1
|
Xin Q, Wang J, Zheng J, Tan Y, Jia X, Ni Z, Xu Z, Feng J, Wu Z, Li Y, Li XM, Ma H, Hu H. Neuron-astrocyte coupling in lateral habenula mediates depressive-like behaviors. Cell 2025; 188:3291-3309.e24. [PMID: 40280131 DOI: 10.1016/j.cell.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
The lateral habenula (LHb) neurons and astrocytes have been strongly implicated in depression etiology, but it was not clear how the two dynamically interact during depression onset. Here, using multi-brain-region calcium photometry recording in freely moving mice, we discover that stress induces a most rapid astrocytic calcium rise and a bimodal neuronal response in the LHb. LHb astrocytic calcium requires the α1A-adrenergic receptor and depends on a recurrent neural network between the LHb and locus coeruleus (LC). Through the gliotransmitter glutamate and ATP/adenosine, LHb astrocytes mediate the second-wave LHb neuronal activation and norepinephrine (NE) release. Activation or inhibition of LHb astrocytic calcium signaling facilitates or prevents stress-induced depressive-like behaviors, respectively. These results identify a stress-induced positive feedback loop in the LHb-LC axis, with astrocytes being a critical signaling relay. The identification of this prominent neuron-glia interaction may shed light on stress management and depression prevention.
Collapse
Affiliation(s)
- Qianqian Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Junying Wang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jinkun Zheng
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoning Jia
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zijie Xu
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiao-Ming Li
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
2
|
Hu M, Lv C, Zhu J, Zhang H, Wang X, You L, Xie J, Liu W, Wei X, Chen K, Li Z, Wei S, Geng X. PD-1 deficiency disrupts in vivo neural activity in mouse Hippocampus and cortex. Neurobiol Dis 2025:107002. [PMID: 40516709 DOI: 10.1016/j.nbd.2025.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 06/11/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025] Open
Abstract
Programmed cell death 1 (PD-1), encoded by the Pdcd1 gene, was identified as a target in cancer immunotherapy but may result in the overactivation of T cell function and emotional changes such as anxiety. The dynamic changes in neuronal activity related to the anxious status caused by Pdcd1-/- remain unclear. In this study, we addressed these physiological issues by simultaneously recording neuronal activity (spikes) and local field potentials (LFPs) in the medial prefrontal cortex (mPFC) and hippocampal CA3 region using in vivo multi-channel electrodes. Our results demonstrate that PD-1 deficiency induces anxiety-like behaviours and extensive neuronal firing disorders in the mPFC and CA3 regions of mice. The key finding was that in type A and type C neurons in the CA3 region, the in vivo spike-LFP encoding was imbalanced in the opposite direction by Pdcd1-/-. Targeting the activation of excitatory neurons in CA3 regions could rescue anxiety-like behaviours in Pdcd1-/- mice. This study provides physiological insights into the dynamic cooperation between the mPFC and CA3 circuits in anxiety-like behaviours caused by Pdcd1-/- and other mental disorders associated with autoimmune problems.
Collapse
Affiliation(s)
- Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cui Lv
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jianping Zhu
- College of Life Science, Shandong Normal University, Jinan, PR China
| | - Hao Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luyan You
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou 313000, China
| | - Wei Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Chen
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Innovation Center of Engineered Bacteriophage Therapeutics, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Zifa Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, China; Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wang ML, Song YL, Wu DY, Li H, Li ZM, Xiong XX, Hu NY, Hu J, Li JT, Wang YX, Li XW, Yang JM, Chen YH, Gao TM. Astrocytic connexin43 in the medial prefrontal cortex regulates depressive- and anxiety-like behaviors via ATP release. Pharmacol Res 2025:107798. [PMID: 40449814 DOI: 10.1016/j.phrs.2025.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Major depressive disorder (MDD) affects 17% of the global population and is highly comorbid with anxiety disorders. Emerging evidence indicates that dysregulation of astrocytic ATP contributes to the pathophysiology of depression. However, the molecular substrates underlying the stress-induced reduction in ATP release remain poorly understood, and the basis for the comorbidity of depression and anxiety disorders is still unknown. Here, we showed that Cx43 expression and extracellular ATP levels were significantly reduced in the medial prefrontal cortex (mPFC) of chronic social defeat stress (CSDS)-susceptible mice. Astrocyte-specific knockout or knockdown of Cx43 in the mPFC induced depressive-like behaviors--including anhedonia and despair-like behavio--and anxiety-like behaviors, alongside a reduction in ATP release, whereas neuronal knockout of Cx43 showed no effects on these behaviors. Notably, exogenous ATPγS administration reversed these behavioral deficits. Furthermore, overexpression of astrocytic Cx43 in the mPFC rescued both ATP levels and emotion-related behaviors in CSDS-susceptible mice. Taken together, our study provided the first evidence that astrocytic Cx43 reduction was sufficient to induce depressive- and anxiety-like behaviors and identified a novel ATP-mediated mechanism linking astrocytic Cx43 to both depression and anxiety pathogenesis. These findings open up promising therapeutic targets for treating these comorbid disorders.
