1
|
Bonsale R, Infantino R, Perrone M, Marabese I, Ricciardi F, Fusco A, Teweldemedhin MM, Boccella S, Guida F, Rinaldi B. The long-term exercise after traumatic brain injury: Reharmonizing brain by sound body. Brain Res 2023; 1816:148471. [PMID: 37356701 DOI: 10.1016/j.brainres.2023.148471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Traumatic brain injuries (TBI) refer to multiple acquired dysfunctions arising from damage to the brain caused by an external force, including rapid acceleration/deceleration and concussion. Among them, mild TBI (mTBI) accounts for most cases (up to 90%) of injuries. It is responsible for a variety of symptoms, including anxiety, depression, and cognitive impairments that remain difficult to be treated. It has been reported that regular physical activity, as well as, improving life quality, display a neuroprotective function, suggesting a possible role in post-traumatic rehabilitation. In this study, we investigated the effects of treadmill exercise in a mice mTBI model by behavioural, electrophysiological and neurochemical analysis. Daily exercise decreased anxiety, aggressive behavior, and depression in mTBI mice. Accordingly, electrophysiological and neurochemical maladaptive rearrangement occurring in the hippocampus of mTBI mice were prevented by the exercise.
Collapse
Affiliation(s)
- Roozbe Bonsale
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antimo Fusco
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Milena Melake Teweldemedhin
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Boxer EE, Kim J, Dunn B, Aoto J. Ventral Subiculum Inputs to Nucleus Accumbens Medial Shell Preferentially Innervate D2R Medium Spiny Neurons and Contain Calcium Permeable AMPARs. J Neurosci 2023; 43:1166-1177. [PMID: 36609456 PMCID: PMC9962776 DOI: 10.1523/jneurosci.1907-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Ventral subiculum (vSUB) is the major output region of ventral hippocampus (vHIPP) and sends major projections to nucleus accumbens medial shell (NAcMS). Hyperactivity of the vSUB-NAcMS circuit is associated with substance use disorders and the modulation of vSUB activity alters drug seeking and drug reinstatement behavior in rodents. However, to the best of our knowledge, the cell type-specific connectivity and synaptic transmission properties of the vSUB-NAcMS circuit have never been directly examined. Instead, previous functional studies have focused on total ventral hippocampal (vHIPP) output to NAcMS without distinguishing vSUB from other subregions of vHIPP, including ventral CA1 (vCA1). Using ex vivo electrophysiology, we systematically characterized the vSUB-NAcMS circuit with cell type- and synapse-specific resolution in male and female mice and found that vSUB output to dopamine receptor type-1 (D1R) and type-2 (D2R) expressing medium spiny neurons (MSNs) displays a functional connectivity bias for D2R MSNs. Furthermore, we found that vSUB-D1R and vSUB-D2R MSN synapses contain calcium-permeable AMPA receptors in drug-naive mice. Finally, we find that, distinct from other glutamatergic inputs, cocaine exposure selectively induces plasticity at vSUB-D2R synapses. Importantly, we directly compared vSUB and vCA1 output to NAcMS and found that vSUB synapses are functionally distinct and that vCA1 output recapitulated the synaptic properties previously ascribed to vHIPP. Our work highlights the need to consider the contributions of individual subregions of vHIPP to substance use disorders and represents an important first step toward understanding how the vSUB-NAcMS circuit contributes to the etiologies that underlie substance use disorders.SIGNIFICANCE STATEMENT Inputs to nucleus accumbens (NAc) dopamine receptor type 1 (D1R) and D2R medium spiny neurons (MSNs) are critically involved in reward seeking behavior. Ventral subiculum (vSUB) provides robust synaptic input to nucleus accumbens medial shell (NAcMS) and activity of this circuit is linked to substance use disorders. Despite the importance of the vSUB to nucleus accumbens circuit, the functional connectivity and synaptic transmission properties have not been tested. Here, we systematically interrogated these properties and found that basal connectivity and drug-induced plasticity are biased for D2R medium spiny neurons. Overall, we demonstrate that this circuit is distinct from synaptic inputs from other brain regions, which helps to explain how vSUB dysfunction contributes to the etiologies that underlie substance use disorders.
Collapse
Affiliation(s)
- Emma E Boxer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - JungMin Kim
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Brett Dunn
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jason Aoto
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
3
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
4
|
Zangrandi L, Schmuckermair C, Ghareh H, Castaldi F, Heilbronn R, Zernig G, Ferraguti F, Ramos-Prats A. Loss of mGluR5 in D1 Receptor-Expressing Neurons Improves Stress Coping. Int J Mol Sci 2021; 22:ijms22157826. [PMID: 34360592 PMCID: PMC8346057 DOI: 10.3390/ijms22157826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.
Collapse
Affiliation(s)
- Luca Zangrandi
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Claudia Schmuckermair
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Hussein Ghareh
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Federico Castaldi
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Regine Heilbronn
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
| | - Gerald Zernig
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
- Correspondence:
| |
Collapse
|
5
|
Althobaiti YS, Almutairi FM, Alshehri FS, Altowairqi E, Marghalani AM, Alghorabi AA, Alsanie WF, Gaber A, Alsaab HO, Almalki AH, Hakami AY, Alkhalifa T, Almalki AD, Hardy AMG, Shah ZA. Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Sci Rep 2021; 11:10577. [PMID: 34011976 PMCID: PMC8134490 DOI: 10.1038/s41598-021-88429-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
There has been an increase in cases of drug addiction and prescription drug abuse worldwide. Recently, pregabalin abuse has been a focus for many healthcare agencies, as highlighted by epidemiological studies. We previously evaluated the possibility of pregabalin abuse using the conditioned place preference (CPP) paradigm. We observed that a 60 mg/kg dose could induce CPP in mice and that pregabalin-rewarding properties were mediated through glutamate neurotransmission. Notably, the dopaminergic reward circuitry is also known to play a crucial role in medication-seeking behavior. Therefore, this study aimed to explore the possible involvement of dopaminergic receptor-1 in pregabalin-induced CPP. Mice were randomly allocated to receive saline or the dopamine-1 receptor antagonist SKF-83566 (0.03 mg/kg, intraperitoneal). After 30 min, the mice received either saline or pregabalin (60 mg/kg) during the conditioning phase. Among the control groups that received saline or SKF-83566, the time spent in the two conditioning chambers was not significantly altered. However, among the pregabalin-treated group, there was a marked increase in the time spent in the drug-paired chamber compared to the time spent in the vehicle-paired chamber. Notably, blocking dopamine-1 receptors with SKF-83566 completely prevented pregabalin-induced place preference, thus demonstrating the engagement of the dopaminergic system in pregabalin-induced reward-related behavior.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia.
| | - Farooq M Almutairi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Deanship of Scientific Research, Taif University, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, University of Hafar Al-Batin, College of Clinical Laboratories Sciences, Hafar Al-Batin, 39923, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ebtehal Altowairqi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aliyah M Marghalani
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amal A Alghorabi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Ahmed Gaber
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Biology, Faculty of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Hashem O Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alqassem Y Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Turki Alkhalifa
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ahmad D Almalki
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ana M G Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
6
|
Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat Commun 2021; 12:2100. [PMID: 33833228 PMCID: PMC8032767 DOI: 10.1038/s41467-021-22335-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
The ventral striatum (VS) is considered a key region that flexibly updates recent changes in reward values for habit learning. However, this update process may not serve to maintain learned habitual behaviors, which are insensitive to value changes. Here, using fMRI in humans and single-unit electrophysiology in macaque monkeys we report another role of the primate VS: that the value memory subserving habitual seeking is stably maintained in the VS. Days after object-value associative learning, human and monkey VS continue to show increased responses to previously rewarded objects, even when no immediate reward outcomes are expected. The similarity of neural response patterns to each rewarded object increases after learning among participants who display habitual seeking. Our data show that long-term memory of high-valued objects is retained as a single representation in the VS and may be utilized to evaluate visual stimuli automatically to guide habitual behavior.
