1
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
2
|
PKCγ and PKCε are Differentially Activated and Modulate Neurotoxic Signaling Pathways During Oxygen Glucose Deprivation in Rat Cortical Slices. Neurochem Res 2019; 44:2577-2589. [PMID: 31541352 DOI: 10.1007/s11064-019-02876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
Cerebral ischemia is known to trigger a series of intracellular events such as changes in metabolism, membrane function and intracellular transduction, which eventually leads to cell death. Many of these processes are mediated by intracellular signaling cascades that involve protein kinase activation. Among all the kinases activated, the serine/threonine kinase family, protein kinase C (PKC), particularly, has been implicated in mediating cellular response to cerebral ischemic and reperfusion injury. In this study, using oxygen-glucose deprivation (OGD) in acute cortical slices as an in vitro model of cerebral ischemia, I show that PKC family of isozymes, specifically PKCγ and PKCε are differentially activated during OGD. Detecting the expression and activation levels of these isozymes in response to different durations of OGD insult revealed an early activation of PKCε and delayed activation of PKCγ, signifying their roles in response to different durations and stages of ischemic stress. Specific inhibition of PKCγ and PKCε significantly attenuated OGD induced cytotoxicity, rise in intracellular calcium, membrane depolarization and reactive oxygen species formation, thereby enhancing neuronal viability. This study clearly suggests that PKC family of isozymes; specifically PKCγ and PKCε are involved in OGD induced intracellular responses which lead to neuronal death. Thus isozyme specific modulation of PKC activity may serve as a promising therapeutic route for the treatment of acute cerebral ischemic injury.
Collapse
|
3
|
Sun X, Jung JH, Arvola O, Santoso MR, Giffard RG, Yang PC, Stary CM. Stem Cell-Derived Exosomes Protect Astrocyte Cultures From in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Front Cell Neurosci 2019; 13:394. [PMID: 31551712 PMCID: PMC6733914 DOI: 10.3389/fncel.2019.00394] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study, we assessed efficacy of exosomes harvested from human and mouse stem cell cultures in protection of mouse primary astrocyte and neuronal cell cultures following in vitro ischemia, and against ischemic stroke in vivo. Cell media was collected from primary mouse neural stem cell (NSC) cultures or from human induced pluripotent stem cell-derived cardiomyocyte (iCM) cultures. Exosomes were extracted and purified by polyethylene glycol complexing and centrifugation, and exosome size and concentration were determined with a NanoSiteTM particle analyzer. Exosomes were applied to primary mouse cortical astrocyte or neuronal cultures prior to, and/or during, combined oxygen-glucose deprivation (OGD) injury. Cell death was assessed via lactate dehydrogenase (LHD) and propidium iodide staining 24 h after injury. NSC-derived exosomes afforded marked protection to astrocytes following OGD. A more modest (but significant) level of protection was observed with human iCM-derived exosomes applied to astrocytes, and with NSC-derived exosomes applied to primary neuronal cultures. In subsequent experiments, NSC-derived exosomes were injected intravenously into adult male mice 2 h after transient (1 h) middle cerebral artery occlusion (MCAO). Gross motor function was assessed 1 day after reperfusion and infarct volume was assessed 4 days after reperfusion. Mice treated post-stroke with intravenous NSC-derived exosomes exhibited significantly reduced infarct volumes. Together, these results suggest that exosomes isolated from mouse NSCs provide neuroprotection against experimental stroke possibly via preservation of astrocyte function. Intravenous NSC-derived exosome treatment may therefore provide a novel clinical adjuvant for stroke in the immediate post-injury period.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ji-Hye Jung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Oiva Arvola
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl Stroke Res 2019; 11:418-432. [PMID: 31473978 DOI: 10.1007/s12975-019-00729-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.