Collapse
Affiliation(s)
- Meng-Ling Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yun-Long Song
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing-Xing Xiong
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Ting Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue-Xin Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Wang Q, Zhang Y, Ma K, Lin P, Wang Y, Wang R, Li H, Li Z, Wang G. Plexin B2 in physiology and pathophysiology of the central nervous system. Int Immunopharmacol 2025; 155:114627. [PMID: 40220620 DOI: 10.1016/j.intimp.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
The Plexin protein family was initially found in 1995, comprising subfamilies from Plexin A to Plexin D. Plexin B2, a member of the Plexin subfamily, has widespread expression in many human organs and tissues, particularly in the nervous system where expression levels are significantly heightened. The biological roles of Plexin B2 are mostly determined by its protein structure and functional domains. These domains regulate the binding selectivity and affinity for ligands. Ligand binding activates signal transduction pathways, resulting in regulatory effects on several biological processes. This includes managing brain growth and change, keeping angiogenesis and vascular homeostasis in check, and preventing the start, growth, and metastasis of cancer. Plexin B2 has also been associated with the onset of many nervous system illnesses. Plexin B2 aids in the invasion and spread of malignant cells, facilitates nerve healing following spinal cord damage, and plays a role in the etiology of schizophrenia. This article thoroughly examines the existing research on Plexin B2 and its importance in central nervous system biology. Simultaneously, it investigates the regulatory function of Plexin B2 across many cell types in the central nervous system, specifically neural stem cells, neurons, microglia, and astrocytes. This study examines the current knowledge of Plexin B2's role in central nervous system diseases, including schizophrenia, spinal cord injury, neuroblastoma, and fear memory. Overall, the prospects for the clinical translation of Plexin B2 are promising. However, challenges related to specificity and drug delivery must be addressed. Future research could explore the integration of nanodrug delivery systems to enhance the clinical application of Plexin B2-targeted therapies.
Collapse
Affiliation(s)
- Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Kaixuan Ma
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ran Wang
- School of Pharmacy, Harbin Medical University, Daqing, Heilongjiang 163319, China
| | - He Li
- Department of Parasitology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangtian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China; Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
5
|
Rawls A, Dziabis J, Nguyen D, Anbarci D, Clark M, Zhang G, Dzirasa K, Bilbo SD. Sex-specific regulation of microglial MyD88 in HMGB1-Induced anxiety phenotype in mice. Neurobiol Stress 2025; 36:100721. [PMID: 40236260 PMCID: PMC11997396 DOI: 10.1016/j.ynstr.2025.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/17/2025] Open
Abstract
Stress is a significant risk factor for the development and recurrence of anxiety disorders. Stress can profoundly impact the immune system, and lead to microglial functional alterations in the medial prefrontal cortex (mPFC), a brain region involved in the pathogenesis of anxiety. High mobility group box 1 protein (HMGB1) is a potent pro-inflammatory stimulus and danger-associated molecular pattern (DAMP) released from neuronal and non-neuronal cells following stress. HMGB1 provokes pro-inflammatory responses in the brain and, when administered locally, alters behavior in the absence of other stressors. In this study, we administered dsHMGB1 into the mPFC of male and female mice for 5 days to investigate the cellular and molecular mechanisms underlying HMGB1-induced behavioral dysfunction, with a focus on cell-type specificity and potential sex differences. Here, we demonstrate that dsHMGB1 infusion into the mPFC elicited behavior changes in both sexes but only altered microglial morphology robustly in female mice. Moreover, preventing microglial changes with cell-specific ablation of the MyD88 pathway prevented anxiety-like behaviors only in females. These results support the hypothesis that microglial MyD88 signaling is a critical mediator of HMGB1-induced stress responses, particularly in adult female mice.
Collapse
Affiliation(s)
- Ashleigh Rawls
- Department of Pharmacology, Duke University, Durham, NC, United States of America
| | - Julia Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Dang Nguyen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Dilara Anbarci
- Department of Cell Biology, Duke University, Durham, NC, United States of America
| | - Madeline Clark
- Department of Neurobiology, Duke University, Durham, NC, United States of America
| | - Grace Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
| |
Collapse
|
6
|
Chung EN, Lee J, Polonio CM, Choi J, Akl CF, Kilian M, Weiß WM, Gunner G, Ye M, Heo TH, Drake SS, Yang L, d'Eca CRGL, Lee JH, Deng L, Farrenkopf D, Schüle AM, Lee HG, Afolabi O, Ghaznavi S, Smirnakis SM, Chiu IM, Kuchroo VK, Quintana FJ, Wheeler MA. Psychedelic control of neuroimmune interactions governing fear. Nature 2025; 641:1276-1286. [PMID: 40269152 PMCID: PMC12119215 DOI: 10.1038/s41586-025-08880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Neuroimmune interactions-signals transmitted between immune and brain cells-regulate many aspects of tissue physiology1, including responses to psychological stress2-5, which can predispose individuals to develop neuropsychiatric diseases6-9. Still, the interactions between haematopoietic and brain-resident cells that influence complex behaviours are poorly understood. Here, we use a combination of genomic and behavioural screens to show that astrocytes in the amygdala limit stress-induced fear behaviour through epidermal growth factor receptor (EGFR). Mechanistically, EGFR expression in amygdala astrocytes inhibits a stress-induced, pro-inflammatory signal-transduction cascade that facilitates neuron-glial crosstalk and stress-induced fear behaviour through the orphan nuclear receptor NR2F2 in amygdala neurons. In turn, decreased EGFR signalling and fear behaviour are associated with the recruitment of meningeal monocytes during chronic stress. This set of neuroimmune interactions is therapeutically targetable through the administration of psychedelic compounds, which reversed the accumulation of monocytes in the brain meninges along with fear behaviour. Together with validation in clinical samples, these data suggest that psychedelics can be used to target neuroimmune interactions relevant to neuropsychiatric disorders and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Elizabeth N Chung
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Jinsu Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolina M Polonio
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua Choi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Camilo Faust Akl
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Kilian
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Wiebke M Weiß
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Georgia Gunner
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mingyu Ye
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Tae Hyun Heo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sienna S Drake
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liu Yang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Catarina R G L d'Eca