Collapse
|
7
|
|
8
|
Zhang X, Mantas I, Fridjonsdottir E, Andrén PE, Chergui K, Svenningsson P. Deficits in Motor Performance, Neurotransmitters and Synaptic Plasticity in Elderly and Experimental Parkinsonian Mice Lacking GPR37. Front Aging Neurosci 2020; 12:84. [PMID: 32292338 PMCID: PMC7120535 DOI: 10.3389/fnagi.2020.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) etiology is attributed to aging and the progressive neurodegeneration of dopamine (DA) neurons of substantia nigra pars compacta (SNc). GPR37 is an orphan G-protein Coupled Receptor (GPCR) that is linked to the juvenile form of PD. In addition, misfolded GPR37 has been found in Lewy bodies. However, properly folded GPR37 found at the cell membrane appears to exert neuroprotection. In the present study we investigated the role of GPR37 in motor deficits due to aging or toxin-induced experimental parkinsonism. Elderly GPR37 knock out (KO) mice displayed hypolocomotion and worse fine movement performance compared to their WT counterparts. Striatal slice electrophysiology reveiled that GPR37 KO mice show profound decrease in long term potentiation (LTP) formation which is accompanied by an alteration in glutamate receptor subunit content. GPR37 KO animals exposed to intrastriatal 6-hydroxydopamine (6-OHDA) show poorer score in the behavioral cylinder test and more loss of the DA transporter (DAT) in striatum. The GPR37 KO striata exhibit a significant increase in GABA which is aggravated after DA depletion. Our data indicate that GPR37 KO mice have DA neuron deficit, enhanced striatal GABA levels and deficient corticostriatal LTP. They also respond stronger to 6-OHDA-induced neurotoxicity. Taken together, the data indicate that properly functional GPR37 may counteract aging processes and parkinsonism.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karima Chergui
- Laboratory of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Huang M, He W, Kiss B, Farkas B, Adham N, Meltzer HY. The Role of Dopamine D 3 Receptor Partial Agonism in Cariprazine-Induced Neurotransmitter Efflux in Rat Hippocampus and Nucleus Accumbens. J Pharmacol Exp Ther 2019; 371:517-525. [PMID: 31511365 DOI: 10.1124/jpet.119.259879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023] Open
Abstract
Cariprazine is an approved antipsychotic and antidepressant which is a dopamine (DA) D3-preferring D3/D2 receptor partial agonist, serotonin (5-HT) 5-HT1A receptor partial agonist, and 5-HT2B and 5-HT2A receptor antagonist, a profile unique for atypical antipsychotic drugs. The purpose of this study was to clarify the effects of cariprazine and selective D3 receptor ligands on neurotransmitter efflux in the rat nucleus accumbens (NAC) and ventral hippocampus (HIP), brain regions important for reality testing, rewarded behavior, and cognition. In vivo microdialysis was performed in awake, freely moving rats after administration of cariprazine; (+)-PD-128907 [(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], a D3 receptor-preferring agonist; and SB-277011A [trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide hydrochloride], a selective D3 receptor antagonist, alone or combined, and extracellular levels of multiple neurotransmitters and metabolites were measured in the NAC and HIP by ultraperformance liquid chromatography with tandem mass spectrometry. Cariprazine increased DA, norepinephrine (NE), and 5-HT efflux in both regions, whereas it increased glycine (Gly) and glutamate efflux only in the NAC and efflux of DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) only in the HIP. Similarly, SB-277011A increased DA, NE, DOPAC, and HVA, but not 5-HT, efflux in the NAC and HIP, and acetylcholine efflux in the HIP. Most of these effects of cariprazine and SB-277011A were fully or partially attenuated by the D3 receptor agonist (+)-PD-128907, suggesting these effects of cariprazine are related to its D3 receptor partial agonism, and that this mechanism, leading to diminished stimulation of D3 receptors, may contribute to its efficacy in both schizophrenia and bipolar disorder. The possible role of Gly in the action of cariprazine is discussed. SIGNIFICANCE STATEMENT: The novel atypical antipsychotic drug cariprazine increased nucleus accumbens and hippocampal neurotransmitter efflux, similar to the actions of the D3 receptor antagonist SB-277011A [trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide hydrochloride]. The D3 receptor-preferring agonist (+)-PD-128907 [(4aR, 10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], diminished the effects of both compounds on neurotransmitter efflux in both regions. These results suggested D3 receptor partial agonist activity of cariprazine, producing functional antagonism, may contribute to its efficacy in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Mei Huang
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| | - Wenqi He
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| | - Béla Kiss
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| | - Bence Farkas
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| | - Nika Adham
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavior Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (M.H., W.H., H.Y.M.); Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary (B.K., B.F.); and Allergan, Madison, New Jersey (N.A.)
| |
Collapse
|
11
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
12
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
13
|
Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons. Sci Rep 2019; 9:8350. [PMID: 31171808 PMCID: PMC6554355 DOI: 10.1038/s41598-019-44798-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (nmale = 39, nfemale = 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.
Collapse
|
14
|
LeGates TA, Kvarta MD, Tooley JR, Francis TC, Lobo MK, Creed MC, Thompson SM. Reward behaviour is regulated by the strength of hippocampus-nucleus accumbens synapses. Nature 2018; 564:258-262. [PMID: 30478293 PMCID: PMC6292781 DOI: 10.1038/s41586-018-0740-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/01/2018] [Indexed: 11/26/2022]
Abstract
Reward drives motivated behaviours and is essential for survival, and therefore there is strong evolutionary pressure to retain contextual information about rewarding stimuli. This drive may be abnormally strong, such as in addiction, or weak, such as in depression, in which anhedonia (loss of pleasure in response to rewarding stimuli) is a prominent symptom. Hippocampal input to the shell of the nucleus accumbens (NAc) is important for driving NAc activity1,2 and activity-dependent modulation of the strength of this input may contribute to the proper regulation of goal-directed behaviours. However, there have been few robust descriptions of the mechanisms that underlie the induction or expression of long-term potentiation (LTP) at these synapses, and there is, to our knowledge, no evidence about whether such plasticity contributes to reward-related behaviour. Here we show that high-frequency activity induces LTP at hippocampus-NAc synapses in mice via canonical, but dopamine-independent, mechanisms. The induction of LTP at this synapse in vivo drives conditioned place preference, and activity at this synapse is required for conditioned place preference in response to a natural reward. Conversely, chronic stress, which induces anhedonia, decreases the strength of this synapse and impairs LTP, whereas antidepressant treatment is accompanied by a reversal of these stress-induced changes. We conclude that hippocampus-NAc synapses show activity-dependent plasticity and suggest that their strength may be critical for contextual reward behaviour.
