1
|
Thanos JM, Campbell OC, Cowan MN, Bruch KR, Moore KA, Ennerfelt HE, Natale NR, Mangalmurti A, Kerur N, Lukens JR. STING deletion protects against amyloid β-induced Alzheimer's disease pathogenesis. Alzheimers Dement 2025; 21:e70305. [PMID: 40410932 DOI: 10.1002/alz.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/10/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION While immune dysfunction has been increasingly linked to Alzheimer's disease (AD) progression, many major innate immune signaling molecules have yet to be explored in AD pathogenesis using genetic targeting approaches. METHODS To investigate a role for the key innate immune adaptor molecule, stimulator of interferon genes (STING), in AD, we deleted Sting1 in the 5xFAD mouse model of AD-related amyloidosis and evaluated the effects on pathology, neuroinflammation, gene expression, and cognition. RESULTS Genetic ablation of STING in 5xFAD mice led to improved control of amyloid beta (Aβ) plaques, alterations in microglial activation status, decreased levels of neuritic dystrophy, and protection against cognitive decline. Moreover, rescue of neurological disease in STING-deficient 5xFAD mice was characterized by reduced expression of type I interferon signaling genes in both microglia and excitatory neurons. DISCUSSION These findings reveal critical roles for STING in Aβ-driven neurological disease and suggest that STING-targeting therapeutics may offer promising strategies to treat AD. HIGHLIGHTS Stimulator of interferon genes (STING) deficiency in the 5xFAD mouse model of Alzheimer's disease-related amyloidosis results in decreased amyloid beta (Aβ) deposition and altered microglial activation status. Protection against amyloidosis in STING-deficient 5xFAD mice is associated with decreased expression of genes involved in type I IFN signaling, improved neuronal health, and reduced levels of oxidative stress. Loss of STING in 5xFAD mice leads to improved spatial learning and memory.
Collapse
Affiliation(s)
- Jessica M Thanos
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
- Brain Immunology and Glia Graduate Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - Olivia C Campbell
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N Cowan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
| | - Katherine R Bruch
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katelyn A Moore
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California, USA
| | - Nick R Natale
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Aman Mangalmurti
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Ohio State Havener Eye Institute, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
- Brain Immunology and Glia Graduate Training Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Pham TL, Sharma R, Neupane C, Gao F, Cha GH, Kim H, Nam MH, Lee SE, Yang S, Sim H, Lee S, Hur GM, Kim HW, Park JB. Neuronal STING-GAT1 signaling maintains paclitaxel-induced neuropathic pain in the spinal cord. Pain 2025:00006396-990000000-00886. [PMID: 40310867 DOI: 10.1097/j.pain.0000000000003593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 02/10/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Stimulator of interferon genes (STING), a pivotal immune regulator, has emerged as a contributor to nociception, yet its role in chronic pains remains still unknown. Here, we demonstrate that STING plays a dual role in normal and neuropathic pain in mature male rodents. Stimulator of interferon genes maintains type I interferon (IFN-I) level restraining pain sensitivity in normal and sham control, while activated STING/interferon regulatory factor 3 (IRF3) signaling increases the expression of gamma-aminobutyric acid (GABA) transporter 1 (GAT1) in the spinal cord (SC), thus, generating paclitaxel (PTX)-induced peripheral neuropathy. Genetic interference of STING (STING-/- mice) attenuated PTX-induced mechanical hypersensitivity with attenuated PTX-induced GAT1 increase, preventing PTX-induced increase in tonic GABAA inhibition of the spinal dorsal horn neurons. Stimulator of interferon genes regulates GAT expression through a TANK-binding kinase 1 (TBK1)-IRF3 signaling pathway, with IRF3 as a crucial transcription factor. Silencing neuronal STING, as opposed to its astrocytic counterpart, effectively restrained the PTX-induced mechanical hypersensitivity and GAT1 increase in the SC. Pharmacological inhibition of STING (H-151) efficiently diminished the TBK1/IRF3/GAT1 signaling pathway to alleviate PTX-induced mechanical hypersensitivity. Our findings show that STING-IRF3 serves a dual role: suppressing physiological nociception through IFN-I and acting as a transcriptional regulator of GAT1, contributing to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Thuy Linh Pham
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
- Department of Obstetrics and Gynecology, Viet Tiep Friendship Hospital, Hai Phong, Vietnam
| | - Ramesh Sharma