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joon-Hyuk Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Farrenkopf
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anton M Schüle
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong-Gyun Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Oreoluwa Afolabi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharmin Ghaznavi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston, MA, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio AM, Rivera M, Markovic T, Yeh SY, Nestler EJ. Astrocytic CREB in Nucleus Accumbens Promotes Susceptibility to Chronic Stress. Biol Psychiatry 2025; 97:862-873. [PMID: 39369762 PMCID: PMC11971392 DOI: 10.1016/j.biopsych.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Increasing evidence implicates astrocytes in stress and depression in both rodent models and human major depressive disorder. Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. METHODS We used whole-cell sorting, RNA sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB (cAMP response element binding protein) within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. RESULTS We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient versus susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. CONCLUSIONS Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angelica M Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
8
|
Chen Y, Colonna M. Psychedelics reduce fear by targeting immune cells that modulate brain cells. Nature 2025; 641:1105-1108. [PMID: 40269302 DOI: 10.1038/d41586-025-01133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
9
|
Hikosaka M, Parvez MSA, Yamawaki Y, Oe S, Liang Y, Wada Y, Hirahara Y, Koike T, Imai H, Oishi N, Schalbetter SM, Kumagai A, Yoshida M, Sakurai T, Kitada M, Meyer U, Narumiya S, Ohtsuki G. Maternal immune activation followed by peripubertal stress combinedly produce reactive microglia and confine cerebellar cognition. Commun Biol 2025; 8:296. [PMID: 40033126 PMCID: PMC11876345 DOI: 10.1038/s42003-025-07566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The functional alteration of microglia arises in brains exposed to external stress during early development. Pathophysiological findings of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder suggest cerebellar functional deficits. However, the link between stress-induced microglia reactivity and cerebellar dysfunction is missing. Here, we investigate the developmental immune environment in translational mouse models that combine two risk factors: maternal infection and repeated social defeat stress (2HIT). We find the synergy of inflammatory stress insults, leading to microglial increase specifically in the cerebellum of both sexes. Microglial turnover correlates with the Purkinje neuron loss in 2HIT mice. Highly multiplexed imaging-mass-cytometry identifies a cell transition to TREM2(+) stress-associated microglia in the cerebellum. Single-cell-proteomic clustering reveals IL-6- and TGFβ-signaling association with microglial cell transitions. Reduced excitability of remaining Purkinje cells, cerebellum-involved brain-wide functional dysconnectivity, and behavioral abnormalities indicate cerebellar cognitive dysfunctions in 2HIT animals, which are ameliorated by both systemic and cerebellum-specific microglia replacement.
Collapse
Affiliation(s)
- Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Md Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Yuan Liang
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yayoi Wada
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Kyoto, Japan
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Naoya Oishi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Sakurai
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
10
|
Xu S, Chen H, Tan A, Yang H, Tong J. Surgical Stress and Non-Surgery Related Stress Synergistically Trigger Meningeal CD8 + T Cells Accumulation and Subsequent Brain Dysfunction in Mice. J Neurochem 2025; 169:e70043. [PMID: 40066934 DOI: 10.1111/jnc.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 05/13/2025]
Abstract
Patients are usually highly stressed during the immediate perioperative period. It remains unclear whether increased stress contributes to postoperative brain dysfunction. Here, the clinical perioperative setting was mimicked via exploratory laparotomy and perioperative restraint stress. The stress response was assessed by measuring the levels of stress hormones and IL-6 in peripheral blood. Behaviors were evaluated with the open field, novel object recognition, and Barnes maze tests. We found that surgical stress and non-surgery-related stress synergistically trigger meningeal CD8+T cell accumulation, brain dysfunction, and increased stress hormone and IL-6 levels in the peripheral blood of adult mice, but simple surgical stress or non-surgery-related stress had no significant effect on these parameters. Limiting meningeal CD8+ T cell accumulation with an anti-CD8 antibody alleviated the impact of surgery plus perioperative stress on brain function, neuroinflammation, and neurogenesis. The partial elimination of microglia before surgery alleviated postoperative meningeal CD8+ T cell accumulation, cognitive dysfunction, and decreased hippocampal chemotactic factor levels. Our findings indicate that the synergistic effect of surgical stress and non-surgery-related stress contributes to postoperative brain dysfunction by triggering meningeal CD8+ T cell accumulation, suggesting the potential of limiting non-surgery-related stress as a preventive method for postoperative brain dysfunction.
Collapse
Affiliation(s)
- Shanqing Xu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Brain Research Center, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Aihua Tan
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Brain Research Center, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Brain Research Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Motooka Y, Shinohara R, Kitaoka S, Uryu A, Li D, Neyama H, Cui Y, Kida T, Arakaki W, Doi H, Watanabe Y, Furuyashiki T. Alteration of COX-1 and TLR4 expression in the mouse brain during chronic social defeat stress revealed by Positron Emission Tomography study. J Pharmacol Sci 2025; 157:156-166. [PMID: 39929590 DOI: 10.1016/j.jphs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 05/08/2025] Open
Abstract
Despite the recognized roles of neuroinflammation in mental illnesses, PET imaging on currently available biomarkers has limitations due to the lack of evidence demonstrating their relationship to the molecular and cellular events of inflammation associated with the pathology of mental illness. Rodent stress models, such as chronic social defeat stress (SDS), have identified crucial roles for COX-1 and TLR4, which are innate immune molecules, in chronic SDS-induced neuroinflammation and its behavioral consequences. In this study, we performed COX-1 and TLR4 PET imaging at multiple time points during chronic SDS in mice. For COX-1 PET imaging, we used the COX-1 PET probe (S)-[18F]KTP-Me. Subchronic SDS transiently increased uptake and slower washout in broad regions of the brain, including the cerebral cortex, hippocampus, striatum, and thalamus. For TLR4 PET imaging, we developed a new BBB-permeable PET probe, [11C]1, which detected LPS-induced neuroinflammation. Washout of [11C]1 was facilitated in the cerebellum after subchronic and chronic SDS and in the pons-medulla after chronic SDS. Collectively, our findings suggest the potential usefulness of COX-1 and TLR4 PET imaging in visualizing and understanding time-dependent process of neuroinflammation in stress-related mental illnesses.