Collapse
Affiliation(s)
- Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark D Kvarta
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica R Tooley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meaghan C Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry 2018; 23:2066-2077. [PMID: 29158578 DOI: 10.1038/mp.2017.239] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
Low doses of ketamine trigger rapid and lasting antidepressant effects after one injection in treatment-resistant patients with major depressive disorder. Modulation of AMPA receptors (AMPARs) in the hippocampus and prefrontal cortex is suggested to mediate the antidepressant action of ketamine and of one of its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK). We have examined whether ketamine and (2R,6R)-HNK affect glutamatergic transmission and plasticity in the mesolimbic system, brain regions known to have key roles in reward-motivated behaviors, mood and hedonic drive. We found that one day after the injection of a low dose of ketamine, long-term potentiation (LTP) in the nucleus accumbens (NAc) was impaired. Loss of LTP was maintained for 7 days and was not associated with an altered basal synaptic transmission mediated by AMPARs and N-methyl-D-aspartate receptors (NMDARs). Inhibition of mammalian target of rapamycin signaling with rapamycin did not prevent the ketamine-induced loss of LTP but inhibited LTP in saline-treated mice. However, ketamine blunted the increase in the phosphorylation of the GluA1 subunit of AMPARs at a calcium/calmodulin-dependent protein kinase II/protein kinase C site induced by an LTP induction protocol. Moreover, ketamine caused a persistent increased phosphorylation of GluA1 at a protein kinase A site. (2R,6R)-HNK also impaired LTP in the NAc. In dopaminergic neurons of the ventral tegmental area from ketamine- or (2R,6R)-HNK-treated mice, AMPAR-mediated responses were depressed, while those mediated by NMDARs were unaltered, which resulted in a reduced AMPA/NMDA ratio, a measure of long-term synaptic depression. These results demonstrate that a single injection of ketamine or (2R,6R)-HNK induces enduring alterations in the function of AMPARs and synaptic plasticity in brain regions involved in reward-related behaviors.
Collapse
|
16
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
17
|
Torkzaban M, Zendehdel M, Babapour V, Panahi N, Hassanpour S. Interaction Between Central Opioidergic and Glutamatergic Systems on Food Intake in Neonatal Chicks: Role of NMDA, AMPA and mGLU1 Receptors. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9601-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Mannella F, Mirolli M, Baldassarre G. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model. Front Behav Neurosci 2016; 10:181. [PMID: 27803652 PMCID: PMC5067467 DOI: 10.3389/fnbeh.2016.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| |
Collapse
|
19
|
Heysieattalab S, Naghdi N, Hosseinmardi N, Zarrindast MR, Haghparast A, Khoshbouei H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse 2016; 70:325-35. [PMID: 27029021 DOI: 10.1002/syn.21905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023]
Abstract
Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soomaayeh Heysieattalab
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, Florida, 323611
| |
Collapse
|
20
|
Activation of the D1 receptors inhibits the long-term potentiation in vivo induced by acute morphine administration through a D1-GluN2A interaction in the nucleus accumbens. Neuroreport 2015; 25:1191-7. [PMID: 25121622 DOI: 10.1097/wnr.0000000000000245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine D1-like receptors can modulate glutamate-mediated excitatory synaptic neurotransmission, but the underlying molecular mechanism remains elusive. Here, we report that acute in-vivo morphine administration induces the long-term potentiation (Mor-LTP) of field excitatory postsynaptic potentials at the prefrontal cortex-to-nucleus accumbens shell synapses, and this process requires the activation of GluN2A-containing N-methyl-D-aspartate receptors. This Mor-LTP is completely inhibited by the D1-like receptor agonist SKF81297, but not by the D2-like receptor agonist quinpirole. SKF81297-inhibited Mor-LTP is restored by pretreatment with the TAT-conjugated interfering peptide TAT-D1-t3, which is a synthetic blocker of the direct D1-GluN2A receptor interaction. These results indicate that the activation of D1 receptors modulates Mor-LTP by the direct D1-GluN2A interaction at the prefrontal cortex-to-nucleus accumbens shell synapses and might play a role in addiction-related plastic alterations.
Collapse
|
21
|
Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, Manzoni OJ. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci 2015; 9:100. [PMID: 25859182 PMCID: PMC4374460 DOI: 10.3389/fncel.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - Christopher M Henstridge
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; School of Ph.D. Studies, Semmelweis University Budapest, Hungary
| | - Marja Sepers
- Department of Psychiatry, University of British Columbia Vancouver, Canada
| | - Olivier Lassalle
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - István Katona
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Olivier J Manzoni
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| |
Collapse
|
22
|
Gardoni F, Bellone C. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 2015; 9:25. [PMID: 25784855 PMCID: PMC4345909 DOI: 10.3389/fncel.2015.00025] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano Milano, Italy
| | - Camilla Bellone
- Department of Fundamental Neuroscience, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
23
|
Gray CL, Norvelle A, Larkin T, Huhman KL. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus). Behav Brain Res 2015; 286:22-8. [PMID: 25721736 DOI: 10.1016/j.bbr.2015.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/17/2022]
Abstract
Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat.
Collapse
Affiliation(s)
- C L Gray
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - A Norvelle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - T Larkin
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - K L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
24
|
Abstract
In this review, we explore the similarities and differences in the behavioural neurobiology found in the mouse models of Huntington's disease (HD) and the human disease state. The review is organised with a comparative focus on the functional domains of motor control, cognition and behavioural disturbance (akin to psychiatric disturbance in people) and how our knowledge of the underlying physiological changes that are manifest in the HD mouse lines correspond to those seen in the HD clinical population. The review is framed in terms of functional circuitry and neurotransmitter systems and how abnormalities in these systems impact on the behavioural readouts across the mouse lines and how these may correspond to the deficits observed in people. In addition, interpretational issues associated with the data from animal studies are discussed.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, Division of Neuroscience, Cardiff University School of Bioscience, Museum Avenue, Cardiff, Wales, UK,
| | | |
Collapse
|
25
|
Scofield MD, Kalivas PW. Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist 2014; 20:610-22. [PMID: 24496610 PMCID: PMC4913887 DOI: 10.1177/1073858413520347] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Addiction is characterized as a chronic relapsing disorder whereby addicted individuals persistently engage in drug seeking and use despite profound negative consequences. The results of studies using animal models of addiction and relapse indicate that drug seeking is mediated by alterations in cortico-accumbal plasticity induced by chronic drug exposure. Among the maladaptive responses to drug exposure are long-lasting alterations in the expression of proteins localized to accumbal astrocytes, which are responsible for maintaining glutamate homeostasis. These alterations engender an aberrant potentiation of glutamate transmission in the cortico-accumbens circuit that is linked to the reinstatement of drug seeking. Accordingly, pharmacological restoration of glutamate homeostasis functions as an efficient method of reversing drug-induced plasticity and inhibiting drug seeking in both rodents and humans.