Collapse
Affiliation(s)
- Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Kumar V, Weng YC, Wu YC, Huang YT, Chou WH. PKCε phosphorylation regulates the mitochondrial translocation of ATF2 in ischemia-induced neurodegeneration. BMC Neurosci 2018; 19:76. [PMID: 30497386 PMCID: PMC6267029 DOI: 10.1186/s12868-018-0479-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Global cerebral ischemia triggers neurodegeneration in the hippocampal CA1 region, but the mechanism of neuronal death remains elusive. The epsilon isoform of protein kinase C (PKCε) has recently been identified as a master switch that controls the nucleocytoplasmic trafficking of ATF2 and the survival of melanoma cells. It is of interest to assess the role of PKCε–ATF2 signaling in neurodegeneration. Results Phosphorylation of ATF2 at Thr-52 was reduced in the hippocampus of PKCε null mice, suggesting that ATF2 is a phosphorylation substrate of PKCε. PKCε protein concentrations were significantly reduced 4, 24, 48 and 72 h after transient global cerebral ischemia, resulting in translocation of nuclear ATF2 to the mitochondria. Degenerating neurons staining positively with Fluoro-Jade C exhibited cytoplasmic ATF2. Conclusions Our results support the hypothesis that PKCε regulates phosphorylation and nuclear sequestration of ATF2 in hippocampal neurons during ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA. .,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
6
|
Winquist RJ, Cohen CJ. Integration of biological/pathophysiological contexts to help clarify genotype-phenotype mismatches in monogenetic diseases. Childhood epilepsies associated with SCN2A as a case study. Biochem Pharmacol 2018; 151:252-262. [DOI: 10.1016/j.bcp.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
7
|
Ischemia/Reperfusion-Induced Translocation of PKCβII to Mitochondria as an Important Mediator of a Protective Signaling Mechanism in an Ischemia-Resistant Region of the Hippocampus. Neurochem Res 2017; 42:2392-2403. [PMID: 28401402 PMCID: PMC5524878 DOI: 10.1007/s11064-017-2263-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/13/2017] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
Emerging reports indicate that activated PKC isoforms that translocate to the mitochondria are pro- or anti-apoptotic to mitochondrial function. Here, we concentrate on the role of PKCβ translocated to mitochondria in relation to the fate of neurons following cerebral ischemia. As we have demonstrated previously ischemia/reperfusion injury (I/R) results in translocation of PKCβ from cytoplasm to mitochondria, but only in ischemia-resistant regions of the hippocampus (CA2-4, DG), we hypothesize that this translocation may be a mediator of a protective signaling mechanism in this region. We have therefore sought to demonstrate a possible relationship between PKCβII translocation and ischemic resistance of CA2-4, DG. Here, we reveal that I/R injury induces a marked elevation of PKCβII protein levels, and consequent enzymatic activity, in CA2-4, DG in the mitochondrial fraction. Moreover, the administration of an isozyme-selective PKCβII inhibitor showed inhibition of I/R-induced translocation of PKCβII to the mitochondria and an increase in neuronal death following I/R injury in CA1 and CA2-4, DG in both an in vivo and an in vitro model of ischemia. The present results suggest that PKCβII translocated to mitochondria is involved in providing ischemic resistance of CA2-4, DG. However, the exact mechanisms by which PKCβII-mediated neuroprotection is achieved are in need of further elucidation.
Collapse
|
8
|
Demyanenko SV, Panchenko SN, Uzdensky AB. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. BIOCHEMISTRY (MOSCOW) 2016; 80:790-9. [PMID: 26531025 DOI: 10.1134/s0006297915060152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.
Collapse
Affiliation(s)
- S V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | | |
Collapse
|
9
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
10
|
Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema. Proc Natl Acad Sci U S A 2014; 111:13199-204. [PMID: 25146699 DOI: 10.1073/pnas.1404493111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca(2+), and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1(+) and AQP4(+), we show that transfected CRFR1(+) contributes to edema via transfected AQP4(+). In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema.
Collapse
|
11
|
Sun X, Budas GR, Xu L, Barreto GE, Mochly-Rosen D, Giffard RG. Selective activation of protein kinase C∊ in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice. J Neurosci Res 2013; 91:799-807. [PMID: 23426889 DOI: 10.1002/jnr.23186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
Abstract