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Feifei Gao
- Department of Infectious Biology, Chungnam National University, Daejeon, South Korea
| | - Guang-Ho Cha
- Department of Infectious Biology, Chungnam National University, Daejeon, South Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sunjung Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hunju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sanghoon Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Gang Min Hur
- Pharmacology and Medical Science, Chungnam National University, Daejeon, South Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Song K, Heng L, Yan N. STING: a multifaced player in cellular homeostasis. Hum Mol Genet 2025:ddae175. [PMID: 40292755 DOI: 10.1093/hmg/ddae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
The stimulator of interferon gene (STING) is an important innate immune mediator of the cytoplasmic DNA sensing pathway. As a mediator known for its role in the immune response to infections, STING is also surprisingly at the center of a variety of non-infectious human diseases, including cancer, autoimmune diseases and neurodegenerative diseases. Recent studies have shown that STING has many signaling activities, including type I interferon (IFN-I) and other IFN-independent activities, many of which are poorly understood. STING also has the unique property of being continuous transported from the ER to the Golgi then to the lysosome. Mutations of STING or trafficking cofactors are associated with human diseases affecting multiple immune and non-immune organs. Here, we review recent advances in STING trafficking and signaling mechanisms based in part on studies of STING-associated monogenic inborn error diseases.
Collapse
Affiliation(s)
- Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Lyu Heng
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
4
|
Tang Z, Xing C, Araszkiewicz A, Yang K, Huai W, Jeltema D, Dobbs N, Zhang Y, Sun LO, Yan N. STING mediates lysosomal quality control and recovery through its proton channel function and TFEB activation in lysosomal storage disorders. Mol Cell 2025; 85:1624-1639.e5. [PMID: 40185098 PMCID: PMC12009194 DOI: 10.1016/j.molcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Lysosomes are essential organelles for cellular homeostasis. Defective lysosomes are associated with diseases like lysosomal storage disorders (LSDs). How lysosomal defects are detected and lysosomal function restored remain incompletely understood. Here, we show that STING mediates a neuroinflammatory gene signature in three distinct LSD mouse models, Galctwi/twi, Ppt1-/-, and Cln7-/-. Transcriptomic analysis of Galctwi/twi mouse brain tissue revealed that STING also mediates the expression of lysosomal genes that are regulated by transcriptional factor EB (TFEB). Immunohistochemical and single-nucleus RNA-sequencing (snRNA-seq) analysis show that STING regulates lysosomal gene expression in microglia. Mechanistically, we show that STING activation leads to TFEB dephosphorylation, nuclear translocation, and expression of lysosomal genes. This process requires STING's proton channel function, the V-ATPase-ATG5-ATG8 cascade, and is independent of immune signaling. Furthermore, we show that the STING-TFEB axis facilitates lysosomal repair. Together, our data identify STING-TFEB as a lysosomal quality control mechanism that responds to lysosomal dysfunction.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Araszkiewicz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Gentili M, Carlson RJ, Liu B, Hellier Q, Andrews J, Qin Y, Blainey PC, Hacohen N. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening. Cell Syst 2024; 15:1264-1277.e8. [PMID: 39657680 DOI: 10.1016/j.cels.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Stimulator of interferon genes (STING) traffics across intracellular compartments to trigger innate responses. Mutations in factors regulating this process lead to inflammatory disorders. To systematically identify factors involved in STING trafficking, we performed a genome-wide optical pooled screen (OPS). Based on the subcellular localization of STING in 45 million cells, we defined 464 clusters of gene perturbations based on their cellular phenotypes. A secondary, higher-dimensional OPS identified 73 finer clusters. We show that the loss of the gene of unknown function C19orf25, which clustered with USE1, a protein involved in Golgi-to-endoplasmic reticulum (ER) transport, enhances STING signaling. Additionally, HOPS deficiency delayed STING degradation and consequently increased signaling. Similarly, GARP/RIC1-RGP1 loss increased STING signaling by delaying STING Golgi exit. Our findings demonstrate that genome-wide genotype-phenotype maps based on high-content cell imaging outperform other screening approaches and provide a community resource for mining factors that impact STING trafficking and other cellular processes.