Collapse
Affiliation(s)
- Michael D Scofield
- Medical University of South Carolina, Charleston, SC, USA, Department of Neurosciences
| | - Peter W Kalivas
- Medical University of South Carolina, Charleston, SC, USA, Department of Neurosciences
| |
Collapse
|
26
|
Feld GB, Besedovsky L, Kaida K, Münte TF, Born J. Dopamine D2-like Receptor Activation Wipes Out Preferential Consolidation of High over Low Reward Memories during Human Sleep. J Cogn Neurosci 2014; 26:2310-20. [DOI: 10.1162/jocn_a_00629] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Memory formation is a selective process in which reward contingencies determine which memory is maintained and which is forgotten. Sleep plays a pivotal role in maintaining information for the long term and has been shown to specifically benefit memories that are associated with reward. Key to memory consolidation during sleep is a neuronal reactivation of newly encoded representations. However, it is unclear whether preferential consolidation of memories associated with reward requires the reactivation of dopaminergic circuitry known to mediate reward effects at encoding. In a placebo-controlled, double-blind, balanced crossover experiment, we show that the dopamine D2-like receptor agonist pramipexole given during sleep wipes out reward contingencies. Before sleep, 16 men learned 160 pictures of landscapes and interiors that were associated with high or low rewards, if they were identified between new stimuli at retrieval 24 hr later. In the placebo condition, the participants retained significantly more pictures that promised a high reward. In the pramipexole condition, this difference was wiped out, and performance for the low reward pictures was as high as that for high reward pictures. Pramipexole did not generally enhance memory consolidation probably because of the fact that the dopaminergic agonist concurrently suppressed both SWS and REM sleep. These results are consistent with the concept that preferential consolidation of reward-associated memories relies on hippocampus-driven reactivation within the dopaminergic reward system during sleep, whereby during sleep reward contingencies are fed back to the hippocampus to strengthen specific memories, possibly, through dopaminergic facilitation of long-term potentiation.
Collapse
Affiliation(s)
| | | | - Kosuke Kaida
- 3National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | | - Jan Born
- 1University of Tübingen
- 2University of Lübeck
| |
Collapse
|
27
|
Stress hormone exposure reduces mGluR5 expression in the nucleus accumbens: functional implications for interoceptive sensitivity to alcohol. Neuropsychopharmacology 2014; 39:2376-86. [PMID: 24713611 PMCID: PMC4138747 DOI: 10.1038/npp.2014.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
Escalations in alcohol drinking associated with experiencing stressful life events and chronic life stressors may be related to altered sensitivity to the interoceptive/subjective effects of alcohol. Indeed, through the use of drug discrimination methods, rats show decreased sensitivity to the discriminative stimulus (interoceptive) effects of alcohol following exposure to the stress hormone corticosterone (CORT). This exposure produces heightened elevations in plasma CORT levels (eg, as may be experienced by an individual during stressful episodes). We hypothesized that decreased sensitivity to alcohol may be related, in part, to changes in metabotropic glutamate receptors-subtype 5 (mGluR5) in the nucleus accumbens, as these receptors in this brain region are known to regulate the discriminative stimulus effects of alcohol. In the accumbens, we found reduced mGluR5 expression (immunohistochemistry and Western blot) and decreased neural activation (as measured by c-Fos immunohistochemistry) in response to a moderate alcohol dose (1 g/kg) following CORT exposure (7 days). The functional role of these CORT-induced adaptations in relation to the discriminative stimulus effects of alcohol was confirmed, as both the systemic administration of 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) an mGluR5 positive allosteric modulator and the intra-accumbens administration of (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt (CHPG) an mGluR5 agonist restored sensitivity to alcohol in discrimination-trained rats. These results suggest that activation of mGluR5 may alleviate the functional impact of the CORT-induced downregulation of mGluR5 in relation to sensitivity to alcohol. Understanding the contribution of such neuroadaptations to the interoceptive effects of alcohol may enrich our understanding of potential changes in subjective sensitivity to alcohol during stressful episodes.
Collapse
|
28
|
Burattini C, Battistini G, Tamagnini F, Aicardi G. Low-frequency stimulation evokes serotonin release in the nucleus accumbens and induces long-term depression via production of endocannabinoid. J Neurophysiol 2014; 111:1046-55. [DOI: 10.1152/jn.00498.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc), a major component of the mesolimbic system, is involved in the mediation of reinforcing and addictive properties of many dependence-producing drugs. Glutamatergic synapses within the NAc can express plasticity, including a form of endocannabinoid (eCB)-long-term depression (LTD). Recent evidences demonstrate cross talk between eCB signaling pathways and those of other receptor systems, including serotonin (5-HT); the extensive colocalization of CB1 and 5-HT receptors within the NAc suggests the potential for interplay between them. In the present study, we found that 20-min low-frequency (4 Hz) stimulation (LFS-4Hz) of glutamatergic afferences in rat brain slices induces a novel form of eCB-LTD in the NAc core, which requires 5-HT2 and CB1 receptor activation and L-type voltage-gated Ca2+ channel opening. Moreover, we found that exogenous 5-HT application (5 μM, 20 min) induces an analogous LTD (5-HT-LTD) at the same synapses, requiring the activation of the same receptors and the opening of the same Ca2+ channels; LFS-4Hz-LTD and 5-HT-LTD were mutually occlusive. Present results suggest that LFS-4Hz induces the release of 5-HT, which acts at 5-HT2 postsynaptic receptors, increasing Ca2+ influx through L-type voltage-gated channels and 2-arachidonoylglycerol production and release; the eCB travels retrogradely and binds to presynaptic CB1 receptors, causing a long-lasting decrease of glutamate release, resulting in LTD. These observations might be helpful to understand the neurophysiological mechanisms underlying drug addiction, major depression, and other psychiatric disorders characterized by dysfunction of 5-HT neurotransmission in the NAc.
Collapse
Affiliation(s)
- Costanza Burattini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giulia Battistini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Francesco Tamagnini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
- Interdepartmental Center “Luigi Galvani” for the Study of Biophysics, Bioinformatics and Biocomplexity, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Fish EW, Krouse MC, Stringfield SJ, DiBerto JF, Robinson JE, Malanga CJ. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 2013; 8:e77896. [PMID: 24205018 PMCID: PMC3799757 DOI: 10.1371/journal.pone.0077896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.