Collapse
Affiliation(s)
- Yumika Motooka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Ai Uryu
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Dongrui Li
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yilong Cui
- Laboratory for Brain-Gut Homeostasis, School of Medicine, Hyogo Medical University, Nishinomiya, Japan; Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Tatsuya Kida
- Laboratory for Labeling Chemistry, And RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Wakiko Arakaki
- Laboratory for Labeling Chemistry, And RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, And RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Research Institute for Drug Discovery Science, Collaborative Creation Research Center, Organization for Research Promotion, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Department of Essential Healthcare Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
12
|
Wheeler MA, Quintana FJ. The neuroimmune connectome in health and disease. Nature 2025; 638:333-342. [PMID: 39939792 PMCID: PMC12039074 DOI: 10.1038/s41586-024-08474-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/02/2024] [Indexed: 02/14/2025]
Abstract
The nervous and immune systems have complementary roles in the adaptation of organisms to environmental changes. However, the mechanisms that mediate cross-talk between the nervous and immune systems, called neuroimmune interactions, are poorly understood. In this Review, we summarize advances in the understanding of neuroimmune communication, with a principal focus on the central nervous system (CNS): its response to immune signals and the immunological consequences of CNS activity. We highlight these themes primarily as they relate to neurological diseases, the control of immunity, and the regulation of complex behaviours. We also consider the importance and challenges linked to the study of the neuroimmune connectome, which is defined as the totality of neuroimmune interactions in the body, because this provides a conceptual framework to identify mechanisms of disease pathogenesis and therapeutic approaches. Finally, we discuss how the latest techniques can advance our understanding of the neuroimmune connectome, and highlight the outstanding questions in the field.
Collapse
Affiliation(s)
- Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Yan B, Liao P, Han Z, Zhao J, Gao H, Liu Y, Chen F, Lei P. Association of aging related genes and immune microenvironment with major depressive disorder. J Affect Disord 2025; 369:706-717. [PMID: 39419187 DOI: 10.1016/j.jad.2024.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To study the relationship between aging related genes (ARGs) and Major Depressive Disorder (MDD). METHODS The datasets GSE98793, GSE52790 and GSE39653 for MDD were obtained from the GEO database, and ARGs were obtained from the Human Aging Genome Resources database. Differential expression genes (DEGs) screening and GO, KEGG enrichment analysis were performed to uncover the underlying mechanisms. To identify key ARGs associated with MDD (key ARG-DEGs), we employed machine learning methods such as LASSO, SVM, and Random Forest, as well as the plug-ins CytoHubba-MCC and MCODE methods. SsGSEA was used to analyze the immune infiltration of MDD and healthy controls. Furthermore, we created risk prediction nomograms model and ROC curves to assess not only the ability of key ARG-DEGs to diagnose MDD, but also predicted miRNAs and transcription factors (TFs) that might interact. Finally, a two-sample Mendelian randomization (MR) study was performed to confirm the association of identified key ARG-DEGs with depression. RESULTS DEGs of ARGs between MDD and healthy controls led to the identification of eight ARG-DEGs. GO and KEGG analysis revealed that the pathways associated with these eight ARG-DEGs were primarily concentrated in Foxo pathway, JAK-STAT pathway, Pl3K-AKT pathway, and metabolic diseases. A comprehensive analysis further narrowed down the 8 ARG-DEGs to 4 key ARG-DEGs: MMP9, IL7R, S100B, and EGF. Immune infiltration analysis indicated significant differences in CD8(+) T cells, macrophages, neutrophils, Th2 cells, and TIL cells between MDD and control groups, correlating with these four key ARG-DEGs. Based on these four key ARG-DEGs, a risk prediction model for MDD was developed. The miRNA-TF-mRNA interaction network of the key ARG-DEGs highlights the complexity of the regulatory process, providing valuable insights for future related research. The MR study suggested a potential causal relationship between MMP9 and the risk of depression. CONCLUSION The process of aging, immune dysregulation, and MDD are closely interconnected. MMP9, IL7R, S100B, and EGF may be used as novel diagnostic biomarkers and potential therapeutic targets for MDD, especially MMP9.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Fanglian Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
14
|
Cardona-Acosta AM, Meisser N, Vardeleon NI, Steiner H, Bolaños-Guzmán CA. Mother's little helper turned a foe: Alprazolam use, misuse, and abuse. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111137. [PMID: 39260815 DOI: 10.1016/j.pnpbp.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Benzodiazepines are effective in managing anxiety and related disorders when used properly (short-term). Their inappropriate use, however, carries significant risks, involving amnesia, rebound insomnia, rebound anxiety, depression, dependence, abuse, addiction, and an intense and exceedingly prolonged withdrawal, among other complications. Benzodiazepines also amplify the effects of opioids and, consequently, have been implicated in approximately 30 % of opioid overdose deaths. Despite their unfavorable profile, sharp increases in medical and non-medical use of benzodiazepines have been steadily reported worldwide. Alprazolam (Xanax®), a potent, short-acting benzodiazepine, is among the most prescribed and abused anxiolytics in the United States. This medication is commonly co-abused with opioids, increasing the likelihood for oversedation, overdose, and death. Notwithstanding these risks, it is surprising that research investigating how benzodiazepines, such as alprazolam, interact with opioids is severely lacking in clinical and preclinical settings. This review therefore aims to present our current knowledge of benzodiazepine use and misuse, with an emphasis on alprazolam when data is available, and particularly in populations at higher risk for developing substance use disorders. Additionally, the potential mechanism(s) surrounding tolerance, dependence and abuse liability are discussed. Despite their popularity, our understanding of how benzodiazepines and opioids interact is less than adequate. Therefore, it is now more important than ever to understand the short- and long-term consequences of benzodiazepine/alprazolam use.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Noelle Meisser