Activation of protein kinase C∊ (PKC∊) confers protection against neuronal ischemia/reperfusion. Activation of PKC∊ leads to its translocation to multiple intracellular sites, so a mitochondria-selective PKC∊ activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKC∊. PKC∊ can regulate key cytoprotective mitochondrial functions, including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondria-selective activation of PKC∊ to protect primary brain cell cultures or mice subjected to ischemic stroke. Pretreatment with either general PKC∊ activator peptide, TAT-Ψ∊RACK, or mitochondrial-selective PKC∊ activator, TAT-Ψ∊HSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both TAT-Ψ∊RACK and TAT-Ψ∊HSP90 were blocked by the PKC∊ antagonist ∊V1-2 , indicating that protection requires PKC∊ interaction with its anchoring protein, TAT-∊RACK. Further supporting a mitochondrial mechanism for PKC∊, neuroprotection by TAT-Ψ∊HSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, TAT-Ψ∊HSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hr of reperfusion. Thus selective activation of mitochondrial PKC∊ preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
12
|
Gopalakrishna R, McNeill TH, Elhiani AA, Gundimeda U. Methods for studying oxidative regulation of protein kinase C. Methods Enzymol 2013; 528:79-98. [PMID: 23849860 DOI: 10.1016/b978-0-12-405881-1.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protein kinase C (PKC) family of isoenzymes may be a crucial player in transducing H2O2-induced signaling in a wide variety of physiological and pathophysiological processes. PKCs contain unique structural features that make them highly susceptible to oxidative modification. Depending on the site of oxidation and the extent to which it is modified, PKC can be either activated or inactivated by H2O2. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by H2O2. When oxidized, the autoinhibitory function of the regulatory domain is compromised, and as a result, PKC is activated in a lipid cofactor-independent manner. The C-terminal catalytic domain contains several reactive cysteine residues, which when oxidized with a higher concentration of H2O2 leads to an inactivation of PKC. Here, we describe the methods used to induce oxidative modification of purified PKC isoenzymes by H2O2 and the methods to assess the extent of this modification. Protocols are given for isolating oxidatively activated PKC isoenzymes from cells treated with H2O2. Furthermore, we describe the methods used to assess indirect regulation of PKC isoenzymes by determining their cytosol to membrane or mitochondrial translocation and tyrosine phosphorylation of PKCδ in response to sublethal levels of H2O2. Finally, as an example, we describe the methods used to demonstrate the role of H2O2-mediated cell signaling of PKCɛ in green tea polyphenol-induced preconditioning against neuronal cell death caused by oxygen-glucose deprivation and reoxygenation, an in vitro model for cerebral ischemic/reperfusion injury.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
13
|
Gundimeda U, McNeill TH, Elhiani AA, Schiffman JE, Hinton DR, Gopalakrishna R. Green tea polyphenols precondition against cell death induced by oxygen-glucose deprivation via stimulation of laminin receptor, generation of reactive oxygen species, and activation of protein kinase Cε. J Biol Chem 2012; 287:34694-708. [PMID: 22879598 DOI: 10.1074/jbc.m112.356899] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCε from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCε and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCε, resulting in preconditioning against cell death induced by OGD/R.
Collapse
Affiliation(s)
- Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke 2012; 43:1941-6. [PMID: 22678086 DOI: 10.1161/strokeaha.112.656611] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE T cells and their subsets modulate ischemic brain injury. We studied the effects of the absence of T cell subsets on brain infarction after in vivo stroke and then used an in vitro coculture system of splenocytes and neurons to further identify the roles of T cell subsets in neuronal death. METHODS Stroke was induced by middle cerebral artery suture occlusion in mice and infarct sizes were measured 2 days poststroke. Splenocytes were cocultured with neurons, and neuronal survival was measured 3 days later. RESULTS A deficiency of both T and B cells (severe combined immunodeficiency) and the paucity of CD4 or CD8 T cells equally resulted in smaller infarct sizes as measured 2 days poststroke. Although a functional deficiency of regulatory T cells had no effect, impaired Th1 immunity reduced infarction and impaired Th2 immunity aggravated brain injury, which may be due to an inhibited and enhanced inflammatory response in mice deficient in Th1 and Th2 immunity, respectively. In the in vitro coculture system, wild-type splenocytes resulted in dose-dependent neuronal death. The neurotoxicity of splenocytes from these immunodeficient mice was consistent with their effects on stroke in vivo, except for the mice with the paucity of CD4 or CD8 T cells, which did not alter the ratio of neuronal death. CONCLUSIONS T cell subsets play critical roles in brain injury induced by stroke. The detrimental versus beneficial effects of Th1 cells and Th2 cells both in vivo and in vitro reveal differential therapeutic target strategies for stroke treatment.