Collapse
Affiliation(s)
- Eric W. Fish
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael C. Krouse
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sierra J. Stringfield
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey F. DiBerto
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Elliott Robinson
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. J. Malanga
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Glucose-conditioned flavor preference learning requires co-activation of NMDA and dopamine D1-like receptors within the amygdala. Neurobiol Learn Mem 2013; 106:95-101. [PMID: 23887141 DOI: 10.1016/j.nlm.2013.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 11/22/2022]
Abstract
The role of amygdala (AMY) NMDA receptor signaling and its interaction with dopamine D1-like receptor signaling in glucose-mediated flavor preference learning was investigated. In Experiment 1, rats were trained with a flavor (CS+) paired with intragastric (IG) 8% glucose infusions and a different flavor (CS-) paired with IG water infusions. In the two-bottle tests (Expression), bilateral intra-AMY injections of the NMDA receptor antagonist, AP5 (0, 5 and 10 nmol/brain), did not block the CS+ preference. In Experiment 2, new rats received intra-AMY injections of either vehicle or AP5 (10 nmol), prior to training sessions with CS+/IG glucose and CS-/IG water. In the two-bottle tests without drug treatment, AP5 rats failed to prefer the CS+ flavor (50%). In Experiments 3, new rats were trained as in Experiment 2 except that, during training, half the rats received AP5 injections (5 nmol) in one side of the AMY and SCH23390 (D1-like receptor antagonist, 6 nmol), in the contralateral AMY (Drug/Drug group). The remaining rats received vehicle injections in one side of the AMY and either AP5 (5 nmol) or SCH23390 (6 nmol) in the contralateral AMY (Drug/Vehicle group). The two-bottle choice tests without drug treatment revealed that, unlike the Drug/Vehicle group (85%), the Drug/Drug group failed to prefer the CS+ flavor (50%). These results reveal an essential role for AMY NMDA receptor activation in the acquisition of flavor preference learning induced by the post-oral reinforcing properties of glucose and demonstrate that such learning is based on co-activation of NMDA and DA D1 receptors within this forebrain structure.
Collapse
|
31
|
Mishra D, Chergui K. Ethanol inhibits excitatory neurotransmission in the nucleus accumbens of adolescent mice through GABAA and GABAB receptors. Addict Biol 2013; 18:605-13. [PMID: 21790906 DOI: 10.1111/j.1369-1600.2011.00350.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Age-related differences in various acute physiological and behavioral effects of alcohol have been demonstrated in humans and in other species. Adolescents are more sensitive to positive reinforcing properties of alcohol than adults, but the cellular mechanisms that underlie such a difference are not clearly established. We, therefore, assessed age differences in the ability of ethanol to modulate glutamatergic synaptic transmission in the mouse nucleus accumbens (NAc), a brain region importantly involved in reward mechanisms. We measured field excitatory postsynaptic potentials/population spikes (fEPSP/PS) in NAc slices from adolescent (22-30 days old) and adult (5-8 months old) male mice. We found that 50mM ethanol applied in the perfusion solution inhibits glutamatergic neurotransmission in the NAc of adolescent, but not adult, mice. This effect is blocked by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline and by the GABAB receptor antagonist CGP 55845. Furthermore, bicuculline applied alone produces a stronger increase in the fEPSP/PS amplitude in adult mice than in adolescent mice. Activation of GABAA receptors with muscimol produces a stronger and longer lasting depression of neurotransmission in adolescent mice as compared with adult mice. Activation of GABAB receptors with SKF 97541 also depresses neurotransmission more strongly in adolescent than in adult mice. These results demonstrate that an increased GABA receptor function associated with a reduced inhibitory tone underlies the depressant action of ethanol on glutamatergic neurotransmission in the NAc of adolescent mice.
Collapse
Affiliation(s)
- Devesh Mishra
- The Karolinska Institute, Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, Sweden.
| | | |
Collapse
|
32
|
Cerovic M, d'Isa R, Tonini R, Brambilla R. Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum. Neurobiol Learn Mem 2013; 105:63-80. [PMID: 23827407 DOI: 10.1016/j.nlm.2013.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/25/2022]
Abstract
The striatum is the input structure of the basal ganglia system. By integrating glutamatergic signals from cortical and subcortical regions and dopaminergic signals from mesolimbic nuclei the striatum functions as an important neural substrate for procedural and motor learning as well as for reward-guided behaviors. In addition, striatal activity is significantly altered in pathological conditions in which either a loss of dopamine innervation (Parkinson's disease) or aberrant dopamine-mediated signaling (drug addiction and L-DOPA induced dyskinesia) occurs. Here we discuss cellular mechanisms of striatal synaptic plasticity and aspects of cell signaling underlying striatum-dependent behavior, with a major focus on the neuromodulatory action of the endocannabinoid system and on the role of the Ras-ERK cascade.
Collapse
Affiliation(s)
- Milica Cerovic
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | | | | | | |
Collapse
|
33
|
Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013; 23:479-91. [PMID: 22939004 DOI: 10.1016/j.euroneuro.2012.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with impairments across the lifespan. The persistence of ADHD is associated with considerable liability to neuropsychiatric co-morbidity such as depression, anxiety and substance use disorder. The substantial heritability of ADHD is well documented and recent genome-wide analyses for risk genes revealed synaptic adhesion molecules (e.g. latrophilin-3, LPHN3; fibronectin leucine-rich repeat transmembrane protein-3, FLRT3), glutamate receptors (e.g. metabotropic glutamate receptor-5, GRM5) and mediators of intracellular signalling pathways (e.g. nitric oxide synthase-1, NOS1). These genes encode principal components of the molecular machinery that connects pre- and postsynaptic neurons, facilitates glutamatergic transmission, controls synaptic plasticity and empowers intersecting neural circuits to process and refine information. Thus, identification of genetic variation affecting molecules essential for the formation, specification and function of excitatory synapses is refocusing research efforts on ADHD pathogenesis to include the long-neglected glutamate system.
Collapse
Affiliation(s)
- K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, ADHD Clinical Research Network, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
34
|
de Bartolomeis A, Tomasetti C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 2012; 46:275-96. [DOI: 10.1007/s12035-012-8293-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
35
|
Schwendt M, Sigmon SA, McGinty JF. RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling. Psychopharmacology (Berl) 2012; 221:621-35. [PMID: 22193724 PMCID: PMC4507824 DOI: 10.1007/s00213-011-2606-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/30/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE Regulator of G-protein signaling 4 (RGS4) is a brain-enriched negative modulator of G-protein-coupled receptor signaling. Decreased availability of RGS4 in the frontal cortex and striatum has been described in animal models of schizophrenia and drug addiction. However, cellular and behavioral consequences of dysregulated RGS4-dependent receptor signaling in the brain remain poorly understood. OBJECTIVE This study aims to investigate whether RGS4, through inhibiting the function of mGluR5 receptors in the dorsal striatum (dSTR), regulates cellular and behavioral responses to acute amphetamine. METHODS After herpes simplex virus-RGS4 was infused into the dSTR, RGS4 overexpression as well as binding of recombinant RGS4 to mGluR5 was assessed. The effect of RGS4 overexpression on behavioral activity induced by the intrastriatal mGluR5 agonist, DHPG, or amphetamine was recorded. Activation of extracellular signal-regulated kinase (ERK) and Akt (protein kinase B) was measured in the dSTR tissue at the end of each behavioral experiment. RESULTS RGS4 overexpressed in the dSTR coimmunoprecipitated with mGluR5 receptors and suppressed both behavioral activity and phospho-ERK levels induced by DHPG. RGS4 overexpression or the mGluR5 antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP), attenuated amphetamine-induced phospho-ERK (but not phospho-Akt) levels. RGS4 suppressed amphetamine-induced vertical activity and augmented horizontal activity over 90 min. Similarly, MTEP augmented amphetamine-induced horizontal activity, but did not affect vertical activity. CONCLUSIONS The present data demonstrate that RGS4 in the dSTR attenuates amphetamine-induced ERK signaling and decreases the behavioral efficacy of acute amphetamine likely by limiting mGluR5 function.