Collapse
Affiliation(s)
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C Blainey
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| | - Nir Hacohen
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts General Hospital, Krantz Family Center for Cancer Research, Boston, MA, USA.
| |
Collapse
|
7
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
He J, Zhang L. The journey of STING: Guiding immune signaling through membrane trafficking. Cytokine Growth Factor Rev 2024; 78:25-36. [PMID: 39019665 DOI: 10.1016/j.cytogfr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune signaling pathway, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence, STING protein resides in the endoplasmic reticulum (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the Golgi apparatus, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while COPI is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of cytokine production, the activation of immune cells, and the coordination of immune signaling pathways.
Collapse
Affiliation(s)
- Jingyi He
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
10
|
Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, Rothammer N, Tsvilovskyy V, Lorenz SM, Raich L, Bal LC, Vieira V, Wagner I, Bauer S, Glatzel M, Conrad M, Merkler D, Freichel M, Friese MA. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024; 187:4043-4060.e30. [PMID: 38878778 DOI: 10.1016/j.cell.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Cuddy SR, Flores ME, Krakowiak PA, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid sensing pathways by HSV-1 UL12.5 for reactivation from latent Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.601241. [PMID: 39005440 PMCID: PMC11245091 DOI: 10.1101/2024.07.06.601241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt anti-viral responses for their benefit. The ubiquitous human pathogen, Herpes Simplex Virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune sensing pathways and reduces productive replication in non-neuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune sensing pathways triggered HSV reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA and DNA sensing pathways, demonstrating that HSV-1 can both respond to and active antiviral nucleic acid sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna. R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
12
|
Gentili M, Carlson RJ, Liu B, Hellier Q, Andrews J, Qin Y, Blainey PC, Hacohen N. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588166. [PMID: 38645119 PMCID: PMC11030420 DOI: 10.1101/2024.04.07.588166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
STING is an innate immune sensor that traffics across many cellular compartments to carry out its function of detecting cyclic di-nucleotides and triggering defense processes. Mutations in factors that regulate this process are often linked to STING-dependent human inflammatory disorders. To systematically identify factors involved in STING trafficking, we performed a genome-wide optical pooled screen and examined the impact of genetic perturbations on intracellular STING localization. Based on subcellular imaging of STING protein and trafficking markers in 45 million cells perturbed with sgRNAs, we defined 464 clusters of gene perturbations with similar cellular phenotypes. A higher-dimensional focused optical pooled screen on 262 perturbed genes which assayed 11 imaging channels identified 73 finer phenotypic clusters. In a cluster containing USE1, a protein that mediates Golgi to ER transport, we found a gene of unknown function, C19orf25. Consistent with the known role of USE1, loss of C19orf25 enhanced STING signaling. Other clusters contained subunits of the HOPS, GARP and RIC1-RGP1 complexes. We show that HOPS deficiency delayed STING degradation and consequently increased signaling. Similarly, GARP/RIC1-RGP1 loss increased STING signaling by delaying STING exit from the Golgi. Our findings demonstrate that genome-wide genotype-phenotype maps based on high-content cell imaging outperform other screening approaches, and provide a community resource for mining for factors that impact STING trafficking as well as other cellular processes observable in our dataset.
Collapse
Affiliation(s)
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C Blainey
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
| | - Nir Hacohen
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
| |
Collapse
|