Collapse
Affiliation(s)
- Lijuan Gu
- Department of Neurosurgery, Stanford University School of Medicine, MSLS Building, P306, 1201 Welch Road, Room P306, Stanford, CA 94305-5327, USA
| | | | | | | | | | | |
Collapse
|
15
|
Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 2012; 236:228-39. [PMID: 22609332 DOI: 10.1016/j.expneurol.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/11/2012] [Accepted: 05/09/2012] [Indexed: 01/17/2023]
Abstract
Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- The Third Medical College of Soochow University, Changzhou, Jiangsu 213003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ye Z, Huang YM, Wang E, Zuo ZY, Guo QL. Sevoflurane-induced delayed neuroprotection involves mitoKATP channel opening and PKC ε activation. Mol Biol Rep 2012; 39:5049-57. [DOI: 10.1007/s11033-011-1290-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 11/30/2011] [Indexed: 11/29/2022]
|
17
|
Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:273-302. [PMID: 22840750 DOI: 10.1016/b978-0-12-394816-8.00008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memories are much more easily impaired than improved. Dementias, a lasting impairment of memory function, occur in a variety of cognitive disorders and become more clinically dominant as the population ages. Protein kinase C is one of the "cognitive kinases," and plays an essential role in both memory acquisition and maintenance. Deficits in protein kinase C (PKC) signal cascades in neurons represent one of the earliest changes in the brains of patients with Alzheimer's disease (AD) and other types of memory impairment, including those related to cerebral ischemia and ischemic stroke. Inhibition or impairment of PKC activity results in compromised learning and memory, whereas an appropriate activation of certain PKC isozymes leads to an enhancement of learning and memory and/or antidementic effects. In preclinical studies, PKC activators have been shown to increase the expression and activity of PKC isozymes, thereby restoring PKC signaling and downstream activity, including stimulation of neurotrophic activity, synaptic/structural remodeling, and synaptogenesis in the hippocampus and related cortical areas. PKC activators also reduce the accumulation of neurotoxic amyloid and tau protein hyperphosphorylation and support anti-apoptotic processes in the brain. These observations strongly suggest that PKC pharmacology may represent an attractive area for the development of effective cognition-enhancing therapeutics for the treatment of dementias.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
18
|
Protein kinase C beta in postischemic brain mitochondria. Mitochondrion 2012; 12:138-43. [DOI: 10.1016/j.mito.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/06/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022]
|
19
|
Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 2011; 117:346-56. [PMID: 21291475 DOI: 10.1111/j.1471-4159.2011.07209.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice.
Collapse
Affiliation(s)
- Xiangning Bu
- Department of Neurobiology and Beijing Institute for Neuroscience, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang Q, Li X, Chen Y, Wang F, Yang Q, Chen S, Min Y, Li X, Xiong L. Activation of Epsilon Protein Kinase C-Mediated Anti-Apoptosis Is Involved in Rapid Tolerance Induced by Electroacupuncture Pretreatment Through Cannabinoid Receptor Type 1. Stroke 2011; 42:389-96. [PMID: 21183751 DOI: 10.1161/strokeaha.110.597336] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qiang Wang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xuying Li
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yanke Chen
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qianzi Yang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shaoyang Chen
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuyuan Min
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xin Li
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lize Xiong
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Rudkouskaya A, Chernoguz A, Haskew-Layton RE, Mongin AA. Two conventional protein kinase C isoforms, alpha and beta I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J Neurochem 2010; 105:2260-70. [PMID: 18315563 DOI: 10.1111/j.1471-4159.2008.05312.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompted us to re-evaluate the involvement of PKC in regulation of astrocytic VRACs by using small interfering RNA (siRNA) and pharmacological inhibitors that selectively target individual PKC isoforms. In primary rat astrocyte cultures, application of hypoosmotic medium (30% reduction in osmolarity) and 20 microM ATP synergistically increased the release of excitatory amino acids, measured with a non-metabolized analog of L-glutamate, D-[(3)H]aspartate. Both Go6976, the selective inhibitor of Ca(2+)-sensitive PKCalpha, betaI/II, and gamma, and MP-20-28, a cell permeable pseudosubstrate inhibitory peptide of PKCalpha and betaI/II, reduced the effects of ATP on D-[(3)H]aspartate release by approximately 45-55%. Similar results were obtained with a mixture of siRNAs targeting rat PKCalpha and betaI. Surprisingly, down-regulation of individual alpha and betaI PKC isozymes by siRNA was completely ineffective. These data suggest that ATP regulates VRAC activity and volume-sensitive excitatory amino acid release via cooperative activation of PKCalpha and betaI.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Artur Chernoguz
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Renée E Haskew-Layton
- Burke/Cornell Medical Research Institute of Cornell University, White Plains, NY 10605
| | - Alexander A Mongin
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| |
Collapse
|
22
|
A proteomic analysis of PKCε targets in astrocytes: implications for astrogliosis. Amino Acids 2010; 40:641-51. [PMID: 20640460 DOI: 10.1007/s00726-010-0691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
Astrocytes are glial cells in the central nervous system (CNS) that play key roles in brain physiology, controlling processes, such as neurogenesis, brain energy metabolism and synaptic transmission. Recently, immune functions have also been demonstrated in astrocytes, influencing neuronal survival in the course of neuroinflammatory pathologies. In this regard, PKCepsilon (PKCε) is a protein kinase with an outstanding role in inflammation. Our previous findings indicating that PKCε regulates voltage-dependent calcium channels as well as morphological stellation imply that this kinase controls multiple signalling pathways within astrocytes, including those implicated in activation of immune functions. The present study applies proteomics to investigate new protein targets of PKCε in astrocytes. Primary astrocyte cultures infected with an adenovirus that expresses constitutively active PKCε were compared with infection controls. Two-dimensional gel electrophoresis clearly detected 549 spots in cultured astrocytes, and analysis of differential protein expression revealed 18 spots regulated by PKCε. Protein identification by mass spectrometry (nano-LC-ESI-MS/MS) showed that PKCε targets molecules with heterogeneous functions, including chaperones, cytoskeletal components and proteins implicated in metabolism and signalling. These results support the notion that PKCε is involved in astrocyte activation; also suggesting that multiple astrocyte-dependent processes are regulated by PKCε, including those associated to neuroinflammation.