Collapse
Affiliation(s)
| | | | - Jacqueline F. McGinty
- Address all correspondence and reprint requests to: Jacqueline McGinty, Ph.D., Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, MSC 510, Charleston, SC 29425-5100, tel 843-792-9036, fax 843-792-4423,
| |
Collapse
|
36
|
Mishra D, Zhang X, Chergui K. Ethanol disrupts the mechanisms of induction of long-term potentiation in the mouse nucleus accumbens. Alcohol Clin Exp Res 2012; 36:2117-25. [PMID: 22551245 DOI: 10.1111/j.1530-0277.2012.01824.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/06/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Long-term changes in the efficacy of glutamatergic synaptic transmission in reward-related brain regions such as the nucleus accumbens (NAc) are proposed to contribute to neuroadaptations that lead to drug addiction. Although alcohol is a widely used addictive substance, the cellular mechanisms by which it influences synaptic plasticity in the NAc are not elucidated. We therefore examined whether acute ethanol (EtOH) alters long-term potentiation (LTP) in the core region of the NAc and investigated the possible underlying mechanisms. METHODS We measured field excitatory postsynaptic potential/population spike (fEPSP/PS) amplitude in mouse brain slices containing the NAc. We also used amperometry to detect, with carbon fiber electrode, evoked dopamine release in brain slices. RESULTS In control slices, high-frequency stimulation (HFS) induced a stable LTP. LTP was reduced in slices perfused with EtOH (50 mM). Given that induction of LTP is dependent on glutamate acting on N-methyl-d-aspartate (NMDA) receptors and group I metabotropic glutamate receptors (mGluRs), we studied the ability of EtOH to modulate these 2 classes of receptors. NMDA (20 μM) depressed the amplitude of the fEPSP/PS, but this effect was not altered by EtOH in our experimental conditions. However, EtOH reversed the ability of the group I mGluR agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) (50 μM) to potentiate the depressant action of NMDA on the fEPSP/PS. We also examined whether EtOH could modulate dopamine release given that dopamine plays important roles in mediating the reinforcing actions of abused drugs and in the induction of LTP in the NAc. We found that EtOH reversibly decreased action potential-dependent dopamine release evoked by single stimulation pulses and by HFS trains in NAc slices. CONCLUSIONS These results show that EtOH impairs the induction of LTP possibly through several mechanisms that include inhibition of group I mGluR-mediated potentiation of NMDA receptor function and of evoked dopamine release. This study provides additional support for a key role of glutamatergic and dopaminergic neurotransmission in the NAc in mediating the reinforcing effects of acute alcohol.
Collapse
Affiliation(s)
- Devesh Mishra
- Section of Molecular Neurophysiology , Department of Physiology and Pharmacology, The Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
37
|
Krishnan B, Genzer KM, Pollandt SW, Liu J, Gallagher JP, Shinnick-Gallagher P. Dopamine-induced plasticity, phospholipase D (PLD) activity and cocaine-cue behavior depend on PLD-linked metabotropic glutamate receptors in amygdala. PLoS One 2011; 6:e25639. [PMID: 21980514 PMCID: PMC3181343 DOI: 10.1371/journal.pone.0025639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2–2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/enzymology
- Amygdala/metabolism
- Amygdala/physiology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzazepines/pharmacology
- Cocaine/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Cues
- Cyclopropanes/pharmacology
- Dopamine/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoenzymes/metabolism
- Long-Term Potentiation/drug effects
- Male
- Memory/drug effects
- Memory/physiology
- Neuronal Plasticity/drug effects
- Phospholipase D/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/metabolism
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Synapses/drug effects
- Synapses/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
38
|
Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. Neuropharmacology 2011; 61:1399-405. [PMID: 21896278 DOI: 10.1016/j.neuropharm.2011.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 08/03/2011] [Accepted: 08/19/2011] [Indexed: 12/13/2022]
Abstract
Systemic administration of the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was previously shown to selectively attenuate nicotine self-administration without affecting food-maintained responding in rats. Glutamatergic neurotransmission in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) shell plays an important role in the reinforcing effects of nicotine. To determine the brain sites that may mediate the systemic effects of MPEP on nicotine self-administration, the present study investigated the effects of MPEP microinfusions into the VTA or the NAcc shell on nicotine and food self-administration in separate groups of rats. Administration of low MPEP doses (0, 0.5, 1, and 2 μg/0.5 μl/side) microinfused into the NAcc shell had no effect on nicotine self-administration, whereas higher MPEP doses (0, 10, 20, and 40 μg/0.5 μl/side) microinfused into the NAcc shell dose-dependently attenuated nicotine self-administration without affecting food-maintained responding. Microinfusions of MPEP into the VTA (0, 10, 20, and 40 μg/0.5 μl/side) significantly decreased both nicotine and food self-administration at 20 μg/0.5 μl/side but did not affect responding for either reinforcer at 40μg/0.5 μl/side. This lack of effect of 40 μg/0.5 μl/side MPEP on either nicotine or food self-administration when administered into the VTA may be attributable either to actions of MPEP at presynaptic mGlu5 receptors or at targets other than mGlu5 receptors. Importantly, anatomical control injections 2mm above the NAcc shell or the VTA using the most effective MPEP dose in the two regions did not result in attenuation of nicotine self-administration. In conclusion, MPEP microinfusions in the VTA or NAcc shell attenuates the reinforcing effects of nicotine possibly via blockade of mGlu5 receptors located in these regions.
Collapse
|
39
|
Duncan JR, Lawrence AJ. The role of metabotropic glutamate receptors in addiction: evidence from preclinical models. Pharmacol Biochem Behav 2011; 100:811-24. [PMID: 21443897 DOI: 10.1016/j.pbb.2011.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 03/16/2011] [Indexed: 11/25/2022]
Abstract
Addiction is a chronic disorder characterised by repeated bouts of drug taking, abstinence and relapse. The addicted state may be in part due to drug-induced neuroadaptations in the mesocorticolimbic and corticostriatal pathways. Recently focus has been on the role of aberrant glutamate transmission and its contribution to the hierarchical control over these systems. This review will expand our current knowledge of the most recent advances that have been made in preclinical animal models that provide evidence that implicate metabotropic glutamate receptors (mGluRs) in contributing to the neuroadaptations pertinent to addiction, as well as the role of Homer proteins in regulating these responses. The recent discovery of receptor mosaics will be discussed which add an additional dimension to the complexity of understanding the mechanism of glutamate mediated behaviours. Finally this review introduces a new area related to glutamatergic responses, namely microRNAs, that may become pivotal in directing our future understanding of how to best target intervention strategies to prevent addictive behaviours.