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Nathan I Vardeleon
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Rappe A, Vihinen HA, Suomi F, Hassinen AJ, Ehsan H, Jokitalo ES, McWilliams TG. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. EMBO J 2024; 43:6199-6231. [PMID: 39367235 PMCID: PMC11612485 DOI: 10.1038/s44318-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson's and Alzheimer's disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain-a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Helena A Vihinen
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Antti J Hassinen
- High Content Imaging and Analysis Unit (FIMM-HCA), Institute for Molecular Medicine, Helsinki Institute of Life Science, University of Helsinki, Tukholmankatu 8, Helsinki, 00290, Finland
| | - Homa Ehsan
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Eija S Jokitalo
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
16
|
Wu AM, Zhang JY, Lun WZ, Geng Z, Yang Y, Wu JC, Chen GH. Dynamic changes of media prefrontal cortex astrocytic activity in response to negative stimuli in male mice. Neurobiol Stress 2024; 33:100676. [PMID: 39429249 PMCID: PMC11490747 DOI: 10.1016/j.ynstr.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Astrocytes play significant roles in regulating the central stress response. Chronic stress impairs the structure and function of astrocytes in many brain regions such as media prefrontal cortex (mPFC) in multiple neuropsychiatric conditions, but the astrocytic dynamics on the timescale of behavior remains unclear. Here, we recorded mPFC astrocytic activity in freely behaving mice and found that astrocytes are activated immediately by different aversive stimuli. Astrocyte specific GCaMP6s calcium indicator were virally expressed in mPFC astrocytes and fiber photometry experiments revealed that astrocytes are activated by tail-restraint (TRT), foot shock (FS), open arm exploration, stressor of height, predator odor and social defeat (SD) stress. ΔF/F analyses demonstrated that an unpredictable stimulus such as elevated platform stress (EPS) at the initial encounter induced the most intense and rapid changes in astrocytic calcium activity, while a predictable 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) stimulus resulted in the weakest response with a longer peak latency. In TRT, FS or SD test, a somatic stimulus led to higher average calcium activity level and faster average peak latency in repeated trails. Similar to TMT stimulus, astrocytic calcium activity in elevated plus maze (EPM) test exhibited a smaller average change in amplitude and the longest peak latency during open arm exploration. Moreover, astrocytic calcium activity exhibited different changes across behavioral states in SD tests. Our findings show that mPFC astrocytes exhibit distinct patterns of calcium activity in response to various negative stimuli, indicating that the dynamic activity of astrocytes may reflect the stress-related behavioral state under different stimulus conditions.
Collapse
Affiliation(s)
- Ai-Mei Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Ye Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| | - Jun-Cang Wu
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 230011, China
| |
Collapse
|
17
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
18
|
Rajkumar RP. Revisiting a hypothesis: the neurovascular unit as a link between major depression and neurodegenerative disorders. Front Cell Neurosci 2024; 18:1455606. [PMID: 39157756 PMCID: PMC11327082 DOI: 10.3389/fncel.2024.1455606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education, Pondicherry, India
| |
Collapse
|
19
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
20
|
Chan SY, Fitzgerald E, Ngoh ZM, Lee J, Chuah J, Chia JSM, Fortier MV, Tham EH, Zhou JH, Silveira PP, Meaney MJ, Tan AP. Examining the associations between microglia genetic capacity, early life exposures and white matter development at the level of the individual. Brain Behav Immun 2024; 119:781-791. [PMID: 38677627 DOI: 10.1016/j.bbi.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Collapse
Affiliation(s)
- Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Janice Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Chuah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Joanne S M Chia
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore; Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Elizabeth H Tham
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Juan H Zhou
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
21
|
Fitzgerald E, Pokhvisneva I, Patel S, Yu Chan S, Peng Tan A, Chen H, Pelufo Silveira P, Meaney MJ. Microglial function interacts with the environment to affect sex-specific depression risk. Brain Behav Immun 2024; 119:597-606. [PMID: 38670238 DOI: 10.1016/j.bbi.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is a two-fold higher incidence of depression in females compared to men with recent studies suggesting a role for microglia in conferring this sex-dependent depression risk. In this study we investigated the nature of this relation. Using GWAS enrichment, gene-set enrichment analysis and Mendelian randomization, we found minimal evidence for a direct relation between genes functionally related to microglia and sex-dependent genetic risk for depression. We then used expression quantitative trait loci and single nucleus RNA-sequencing resources to generate polygenic scores (PGS) representative of individual variation in microglial function in the adult (UK Biobank; N = 54753-72682) and fetal (ALSPAC; N = 1452) periods. The adult microglial PGS moderated the association between BMI (UK Biobank; beta = 0.001, 95 %CI 0.0009 to 0.003, P = 7.74E-6) and financial insecurity (UK Biobank; beta = 0.001, 95 %CI 0.005 to 0.015, P = 2E-4) with depressive symptoms in females. The fetal microglia PGS moderated the association between maternal prenatal depressive symptoms and offspring depressive symptoms at 24 years in females (ALSPAC; beta = 0.04, 95 %CI 0.004 to 0.07, P = 0.03). We found no evidence for an interaction between the microglial PGS and depression risk factors in males. Our results illustrate a role for microglial function in the conferral of sex-dependent depression risk following exposure to a depression risk factor.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Shi Yu Chan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore
| | - Ai Peng Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Diagnostic Imaging, National University Health System, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore
| | - Helen Chen
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore; Duke-National University of Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore.