Collapse
|
23
|
Abstract
Brain ischemia is one of the most common causes of death and the leading cause of adult disability in the world. Brain ischemic preconditioning (BIP) refers to a transient, sublethal ischemia which results in tolerance to later, otherwise lethal, cerebral ischemia. Many attempts have been made to understand the molecular and cellular mechanisms underlying the neuroprotection offered by ischemic preconditioning. Many studies have shown that neuroprotective mechanisms may involve a series of molecular regulatory pathways including activation of the N-methyl-D-aspartate (NMDA) and adenosine receptors; activation of intracellular signaling pathways such as mitogen activated protein kinases (MAPK) and other protein kinases; upregulation of Bcl-2 and heat shock proteins (HSPs); and activation of the ubiquitin-proteasome pathway and the autophagic-lysosomal pathway. A better understanding of the processes that lead to cell death after stroke as well as of the endogenous neuroprotective mechanisms by which BIP protects against brain ischemic insults could help to develop new therapeutic strategies for this devastating neurological disease. The purpose of the present review is to summarize the neuroprotective mechanisms of BIP and to discuss the possibility of mimicking ischemic preconditioning as a new strategy for preventive treatment of ischemia.
Collapse
|
24
|
|
25
|
epsilonPKC confers acute tolerance to cerebral ischemic reperfusion injury. Neurosci Lett 2008; 441:120-4. [PMID: 18586397 DOI: 10.1016/j.neulet.2008.05.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/13/2008] [Accepted: 05/21/2008] [Indexed: 12/25/2022]
Abstract
In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that epsilonPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of psiepsilonRACK, an epsilonPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of epsilonPKC by psiepsilonRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient epsilonPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection.
Collapse
|
26
|
Sung SM, Jung DS, Kwon CH, Park JY, Kang SK, Kim YK. Hypoxia/reoxygenation stimulates proliferation through PKC-dependent activation of ERK and Akt in mouse neural progenitor cells. Neurochem Res 2007; 32:1932-9. [PMID: 17562163 DOI: 10.1007/s11064-007-9390-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 05/16/2007] [Indexed: 11/30/2022]
Abstract
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.
Collapse
Affiliation(s)
- Sang Min Sung
- Department of Neurology, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | |
Collapse
|
27
|
Barnett ME, Madgwick DK, Takemoto DJ. Protein kinase C as a stress sensor. Cell Signal 2007; 19:1820-9. [PMID: 17629453 PMCID: PMC1986756 DOI: 10.1016/j.cellsig.2007.05.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 11/22/2022]
Abstract
While there are many reviews which examine the group of proteins known as protein kinase C (PKC), the focus of this article is to examine the cellular roles of two PKCs that are important for stress responses in neurological tissues (PKC gamma and epsilon) and in cardiac tissues (PKC epsilon). These two kinases, in particular, seem to have overlapping functions and interact with an identical target, connexin 43 (Cx43), a gap junction protein which is central to proper control of signals in both tissues. While PKC gamma and PKC epsilon both help protect neural tissue from ischemia, PKC epsilon is the primary PKC isoform responsible for responding to decreased oxygen, or ischemia, in the heart. Both do this through Cx43. It is clear that both PKC gamma and PKC epsilon are necessary for protection from ischemia. However, the importance of these kinases has been inferred from preconditioning experiments which demonstrate that brief periods of hypoxia protect neurological and cardiac tissues from future insults, and that this depends on the activation, translocation, or ability for PKC gamma and/or PKC epsilon to interact with distinct cellular targets, especially Cx43. This review summarizes the recent findings which define the roles of PKC gamma and PKC epsilon in cardiac and neurological functions and their relationships to ischemia/reperfusion injury. In addition, a biochemical comparison of PKC gamma and PKC epsilon and a proposed argument for why both forms are present in neurological tissue while only PKC epsilon is present in heart, are discussed. Finally, the biochemistry of PKCs and future directions for the field are discussed, in light of this new information.