Collapse
Affiliation(s)
- Jhodie R Duncan
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Vic., 3010, Australia.
| | | |
Collapse
|
40
|
Abstract
Brain-derived neurotrophic factor (BDNF) facilitates the formation of long-term potentiation (LTP) in hippocampus, but whether this involves release from presynaptic versus postsynaptic pools is unclear. We therefore tested whether BDNF is essential for LTP in dorsal striatum, a structure in which the neurotrophin is present only in afferent terminals. Whole-cell recordings were collected from medium spiny neurons in striatal slices prepared from adult mice. High-frequency stimulation (HFS) of neocortical afferents produced a rapid and stable NMDA receptor-dependent potentiation. The ratio of AMPA to NMDA receptor-mediated components of the EPSPs was substantially increased after inducing potentiation, suggesting that the response enhancement involved postsynaptic changes. In accord with this, paired-pulse response ratios, a measure of transmitter release kinetics, were reduced by elevated calcium but not by LTP. Infusion of the BDNF scavenger TrkB-Fc blocked the formation of potentiation, beginning with the second minute after HFS, without reducing responses to HFS. These results suggest that presynaptic pools of BDNF can act within 2 min of HFS to support the formation of a postsynaptic form of LTP in striatum.
Collapse
|
41
|
Abstract
Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed after prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate exchanger xc(-) and the glial glutamate transporter, EAAT2/GLT-1. Changes in the balance between synaptic and extrasynaptic glutamate levels in turn influence signaling through presynaptic and postsynaptic glutamate receptors, and thus affect synaptic plasticity and circuit-level activity. In this review, we describe the evidence for impaired glutamate homeostasis as a critical mediator of long-term drug-seeking behaviors, how chronic neuroadaptations in xc(-) and the glutamate transporter, GLT-1, mediate a disruption in glutamate homeostasis, and how targeting these components restores glutamate levels and inhibits drug-seeking behaviors.
Collapse
|
42
|
Incentive learning underlying cocaine-seeking requires mGluR5 receptors located on dopamine D1 receptor-expressing neurons. J Neurosci 2010; 30:11973-82. [PMID: 20826661 DOI: 10.1523/jneurosci.2550-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the psychobiological basis of relapse remains a challenge in developing therapies for drug addiction. Relapse in cocaine addiction often occurs following exposure to environmental stimuli previously associated with drug taking. The metabotropic glutamate receptor, mGluR5, is potentially important in this respect; it plays a central role in several forms of striatal synaptic plasticity proposed to underpin associative learning and memory processes that enable drug-paired stimuli to acquire incentive motivational properties and trigger relapse. Using cell type-specific RNA interference, we have generated a novel mouse line with a selective knock-down of mGluR5 in dopamine D1 receptor-expressing neurons. Although mutant mice self-administer cocaine, we show that reinstatement of cocaine-seeking induced by a cocaine-paired stimulus is impaired. By examining different aspects of associative learning in the mutant mice, we identify deficits in specific incentive learning processes that enable a reward-paired stimulus to directly reinforce behavior and to become attractive, thus eliciting approach toward it. Our findings show that glutamate signaling through mGluR5 located on dopamine D1 receptor-expressing neurons is necessary for incentive learning processes that contribute to cue-induced reinstatement of cocaine-seeking and which may underpin relapse in drug addiction.
Collapse
|
43
|
The mGluR5 antagonist MTEP dissociates the acquisition of predictive and incentive motivational properties of reward-paired stimuli in mice. Neuropsychopharmacology 2010; 35:1807-17. [PMID: 20375996 PMCID: PMC3055484 DOI: 10.1038/npp.2010.48] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An environmental stimulus paired with reward (a conditioned stimulus; CS) can acquire predictive properties that signal reward availability and may also acquire incentive motivational properties that enable the CS to influence appetitive behaviors. The neural mechanisms involved in the acquisition and expression of these CS properties are not fully understood. The metabotropic glutamate receptor, mGluR5, contributes to synaptic plasticity underlying learning and memory processes. We examined the role of mGluR5 in the acquisition and expression of learning that enables a CS to predict reward (goal-tracking) and acquire incentive properties (conditioned reinforcement). Mice were injected with vehicle or the mGluR5 antagonist, MTEP (3 or 10 mg/kg), before each Pavlovian conditioning session in which a stimulus (CS+) was paired with food delivery. Subsequently, in the absence of the primary food reward, we determined whether the CS+ could reinforce a novel instrumental response (conditioned reinforcement) and direct behavior toward the place of reward delivery (goal-tracking). MTEP did not affect performance during the conditioning phase, or the ability of the CS+ to elicit a goal-tracking response. In contrast, 10 mg/kg MTEP given before each conditioning session prevented the subsequent expression of conditioned reinforcement. This dose of MTEP did not affect conditioned reinforcement when administered before the test, in mice that had received vehicle before conditioning sessions. Thus, mGluR5 has a critical role in the acquisition of incentive properties by a CS, but is not required for the expression of incentive learning, or for the CS to acquire predictive properties that signal reward availability.
Collapse
|
44
|
Touzani K, Bodnar RJ, Sclafani A. Neuropharmacology of learned flavor preferences. Pharmacol Biochem Behav 2010; 97:55-62. [PMID: 20600253 DOI: 10.1016/j.pbb.2010.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/27/2010] [Accepted: 06/10/2010] [Indexed: 11/16/2022]
Abstract
Innate and learned flavor preferences influence food and fluid choices in animals. Two primary forms of learned preferences involve flavor-flavor and flavor-nutrient associations in which a particular flavor element (e.g., odor) is paired with an innately preferred flavor element (e.g., sweet taste) or with a positive post-oral nutrient consequence. This review summarizes recent findings related to the neurochemical basis of learned flavor preferences. Systemic and central injections of dopamine receptor antagonists implicate brain dopamine signaling in both flavor-flavor and flavor-nutrient conditioning by the taste and post-oral effects of sugars. Dopamine signaling in the nucleus accumbens, amygdala and lateral hypothalamus is involved in one or both forms of conditioning and selective effects are produced by D1-like and D2-like receptor antagonism. Opioid receptor antagonism, despite its suppressive action on sugar intake and reward, has little effect on the acquisition or expression of flavor preferences conditioned by the sweet taste or post-oral actions of sugars. Other studies indicate that flavor preference conditioning by sugars is differentially influenced by glutamate receptor antagonism, cannabinoid receptor antagonism and benzodiazepine receptor activation.