| |
Collapse
|
22
|
Rawls A, Nyugen D, Dziabis J, Anbarci D, Clark M, Dzirasa K, Bilbo SD. Microglial MyD88-dependent pathways are regulated in a sex-specific manner in the context of HMGB1-induced anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590482. [PMID: 38712142 PMCID: PMC11071353 DOI: 10.1101/2024.04.22.590482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chronic stress is a significant risk factor for the development and recurrence of anxiety disorders. Chronic stress impacts the immune system, causing microglial functional alterations in the medial prefrontal cortex (mPFC), a brain region involved in the pathogenesis of anxiety. High mobility group box 1 protein (HMGB1) is an established modulator of neuronal firing and a potent pro-inflammatory stimulus released from neuronal and non-neuronal cells following stress. HMGB1, in the context of stress, acts as a danger-associated molecular pattern (DAMP), instigating robust proinflammatory responses throughout the brain, so much so that localized drug delivery of HMGB1 alters behavior in the absence of any other forms of stress, i.e., social isolation, or behavioral stress models. Few studies have investigated the molecular mechanisms that underlie HMGB1-associated behavioral effects in a cell-specific manner. The aim of this study is to investigate cellular and molecular mechanisms underlying HMGB1-induced behavioral dysfunction with regard to cell-type specificity and potential sex differences. Here, we report that both male and female mice exhibited anxiety-like behavior following increased HMGB1 in the mPFC as well as changes in microglial morphology. Interestingly, our results demonstrate that HMGB1-induced anxiety may be mediated by distinct microglial MyD88-dependent mechanisms in females compared to males. This study supports the hypothesis that MyD88 signaling in microglia may be a crucial mediator of the stress response in adult female mice.
Collapse
Affiliation(s)
- Ashleigh Rawls
- Department of Pharmacology, Duke University, Durham, North Carolina, United States of America
| | - Dang Nyugen
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Julia Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Dilara Anbarci
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Madeline Clark
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
23
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
24
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
25
|
Parise EM, Gyles TM, Godino A, Sial OK, Browne CJ, Parise LF, Torres-Berrío A, Salery M, Durand-de Cuttoli R, Rivera MT, Cardona-Acosta AM, Holt L, Markovic T, van der Zee YY, Lorsch ZS, Cathomas F, Garon JB, Teague C, Issler O, Hamilton PJ, Bolaños-Guzmán CA, Russo SJ, Nestler EJ. Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene Htra1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588724. [PMID: 38659771 PMCID: PMC11042238 DOI: 10.1101/2024.04.12.588724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.
Collapse
|
26
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
27
|
Cathomas F, Lin HY, Chan KL, Li L, Parise LF, Alvarez J, Durand-de Cuttoli R, Aubry AV, Muhareb S, Desland F, Shimo Y, Ramakrishnan A, Estill M, Ferrer-Pérez C, Parise EM, Wilk CM, Kaster MP, Wang J, Sowa A, Janssen WG, Costi S, Rahman A, Fernandez N, Campbell M, Swirski FK, Nestler EJ, Shen L, Merad M, Murrough JW, Russo SJ. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 2024; 626:1108-1115. [PMID: 38326622 PMCID: PMC10901735 DOI: 10.1038/s41586-023-07015-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johana Alvarez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V Aubry
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Jun Wang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Fernandez
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio A, Markovic T, Rivera M, Yeh SY, Nestler EJ. Astrocytic CREB in nucleus accumbens promotes susceptibility to chronic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575728. [PMID: 38293227 PMCID: PMC10827054 DOI: 10.1101/2024.01.15.575728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. Methods We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. Results We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states seen in resilient versus susceptible mice. This bioinformatic result was confirmed at the protein level with immunohistochemistry. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. Conclusions Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and, for the first time, that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M. Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Wang T, Song Z, Zhao X, Wu Y, Wu L, Haghparast A, Wu H. Spatial transcriptomic analysis of the mouse brain following chronic social defeat stress. EXPLORATION (BEIJING, CHINA) 2023; 3:20220133. [PMID: 38264685 PMCID: PMC10742195 DOI: 10.1002/exp.20220133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/03/2023] [Indexed: 01/25/2024]
Abstract
Depression is a highly prevalent and disabling mental disorder, involving numerous genetic changes that are associated with abnormal functions in multiple regions of the brain. However, there is little transcriptomic-wide characterization of chronic social defeat stress (CSDS) to comprehensively compare the transcriptional changes in multiple brain regions. Spatial transcriptomics (ST) was used to reveal the spatial difference of gene expression in the control, resilient (RES) and susceptible (SUS) mouse brains, and annotated eight anatomical brain regions and six cell types. The gene expression profiles uncovered that CSDS leads to gene synchrony changes in different brain regions. Then it was identified that inhibitory neurons and synaptic functions in multiple regions were primarily affected by CSDS. The brain regions Hippocampus (HIP), Isocortex, and Amygdala (AMY) present more pronounced transcriptional changes in genes associated with depressive psychiatric disorders than other regions. Signalling communication between these three brain regions may play a critical role in susceptibility to CSDS. Taken together, this study provides important new insights into CSDS susceptibility at the ST level, which offers a new approach for understanding and treating depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Zhihong Song
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Xin Zhao
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Yan Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Liying Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Abbas Haghparast
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
- Key Laboratory of Neuroregeneration, Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
30
|
Wheeler MA, Quintana FJ. Astrocytes on steroids binge on synapses to cope with stress. Immunity 2023; 56:1983-1985. [PMID: 37703827 PMCID: PMC10564114 DOI: 10.1016/j.immuni.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Many mechanisms by which stress mediates its effects within the central nervous system still remain unknown. Byun, Kim, Kim et al. find that early-life stress triggers corticosterone release to drive astrocyte-dependent synapse elimination and altered behavior. Thus, this work defines a steroid-sensitive astrocyte transcriptional circuit controlling behavior, highlighting how the study of CNS immunoregulation may shed light on behavior.
