)
- Christian J G Tessier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Johnathon R Emlaw
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Raymond M Sturgeon
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Corrie J B daCosta
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
37
|
Allard CAH, Kang G, Kim JJ, Valencia-Montoya WA, Hibbs RE, Bellono NW. Structural basis of sensory receptor evolution in octopus. Nature 2023; 616:373-377. [PMID: 37045920 PMCID: PMC10228259 DOI: 10.1038/s41586-023-05822-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 04/14/2023]
Abstract
Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Kłopotowski K, Michałowski MA, Gos M, Mosiądz D, Czyżewska MM, Mozrzymas JW. Mutation of valine 53 at the interface between extracellular and transmembrane domains of the β 2 principal subunit affects the GABA A receptor gating. Eur J Pharmacol 2023; 947:175664. [PMID: 36934960 DOI: 10.1016/j.ejphar.2023.175664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
GABAA receptors (gamma-aminobutyric acid type A receptors) are pentameric ligand-gated ion channels mediating inhibition in adult mammalian brains. Their static structure has been intensely studied in the past years but the underlying molecular activatory mechanisms remain obscure. The interface between extracellular and transmembrane domains has been recognized as a key player in the receptor gating. However, the role of the valine 53 in the β1-β2 loop of the principal subunit (β2) remains controversial showing differences compared to homologous residues in some cys-loop counterparts such as nAChR. To address the role of the β2V53 residue in the α1β2γ2L receptor gating, we performed high resolution macroscopic and single-channel recordings. To explore underlying molecular mechanisms a variety of substituting amino acids were investigated: Glutamate and Lysine (different electric charge), Alanine (aliphatic, larger than Valine) and Histidine (same residue as in homologous α1H55). We report that mutation of the β2V53 residue results in alterations of nearly all gating transitions including opening/closing, preactivation and desensitization. A dramatic gating impairment was observed for glutamate substitution (β2V53E) but β2V53K mutation had a weak effect. The impact of histidine substitution was also small while β2V53A markedly affected the receptor but to a smaller extent than β2V53E. Considering available structures in desensitized and bicuculline blocked shut states we propose that strongly detrimental effect of β2V53E mutation on receptor activation results from electrostatic interaction between the glutamate and β2K274 on the loop M2-M3 which stabilizes the receptor in the shut state. We conclude that β2V53 is strongly involved in mechanisms underlying the receptor gating.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland.
| | - Michał A Michałowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Michalina Gos
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland
| | - Daniela Mosiądz
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland.
| |
Collapse
|
39
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
40
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
41
|
Slobodyanyuk M, Banda-Vázquez JA, Thompson MJ, Dean RA, Baenziger JE, Chica RA, daCosta CJB. Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel. Commun Biol 2022; 5:1264. [PMID: 36400839 PMCID: PMC9674596 DOI: 10.1038/s42003-022-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
ELIC is a prokaryotic homopentameric ligand-gated ion channel that is homologous to vertebrate nicotinic acetylcholine receptors. Acetylcholine binds to ELIC but fails to activate it, despite bringing about conformational changes indicative of activation. Instead, acetylcholine competitively inhibits agonist-activated ELIC currents. What makes acetylcholine an agonist in an acetylcholine receptor context, and an antagonist in an ELIC context, is not known. Here we use available structures and statistical coupling analysis to identify residues in the ELIC agonist-binding site that contribute to agonism. Substitution of these ELIC residues for their acetylcholine receptor counterparts does not convert acetylcholine into an ELIC agonist, but in some cases reduces the sensitivity of ELIC to acetylcholine antagonism. Acetylcholine antagonism can be abolished by combining two substitutions that together appear to knock out acetylcholine binding. Thus, making the ELIC agonist-binding site more acetylcholine receptor-like, paradoxically reduces the apparent affinity for acetylcholine, demonstrating that residues important for agonist binding in one context can be deleterious in another. These findings reinforce the notion that although agonism originates from local interactions within the agonist-binding site, it is a global property with cryptic contributions from distant residues. Finally, our results highlight an underappreciated mechanism of antagonism, where agonists with appreciable affinity, but negligible efficacy, present as competitive antagonists. A structural and functional study of the prokaryotic ligand-gated ion channel, ELIC, provides insight into the origin of agonism and antagonism at nicotinic acetylcholine receptors.