Collapse
Affiliation(s)
- Micheal E Barnett
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506-3902, USA.
| | | | | |
Collapse
|
28
|
Brandman R, Disatnik MH, Churchill E, Mochly-Rosen D. Peptides Derived from the C2 Domain of Protein Kinase Cϵ (ϵPKC) Modulate ϵPKC Activity and Identify Potential Protein-Protein Interaction Surfaces. J Biol Chem 2007; 282:4113-23. [PMID: 17142835 DOI: 10.1074/jbc.m608521200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides derived from protein kinase C (PKC) modulate its activity by interfering with critical protein-protein interactions within PKC and between PKC and PKC-binding proteins (Souroujon, M. C., and Mochly-Rosen, D. (1998) Nat. Biotechnol. 16, 919-924). We previously demonstrated that the C2 domain of PKC plays a critical role in these interactions. By focusing on epsilonPKC and using a rational approach, we then identified one C2-derived peptide that acts as an isozyme-selective activator and another that acts as a selective inhibitor of epsilonPKC. These peptides were used to identify the role of epsilonPKC in protection from cardiac and brain ischemic damage, in prevention of complications from diabetes, in reducing pain, and in protecting transplanted hearts. The efficacy of these two peptides led us to search for additional C2-derived peptides with PKC-modulating activities. Here we report on the activity of a series of 5-9-residue peptides that are derived from regions that span the length of the C2 domain of epsilonPKC. These peptides were tested for their effect on PKC activity in cells in vivo and in an ex vivo model of acute ischemic heart disease. Most of the peptides acted as activators of PKC, and a few peptides acted as inhibitors. PKC-dependent myristoylated alanine-rich C kinase substrate phosphorylation in epsilonPKC knock-out cells revealed that only a subset of the peptides were selective for epsilonPKC over other PKC isozymes. These epsilonPKC-selective peptides were also protective of the myocardium from ischemic injury, an epsilonPKC-dependent function (Liu, G. S., Cohen, M. V., Mochly-Rosen, D., and Downey, J. M. (1999) J. Mol. Cell. Cardiol. 31, 1937-1948), and caused selective translocation of epsilonPKC over other isozymes when injected systemically into mice. Examination of the structure of the C2 domain from epsilonPKC revealed that peptides with similar activities clustered into discrete regions within the domain. We propose that these regions represent surfaces of protein-protein interactions within epsilonPKC and/or between epsilonPKC and other partner proteins; some of these interactions are unique to epsilonPKC, and others are common to other PKC isozymes.
Collapse
Affiliation(s)
- Relly Brandman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
29
|
Burgos M, Pastor MD, González JC, Martinez-Galan JR, Vaquero CF, Fradejas N, Benavides A, Hernández-Guijo JM, Tranque P, Calvo S. PKCɛ upregulates voltage-dependent calcium channels in cultured astrocytes. Glia 2007; 55:1437-48. [PMID: 17676593 DOI: 10.1002/glia.20555] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Astrocytes express voltage-gated calcium channels (VGCCs) that are upregulated in the context of the reactive astrogliosis occurring in several CNS pathologies. Moreover, the ability of selective calcium channel blockers to inhibit reactive astrogliosis has been revealed in a variety of experimental models. However, the functions and regulation of VGCC in astrocytes are still poorly understood. Interestingly, protein kinase C epsilon (PKCepsilon), one of the known regulators of VGCC in several cell types, induces in astrocytes a stellated morphology similar to that associated to gliosis. Thereby, here we explored the possible regulation of VGCC by adenovirally expressed PKCepsilon in astrocytes. We found that PKCepsilon potently increases the mRNA levels of two different calcium channel alpha(1) subunits, Ca(V)1.2 (L-type channel) and Ca(V)2.1 (P/Q-type channel). The mRNA upregulation was followed by a robust increase in the corresponding peptides. Moreover, the new calcium channels formed as a consequence of PKCepsilon activation are functional, since overexpression of constitutively-active PKCepsilon increased significantly the calcium current density in astrocytes. PKCepsilon raised currents carried by both L- and P/Q-type channels. However, the effect on the P/Q-type channel was more prominent since an increase of the relative contribution of this channel to the whole cell calcium current was observed. Finally, we found that PKCepsilon-induced stellation was significantly reduced by the specific L-type channel blocker nifedipine, indicating that calcium influx through VGCC mediates the change in astrocyte morphology induced by PKCepsilon. Therefore, here we describe a novel regulatory pathway involving VGCC that participates in PKCepsilon-dependent astrocyte activation.