Collapse
Affiliation(s)
- Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, NY 11210, USA
| | | | | |
Collapse
|
45
|
Mitrano D, Pare JF, Smith Y. Ultrastructural relationships between cortical, thalamic, and amygdala glutamatergic inputs and group I metabotropic glutamate receptors in the rat accumbens. J Comp Neurol 2010; 518:1315-29. [PMID: 20151362 PMCID: PMC3895817 DOI: 10.1002/cne.22277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in glutamatergic transmission in the nucleus accumbens play a key role in mediating reward-related behaviors and addiction to psychostimulants. Glutamatergic inputs to the accumbens originate from multiple sources, including the prefrontal cortex, basolateral amygdala, and midline thalamus. The group I metabotropic glutamate receptors (mGluRs) are found throughout the core and shell of the nucleus accumbens, but their localization and function at specific glutamatergic synapses remain unknown. To further characterize the substrate that underlies group I mGluR functions in the accumbens, we combined anterograde tract tracing method with electron microscopy immunocytochemistry to study the ultrastructural relationships between specific glutamatergic afferents and mGluR1a- or mGluR5-containing neurons in the rat nucleus accumbens. Although cortical, thalamic, and amygdala glutamatergic terminals contact both mGluR1a- and mGluR5-immunoreactive dendrites and spines in the shell and core of the accumbens, they do so to varying degrees. Overall, glutamatergic terminals contact mGluR1a-positive spines about 30% of the time, whereas they form synapses twice as frequently with mGluR5-labeled spines. At the subsynaptic level, mGluR5 is more frequently expressed perisynaptically and closer to the edges of glutamatergic axospinous synapses than mGluR1a, suggesting a differential degree of activation of the two group I mGluRs by transmitter spillover from glutamatergic synapses in the rat accumbens. These results lay the foundation for a deeper understanding of group I mGluR-mediated effects in the ventral striatum, and their potential therapeutic benefits in drug addiction and other neuropsychiatric changes in reward-related behaviors.
Collapse
Affiliation(s)
- D.A. Mitrano
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322
| | - J.-F. Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
| | - Y. Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
46
|
Chen BT, Hopf FW, Bonci A. Synaptic plasticity in the mesolimbic system: therapeutic implications for substance abuse. Ann N Y Acad Sci 2010; 1187:129-39. [PMID: 20201850 DOI: 10.1111/j.1749-6632.2009.05154.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In an ever-changing environment, animals must learn new behavioral strategies for the successful procurement of food, sex, and other needs. Synaptic plasticity within the mesolimbic system, a key reward circuit, affords an animal the ability to adapt and perform essential goal-directed behaviors. Ironically, drugs of abuse can also induce synaptic changes within the mesolimbic system, and such changes are hypothesized to promote deleterious drug-seeking behaviors in lieu of healthy, adaptive behaviors. In this review, we will discuss drug-induced neuroadaptations in excitatory transmission in the ventral tegmental area and the nucleus accumbens, two critical regions of the mesolimbic system, and the possible role of dopamine receptors in the development of these neuroadaptations. In particular, we will focus our discussion on recent studies showing changes in AMPA receptor function as a common molecular target of addictive drugs, and the possible behavioral consequences of such neuroadaptations.
Collapse
Affiliation(s)
- Billy T Chen
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
47
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
48
|
Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T. Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 2010; 113:715-24. [PMID: 20132464 DOI: 10.1111/j.1471-4159.2010.06635.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioral investigations of selective and potent metabotropic glutamate receptor type 5 (mGluR5) antagonists in animal models suggest involvement of mGluR5 in compensatory mechanisms of the basal ganglia circuitry in Parkinson's disease and levodopa (L-Dopa) induced motor complications. This study investigated mGluR5 changes in MPTP lesioned monkeys. The effect of a chronic 1 month treatment with L-Dopa on mGluR5-specific binding and mRNA levels was investigated in MPTP monkeys killed 4 or 24 h after their last L-Dopa administration. [(3)H]ABP688 specific binding in the putamen was elevated in L-Dopa-treated MPTP monkeys killed 24 h but not 4 h after their last L-Dopa dose compared with vehicle-treated MPTP monkeys. Caudate nucleus [(3)H]ABP688-specific binding was elevated in both groups of L-Dopa treated compared with vehicle-treated MPTP monkeys. In contrast, caudate nucleus and putamen mGluR5 mRNA levels were elevated only in L-Dopa-treated MPTP monkeys killed 4 h after their last L-Dopa administration. MPTP monkeys killed 4 h after their last L-Dopa treatment showed higher caudate nucleus and putamen L-Dopa concentrations compared with those killed after 24 h. Hence, mGluR5 in the putamen are sensitive to presence of L-Dopa leading to a rapid decrease of [(3)H]ABP688-specific binding possibly involving a direct mGluR5/dopamine receptors interaction.
Collapse
Affiliation(s)
- Bazoumana Ouattara
- Molecular Endocrinology and Genomic Research Center, Laval University Medical Center (CHUL), Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
He X, Xiao L, Sui N. Effects of SCH23390 and spiperone administered into medial striatum and intermediate medial mesopallium on rewarding effects of morphine in day-old chicks. Eur J Pharmacol 2010; 627:136-41. [DOI: 10.1016/j.ejphar.2009.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/23/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
50
|
Guillem K, Peoples LL. Progressive and lasting amplification of accumbal nicotine-seeking neural signals. J Neurosci 2010; 30:276-86. [PMID: 20053909 PMCID: PMC2855140 DOI: 10.1523/jneurosci.2820-09.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/21/2022] Open
Abstract
Although neuroadaptations in the nucleus accumbens (NAc) are thought to contribute to nicotine addiction, little is known about the chronic effects of nicotine on NAc neuronal activity. In the present experiment, rats were exposed to a 23 d period of nicotine self-administration (SA), a 30 d abstinence period, and a 7 d period of reexposure to SA. Chronic electrophysiological procedures were used to record the activity of individual NAc neurons on the 3rd and 23rd days of initial SA and on the 1st, 3rd, and 7th days of reexposure. Between-session comparisons showed that NAc neurons exhibit two patterns of plasticity under the present experimental conditions. First, phasic-increase firing patterns time-locked to the nicotine-reinforced lever press do not change during initial SA, but then show increases in prevalence and amplitude after abstinence, which persist during reexposure. Second, for neurons that show no phasic response time-locked to the nicotine-reinforced lever press, average baseline and SA firing rates decrease during initial SA, return to normal during abstinence, and decrease again during reexposure. As a combined consequence of the two types of neurophysiological plasticity, average firing rate of NAc neurons at the time of nicotine-directed behavior undergoes a progressive and persistent net amplification, across the successive stages of SA, abstinence, and reexposure. This net increase in NAc firing at the time of nicotine-directed behavior occurs in association with an increase in animals' motivation to seek nicotine. The adaptations that occur in nicotine-exposed animals do not occur in animals exposed to sucrose. The NAc neurophysiological plasticity potentially contributes to compulsive tobacco use.
Collapse
Affiliation(s)
- Karine Guillem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | - Laura L. Peoples
- Department of Psychiatry, Translational Research Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|