Collapse
|
42
|
Petroff JT, Dietzen NM, Santiago-McRae E, Deng B, Washington MS, Chen LJ, Trent Moreland K, Deng Z, Rau M, Fitzpatrick JAJ, Yuan P, Joseph TT, Hénin J, Brannigan G, Cheng WWL. Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation. Nat Commun 2022; 13:7017. [PMID: 36385237 PMCID: PMC9668969 DOI: 10.1038/s41467-022-34813-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate synaptic transmission and are sensitive to their lipid environment. The mechanism of phospholipid modulation of any pLGIC is not well understood. We demonstrate that the model pLGIC, ELIC (Erwinia ligand-gated ion channel), is positively modulated by the anionic phospholipid, phosphatidylglycerol, from the outer leaflet of the membrane. To explore the mechanism of phosphatidylglycerol modulation, we determine a structure of ELIC in an open-channel conformation. The structure shows a bound phospholipid in an outer leaflet site, and structural changes in the phospholipid binding site unique to the open-channel. In combination with streamlined alchemical free energy perturbation calculations and functional measurements in asymmetric liposomes, the data support a mechanism by which an anionic phospholipid stabilizes the activated, open-channel state of a pLGIC by specific, state-dependent binding to this site.
Collapse
Affiliation(s)
- John T Petroff
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Noah M Dietzen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ezry Santiago-McRae
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Brett Deng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maya S Washington
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lawrence J Chen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - K Trent Moreland
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Rau
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thomas T Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, CNRS UPR 9080, Paris, France
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
- Department of Physics, Rutgers University, Camden, NJ, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
43
|
Abstract
The flux of ions through a channel is most commonly regulated by changes that result in steric occlusion of its pore. However, ion permeation can also be prevented by formation of a desolvation barrier created by hydrophobic residues that line the pore. As a result of relatively minor structural changes, confined hydrophobic regions in channels may undergo transitions between wet and dry states to gate the pore closed without physical constriction of the permeation pathway. This concept is referred to as hydrophobic gating, and many examples of this process have been demonstrated. However, the term is also now being used in a much broader context that often deviates from its original meaning. In this Viewpoint, we explore the formal definition of a hydrophobic gate, discuss examples of this process compared with other gating mechanisms that simply exploit hydrophobic residues and/or lipids in steric closure of the pore, and describe the best practice for identification of a hydrophobic gate.
Collapse
Affiliation(s)
- David Seiferth
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Sanderson NSR. Complement and myasthenia gravis. Mol Immunol 2022; 151:11-18. [PMID: 36063582 DOI: 10.1016/j.molimm.2022.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Myasthenia gravis is a neuromuscular disease associated with antibodies against components of the neuromuscular junction, most often against the acetylcholine receptor (AChR). Although several mechanisms have been postulated to explain how these autoantibodies can lead to the pathology of the disease, convincing evidence suggests that destruction of the receptor-bearing postsynaptic membrane by complement membrane attack complex is of central importance. In this review, evidence for the importance of complement, and possible relationships between autoantigen, autoantibodies, complement activation, and the destruction of the membrane are discussed. More recent insights from the results of the complement-inhibiting therapeutic antibody eculizumab are also described, and the mechanisms connecting antibody binding to complement activation are considered from a structural viewpoint.
Collapse
|
45
|
Thangaratnarajah C, Rheinberger J, Paulino C. Cryo-EM studies of membrane proteins at 200 keV. Curr Opin Struct Biol 2022; 76:102440. [PMID: 36029606 DOI: 10.1016/j.sbi.2022.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Single-particle cryogenic electron-microscopy (cryo-EM) has emerged as a powerful technique for the structural characterisation of membrane proteins, especially for targets previously thought to be intractable. Taking advantage of the latest hard- and software developments, high-resolution three-dimensional (3D) reconstructions of membrane proteins by cryo-EM has become routine, with 300-kV transmission electron microscopes (TEMs) being the current standard. The use of 200-kV cryo-TEMs is gaining increasingly prominence, showing the capabilities of reaching better than 2 Å resolution for soluble proteins and better than 3 Å resolution for membrane proteins. Here, we highlight the challenges working with membrane proteins and the impact of cryo-EM, and review the technical and practical benefits, achievements and limitations of imaging at lower electron acceleration voltages.