Collapse
Affiliation(s)
- M Burgos
- Unidad de Fisiología, Facultad de Medicina y Centro Regional de Investigaciones Biomedicas, Universidad de Castilla La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Selvatici R, Falzarano S, Franceschetti L, Cavallini S, Marino S, Siniscalchi A. Differential activation of protein kinase C isoforms following chemical ischemia in rat cerebral cortex slices. Neurochem Int 2006; 49:729-36. [PMID: 16963162 DOI: 10.1016/j.neuint.2006.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (alpha, beta(1), beta(2), gamma, delta and epsilon) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10mM NaN(3), combined with 2mM 2-deoxyglucose (chemical ischemia); (iii) 1h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC beta(1), delta and epsilon isoforms total levels (cytosol+particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while alpha isoform was slightly reduced and gamma isoform was no longer detectable. After reperfusion, the changes displayed by alpha, beta(1), gamma, delta and epsilon were maintained and even potentiated, moreover, an increase in beta(2) (by 41+/-12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC alpha isoform, which following reperfusion was found only in the cytosol. PKC beta(1) and delta isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC beta(2) and epsilon isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 1mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1muM, prevented the translocation of beta(1) isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in beta(2) and epsilon isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening.
Collapse
Affiliation(s)
- Rita Selvatici
- Department of Experimental and Diagnostic Medicine, Medical Genetics Section, University of Ferrara, Via Fossato di Mortara 74, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Li J, Qu Y, Zu P, Han S, Gao G, Xu Q, Fang L. Increased isoform-specific membrane translocation of conventional and novel protein kinase C in human neuroblastoma SH-SY5Y cells following prolonged hypoxia. Brain Res 2006; 1093:25-32. [PMID: 16684511 DOI: 10.1016/j.brainres.2006.03.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 03/20/2006] [Accepted: 03/23/2006] [Indexed: 11/29/2022]
Abstract
Several studies have suggested that protein kinase C (PKC) plays a key role in the mechanism of cerebral ischemic/hypoxic preconditioning (I/HPC). However, detailed information regarding PKC isoforms in response to brain ischemia/hypoxia and their potential role in neuroprotection is unclear. Previous studies in our laboratory have demonstrated that the levels in membrane translocation of conventional PKC (cPKC) betaII, gamma, and novel PKCepsilon (nPKC), but not cPKCalpha, betaI, nPKCdelta, eta, mu, theta, and atypical PKC (aPKC) zeta and iota/lambda, were increased significantly in the hippocampus and cortex of intact mice with hypoxic preconditioning. To further detect cPKC and nPKC isoforms activation following prolonged hypoxia in vitro, we tested the membrane translocation (an indicator of PKC activation) of cPKCalpha, betaI, betaII, and gamma, and nPKCdelta, epsilon, eta, mu, and theta in a human neuroblastoma SH-SY5Y cell line following sustained hypoxic exposure (1% O(2)/5% CO(2)/94% N(2)). Using Western blot and immunocytochemistry methods, we found that the levels of cPKCalpha, betaI, betaII, and nPKCepsilon, but not nPKCdelta, eta, mu, and theta, membrane translocation were increased significantly (P < 0.05, n = 8) in a time-dependent manner (from 0.5 to 24 h) following sustained hypoxic exposure. Similarly, the immunostaining experiment also showed a noticeable translocation of cPKCalpha, betaI, betaII, and nPKCepsilon from the cytosol to the perinuclear or membrane-related areas after 6 h posthypoxic exposure. In addition, no cPKCgamma was detected in this cell line under either a normoxic or hypoxic condition. These results suggested that prolonged hypoxia may induce the activation of cPKCalpha, betaI, betaII, and nPKCepsilon by triggering their membrane translocation in SH-SY5Y cells.
Collapse
Affiliation(s)
- Junfa Li
- Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital University of Medical Sciences, #10 You An Men Wai Xi Tou Tiao, Beijing 100054, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Steinhart R, Kazimirsky G, Okhrimenko H, Ben-Hur T, Brodie C. PKCε induces astrocytic differentiation of multipotential neural precursor cells. Glia 2006; 55:224-32. [PMID: 17091491 DOI: 10.1002/glia.20454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we examined the role of PKC in the differentiation of multipotential neural precursor cells (NPCs). We found that the NPCs expressed PKCalpha,beta2,delta,epsilon,zeta and low levels of PKCgamma. The PKC activator, PMA, selectively increased the number of astrocytes, whereas it decreased the generation of neurons and oligodendrocytes. Similarly, overexpression of PKCepsilon increased the differentiation of astrocytes and a PKCepsilonKD mutant abolished PMA effect. PMA phosphorylates PKCepsilon on serine 729. Using a PKCepsilonS729A mutant, we found that the phosphorylation of PKCepsilon on serine 729 was essential for the differentiation of astrocytes induced by PMA. To delineate the mechanisms involved in PMA and PKCepsilon effects, we examined the expression of Notch1, which has been associated with astrocytic differentiation. We found that PMA and PKCepsilon induced a large increase in Notch1 expression and the PKCepsilonS729A mutant abolished PMA effect. Moreover, the PKCepsilonS729A mutant also inhibited the effect of CNTF on astrocytic differentiation and Notch 1 expression. Finally, Notch1 mediated the effect of PMA on astrocytic differentiation, since the gamma-secretase inhibitor L-685,458, and Notch1 silencing abolished PMA effect. Our data suggest an important role of PKCepsilon in astrocytic differentiation and implicate Notch1 as a possible mediator of this effect.