Collapse
Affiliation(s)
- Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Kim EJ, Kim JJ. Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28:2750-2763. [PMID: 36759545 PMCID: PMC9909677 DOI: 10.1038/s41380-023-01986-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Stressful experiences, both physical and psychological, that are overwhelming (i.e., inescapable and unpredictable), can measurably affect subsequent neuronal properties and cognitive functioning of the hippocampus. At the cellular level, stress has been shown to alter hippocampal synaptic plasticity, spike and local field potential activity, dendritic morphology, neurogenesis, and neurodegeneration. At the behavioral level, stress has been found to impair learning and memory for declarative (or explicit) tasks that are based on cognition, such as verbal recall memory in humans and spatial memory in rodents, while facilitating those that are based on emotion, such as differential fear conditioning in humans and contextual fear conditioning in rodents. These vertically related alterations in the hippocampus, procedurally observed after subjects have undergone stress, are generally believed to be mediated by recurrently elevated circulating hypothalamic-pituitary-adrenal (HPA) axis effector hormones, glucocorticoids, directly acting on hippocampal neurons densely populated with corticosteroid receptors. The main purposes of this review are to (i) provide a synopsis of the neurocognitive effects of stress in a historical context that led to the contemporary HPA axis dogma of basic and translational stress research, (ii) critically reappraise the necessity and sufficiency of the glucocorticoid hypothesis of stress, and (iii) suggest an alternative metaparadigm approach to monitor and manipulate the progression of stress effects at the neural coding level. Real-time analyses can reveal neural activity markers of stress in the hippocampus that can be used to extrapolate neurocognitive effects across a range of stress paradigms (i.e., resolve scaling and dichotomous memory effects issues) and understand individual differences, thereby providing a novel neurophysiological scaffold for advancing future stress research.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
32
|
Xi K, Xiao H, Huang X, Yuan Z, Liu M, Mao H, Liu H, Ma G, Cheng Z, Xie Y, Liu Y, Feng D, Wang W, Guo B, Wu S. Reversal of hyperactive higher-order thalamus attenuates defensiveness in a mouse model of PTSD. SCIENCE ADVANCES 2023; 9:eade5987. [PMID: 36735778 PMCID: PMC9897664 DOI: 10.1126/sciadv.ade5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ziduo Yuan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Mingyue Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
33
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
34
|
Cathomas F, Lin HY, Chan KL, Li L, Durand-de Cuttoli R, Parise LF, Aubry AV, Muhareb S, Desland F, Shimo Y, Ramakrishnan A, Estill M, Ferrer-Pérez C, Parise EM, Wang J, Sowa A, Janssen WG, Costi S, Rahman A, Fernandez N, Swirski FK, Nestler EJ, Shen L, Merad M, Murrough JW, Russo SJ. Peripheral immune-derived matrix metalloproteinase promotes stress susceptibility. RESEARCH SQUARE 2023:rs.3.rs-1647827. [PMID: 36778505 PMCID: PMC9915787 DOI: 10.21203/rs.3.rs-1647827/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L. Chan
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F. Parise
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V. Aubry
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Yusuke Shimo
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Wang
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G. Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicolas Fernandez
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - James W. Murrough
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Scott J. Russo
- Nash Family Department of Neuroscience, Brain & Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Uhlig M, Reinelt JD, Lauckner ME, Kumral D, Schaare HL, Mildner T, Babayan A, Möller HE, Engert V, Villringer A, Gaebler M. Rapid volumetric brain changes after acute psychosocial stress. Neuroimage 2023; 265:119760. [PMID: 36427754 DOI: 10.1016/j.neuroimage.2022.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures. Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models. We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes. Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain.
Collapse
Affiliation(s)
- Marie Uhlig
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany.
| | - Janis D Reinelt
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mark E Lauckner
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Independent Research Group "Adaptive Memory", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Medical Faculty of Leipzig University, Leipzig, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg im Breisgau, Germany
| | - H Lina Schaare
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Otto Hahn Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany
| | - Toralf Mildner
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anahit Babayan
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Veronika Engert
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany; Independent Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| |
Collapse
|
36
|
Xuan FL, Yan L, Li Y, Fan F, Deng H, Gou M, Chithanathan K, Heinla I, Yuan L, Seppa K, Zharkovsky A, Kalda A, Hong LE, Hu GF, Tan Y, Tian L. Glial receptor PLXNB2 regulates schizophrenia-related stress perception via the amygdala. Front Immunol 2022; 13:1005067. [PMID: 36325348 PMCID: PMC9619215 DOI: 10.3389/fimmu.2022.1005067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Stress is a trigger for the development of psychiatric disorders. However, how stress trait differs in schizophrenia patients is still unclear. Stress also induces and exacerbates immune activation in psychiatric disorders. Plexins (Plxn) and its ligands semaphorins (Sema) are important cellular receptors with plural functions in both the brain and the immune system. Recently, the role of Plxn/Sema in regulation of neuroinflammation was also noticed. Here, when investigating immune mechanisms underlying stress susceptibility in schizophrenia, we discovered the role of Plxnb2 in stress response. Patients of first-episode schizophrenia (FES) with high stress (FES-hs, n=51) and low stress (FES-ls, n=50) perception and healthy controls (HCs) (n=49) were first recruited for neuroimaging and blood bulk RNA sequencing (RNA-seq). A mouse model of chronic unpredictable stress (CUS) and intra-amygdaloid functional blocking of Plxnb2 were further explored to depict target gene functions. Compared to HCs, FES-hs patients had bigger caudate and thalamus (FDR=0.02&0.001, respectively) whereas FES-ls patients had smaller amygdala (FDR=0.002). Blood RNA-seq showed differentially expressed PLXNB2 and its ligands among patient groups and HCs (FDR<0.05~0.01). Amygdaloid size and PLXNB2 level were both negatively correlated with stress perception (p<0.01&0.05, respectively), which fully mediated the amygdaloid positive association with PLXNB2 expression (β=0.9318, 95% CI: 0.058~1.886) in FES-hs patients. In mice, Plxnb2 was enriched in astrocytes and microglia and CUS reduced its expression in astrocytes (p<0.05). Inhibition of amygdaloid Plxnb2 by its functional blocking monoclonal antibody (mAb)-102 induced mice anxiety (p<0.05), amygdaloid enlargement (p<0.05), and microglial ramification (p<0.001) compared to saline. These data suggest that PLXNB2 regulates amygdala-dependent stress responses.