Collapse
Affiliation(s)
- Chancievan Thangaratnarajah
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| | - Jan Rheinberger
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands. https://twitter.com/rheinbergerj
| | - Cristina Paulino
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy and Membrane Enzymology Group, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
46
|
Nys M, Zarkadas E, Brams M, Mehregan A, Kambara K, Kool J, Casewell NR, Bertrand D, Baenziger JE, Nury H, Ulens C. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat Commun 2022; 13:4543. [PMID: 35927270 PMCID: PMC9352773 DOI: 10.1038/s41467-022-32174-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Bites by elapid snakes (e.g. cobras) can result in life-threatening paralysis caused by venom neurotoxins blocking neuromuscular nicotinic acetylcholine receptors. Here, we determine the cryo-EM structure of the muscle-type Torpedo receptor in complex with ScNtx, a recombinant short-chain α-neurotoxin. ScNtx is pinched between loop C on the principal subunit and a unique hairpin in loop F on the complementary subunit, thereby blocking access to the neurotransmitter binding site. ScNtx adopts a binding mode that is tilted toward the complementary subunit, forming a wider network of interactions than those seen in the long-chain α-Bungarotoxin complex. Certain mutations in ScNtx at the toxin-receptor interface eliminate inhibition of neuronal α7 nAChRs, but not of human muscle-type receptors. These observations explain why ScNtx binds more tightly to muscle-type receptors than neuronal receptors. Together, these data offer a framework for understanding subtype-specific actions of short-chain α-neurotoxins and inspire strategies for design of new snake antivenoms.
Collapse
Affiliation(s)
- Mieke Nys
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| | - Eleftherios Zarkadas
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
- University Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | - Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Aujan Mehregan
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | | | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, 1081, HV, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
47
|
Tessier CJG, Sturgeon RM, Emlaw JR, McCluskey GD, Pérez-Areales FJ, daCosta CJB. Ancestral acetylcholine receptor β-subunit forms homopentamers that prime before opening spontaneously. eLife 2022; 11:76504. [PMID: 35781368 PMCID: PMC9365395 DOI: 10.7554/elife.76504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Human adult muscle-type acetylcholine receptors are heteropentameric ion channels formed from two α-subunits, and one each of the β-, d-, and e-subunits. To form functional channels, the subunits must assemble with one another in a precise stoichiometry and arrangement. Despite being different, the four subunits share a common ancestor that is presumed to have formed homopentamers. The extent to which the properties of the modern-day receptor result from its subunit complexity is unknown. Here we discover that a reconstructed ancestral muscle-type β-subunit can form homopentameric ion channels. These homopentamers open spontaneously and display single-channel hallmarks of muscle-type acetylcholine receptor activity. Our findings attest to the homopentameric origin of the muscle-type acetylcholine receptor, and demonstrate that signature features of its function are both independent of agonist and do not necessitate the complex heteropentameric architecture of the modern-day protein.
Collapse
Affiliation(s)
| | - R Michel Sturgeon
- Center for Chemical and Synthetic Biology, University of Ottawa, Ottawa, Canada
| | - Johnathon R Emlaw
- Center for Chemical and Synthetic Biology, University of Ottawa, Ottawa, Canada
| | - Gregory D McCluskey
- Center for Chemical and Synthetic Biology, University of Ottawa, Ottawa, Canada
| | | | - Corrie J B daCosta
- Center for Chemical and Synthetic Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
48
|
Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022; 12:biom12060814. [PMID: 35740939 PMCID: PMC9221113 DOI: 10.3390/biom12060814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.
Collapse
|
49
|
Thompson MJ, Domville JA, Edrington CH, Venes A, Giguère PM, Baenziger JE. Distinct functional roles for the M4 α-helix from each homologous subunit in the hetero-pentameric ligand-gated ion channel nAChR. J Biol Chem 2022; 298:102104. [PMID: 35679899 PMCID: PMC9260303 DOI: 10.1016/j.jbc.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The outermost lipid-exposed α-helix (M4) in each of the homologous α, β, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, βM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4–M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4–M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.
Collapse
|