Collapse
Affiliation(s)
- Rivka Steinhart
- Gonda (Goldschmied) Medical Diagnosis Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
33
|
Abstract
Background and Purpose—
Stroke is a leading cause of disability and death in the United States, yet limited therapeutic options exist. The need for novel neuroprotective agents has spurred efforts to understand the intracellular signaling pathways that mediate cellular response to stroke. Protein kinase C (PKC) plays a central role in mediating ischemic and reperfusion damage in multiple tissues, including the brain. However, because of conflicting reports, it remains unclear whether PKC is involved in cell survival signaling, or mediates detrimental processes.
Summary of Review—
This review will examine the role of PKC activity in stroke. In particular, we will focus on more recent insights into the PKC isozyme-specific responses in neuronal preconditioning and in ischemia and reperfusion-induced stress.
Conclusion—
Examination of PKC isozyme activities during stroke demonstrates the clinical promise of PKC isozyme-specific modulators for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Rachel Bright
- Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
34
|
Cordey M, Pike CJ. Conventional protein kinase C isoforms mediate neuroprotection induced by phorbol ester and estrogen. J Neurochem 2005; 96:204-17. [PMID: 16336227 DOI: 10.1111/j.1471-4159.2005.03545.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.
Collapse
Affiliation(s)
- Myriam Cordey
- Neuroscience Graduate Program and Andrus Gerontology Center, University of Southern California, Los Angeles, California 90089-0191, USA
| | | |
Collapse
|
35
|
Li J, Niu C, Han S, Zu P, Li H, Xu Q, Fang L. Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res 2005; 1060:62-72. [PMID: 16214117 DOI: 10.1016/j.brainres.2005.08.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022]
Abstract
Recently, accumulated studies have suggested that protein kinases C (PKC) play a central role in the development of ischemic-hypoxic preconditioning (I/HPC) in the brain. However, which types of PKC isoforms might be responsible for neuroprotection is still not clear, especially when the systematic investigation of PKC isoform-specific changes in brain regions was rare in animals with ischemic-hypoxic preconditioning. By using Western blot, we have demonstrated that the levels of cPKC betaII and gamma membrane translocation were increased in the early phase of cerebral hypoxic preconditioning. In this study, we combined the Western blot and immunostaining methods to investigate the effects of repetitive hypoxic exposure (H1-H4, n = 6 for each group) on membrane translocation and protein expression of several types of PKC isoforms, both in the cortex and hippocampus of mice. We found that the increased membrane translocation of nPKCepsilon (P < 0.05, versus normoxic H0) but not its protein expression levels in both the cortex and hippocampus during development of cerebral HPC in mice. However, there were no significant changes in both membrane translocation and protein expression levels of nPKCdelta, theta, eta, mu, and aPKC iota/lambda, zeta in these brain areas after hypoxic preconditioning. Similarly, an extensive subcellular redistribution of cPKCbetaII, gamma, and nPKCepsilon was observed by immunostaining in the cortex after three series of hypoxic exposures (H3). These results indicate that activation of cPKCbetaII, gamma, and nPKCepsilon might be involved in the development of cerebral hypoxic preconditioning of mice.
Collapse
Affiliation(s)
- Junfa Li
- Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital University of Medical Sciences, Beijing 100054, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chou WH, Messing RO. Protein Kinase C Isozymes in Stroke. Trends Cardiovasc Med 2005; 15:47-51. [PMID: 15885569 DOI: 10.1016/j.tcm.2005.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/25/2022]
Abstract
Stroke is a devastating neurologic disease and a leading cause of death and disability worldwide. Thrombolytic agents have been used to re-establish circulation in thromboembolic stroke, but their utility is limited by hemorrhage and reperfusion injury. Studies with experimental stroke models, mouse genetics, and selective peptide inhibitors and activators have implicated protein kinase C (PKC) epsilon in ischemic preconditioning and PKCdelta and gamma in tissue injury. PKCdelta, resident both in neutrophils and in the brain, appears particularly essential for reperfusion injury, and recent work using PKCdelta-specific peptide inhibitors suggests that PKCdelta inhibitors could prove useful in attenuating reperfusion injury and improving outcome following thrombolysis.
Collapse
Affiliation(s)
- Wen-Hai Chou
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California 94608, USA
| | | |
Collapse
|