Collapse
Affiliation(s)
- Fang-Ling Xuan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ling Yan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Yanli Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Fengmei Fan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Hu Deng
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Mengzhuang Gou
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Keerthana Chithanathan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Indrek Heinla
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Liang Yuan
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Kadri Seppa
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Anti Kalda
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Guo-Fu Hu
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Yunlong Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
- *Correspondence: Li Tian, ; Yunlong Tan,
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- *Correspondence: Li Tian, ; Yunlong Tan,
| |
Collapse
|
37
|
Targeting PERK mediated endoplasmic reticulum stress attenuates neuroinflammation and alleviates lipopolysaccharide-induced depressive-like behavior in male mice. Int Immunopharmacol 2022; 111:109092. [PMID: 35940075 DOI: 10.1016/j.intimp.2022.109092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a key role in the development of depression-like behaviors.Endoplasmic reticulum (ER) stress,defined as accumulation of unfolded proteins in the ER,is suggested tocollaboratewithinflammation process to drive sustained neuroinflammation. Protein kinase R-like endoplasmic reticulum kinase (PERK) is ofparticularly attractive target because it plays key rolein the regulation of ER stress-induced neuroinflammation, however, little isknown whether PERKmediatedER stress is implicated in LPS-induced depression-like behaviors.Thus, we aimed to evaluate the induction of PERK pathwayin mice with depression-like behaviors induced by LPS, as well as the alterations in depression-like behaviorsfollowing the blocking of PERK pathway.We found that LPS challenges resulted in enhanced PERK in the hippocampus, with no alteration in the prefrontal cortex. Importantly, we found that PERKinhibitorISRIB reducedthe proinflammatory responsesof microglia in the context of acute LPS-induced brain inflammation, and subsequent the preserved hippocampal neurogenesis, and improvement in depression-like behavioroutcomes following LPS challenges.It was also worth mentioning thatISRIB treatmentreduced the peripheral pro-inflammatory cytokines includingIL-1β, IL-6 and IL-18. Thus, targetingPERK mediated Endoplasmic reticulum stress may be a promising antidepressant and anti-inflammatory candidate drug for the alleviation of neuroinflammationmediated depression, and PERKinhibitorISRIBmay havebenefits for combating major depressive disorder.
Collapse
|
38
|
Dai W, Huang S, Luo Y, Cheng X, Xia P, Yang M, Zhao P, Zhang Y, Lin WJ, Ye X. Sex-Specific Transcriptomic Signatures in Brain Regions Critical for Neuropathic Pain-Induced Depression. Front Mol Neurosci 2022; 15:886916. [PMID: 35663269 PMCID: PMC9159910 DOI: 10.3389/fnmol.2022.886916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a chronic debilitating condition with a high comorbidity with depression. Clinical reports and animal studies have suggested that both the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) are critically implicated in regulating the affective symptoms of neuropathic pain. Neuropathic pain induces differential long-term structural, functional, and biochemical changes in both regions, which are thought to be regulated by multiple waves of gene transcription. However, the differences in the transcriptomic profiles changed by neuropathic pain between these regions are largely unknown. Furthermore, women are more susceptible to pain and depression than men. The molecular mechanisms underlying this sexual dimorphism remain to be explored. Here, we performed RNA sequencing and analyzed the transcriptomic profiles of the mPFC and ACC of female and male mice at 2 weeks after spared nerve injury (SNI), an early time point when the mice began to show mild depressive symptoms. Our results showed that the SNI-induced transcriptomic changes in female and male mice were largely distinct. Interestingly, the female mice exhibited more robust transcriptomic changes in the ACC than male, whereas the opposite pattern occurred in the mPFC. Cell type enrichment analyses revealed that the differentially expressed genes involved genes enriched in neurons, various types of glia and endothelial cells. We further performed gene set enrichment analysis (GSEA), which revealed significant de-enrichment of myelin sheath development in both female and male mPFC after SNI. In the female ACC, gene sets for synaptic organization were enriched, and gene sets for extracellular matrix were de-enriched after SNI, while such signatures were absent in male ACC. Collectively, these findings revealed region-specific and sexual dimorphism at the transcriptional levels induced by neuropathic pain, and provided novel therapeutic targets for chronic pain and its associated affective disorders.
Collapse
Affiliation(s)
- Weiping Dai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuying Huang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Luo
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqian Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Panwu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaojing Ye,
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Wei-Jye Lin,
| |
Collapse
|