1
|
Neureiter EG, Erickson-Oberg MQ, Nigam A, Johnson JW. Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs. Front Pharmacol 2025; 16:1561956. [PMID: 40371334 PMCID: PMC12075551 DOI: 10.3389/fphar.2025.1561956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug's therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Kato Y, Tadokoro S, Ishida S, Niidome M, Kimura Y, Takayama S, Fujii S. In-depth amino acid mutational analysis of the key interspecific incompatibility factor Stigmatic Privacy 1. PLANT & CELL PHYSIOLOGY 2025:pcaf039. [PMID: 40388116 DOI: 10.1093/pcp/pcaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/20/2025]
Abstract
In plants, there is an active prezygotic interspecific-incompatibility mechanism to prevent unfavorable hybrids between two species. We previously reported that an uncharacterized protein with four-transmembrane domains, named as Stigmatic Privacy 1 (SPRI1), is responsible for rejecting heterospecific pollen grains in Arabidopsis thaliana. However, the lack of notable functional domains in SPRI1 has limited our understanding of its biochemical properties. In this study, we conducted a functional analysis of the SPRI1 protein through point-mutational experiments and biochemical analysis. We explored the molecular regulatory mechanisms of SPRI1 and the relationships with its function. Alanine- and glycine-scanning experiments together with the evolutional analysis showed that the structural integrity of the C-terminal regions of the extracellular domain of this protein is important for its function. In addition, we found two cysteines (C67 and C80) within the extracellular domain that may be involved in the formation of intermolecular disulfide bonds. These cysteine residues are required for the stabilization of the SPR1 protein. Furthermore, SPRI1 may form homo-multimers and is present as part of a ∼300 kDa complex. Our present study indicates that SPRI1 forms large protein machinery for the rejection of hetero-specific pollen in stigmatic papilla cells.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shun Tadokoro
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
| | - Shota Ishida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
| | - Maki Niidome
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
| | - Yuka Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bukyo-ku, Tokyo 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), 8-1-1 Seikadai, Seikacho, Kyoto 619-0284, Japan
| |
Collapse
|
3
|
Caña-Bozada VH, Dawoud AAZ, Ramos-de la Cruz I, Flores-Méndez LC, Barrera-Redondo J, Briones-Mendoza J, Yañez-Guerra LA. Global analysis of ligand-gated ion channel conservation across Platyhelminthes. Gen Comp Endocrinol 2025; 366:114718. [PMID: 40157577 DOI: 10.1016/j.ygcen.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Ligand-gated ion channels (LGICs) are critical for neurotransmission, mediating responses to neurotransmitters and hormones, and influencing diverse physiological processes. This study identifies and classifies LGICs across Platyhelminthes, with a particular focus on parasitic neodermatans, which impact human and animal health. Using bioinformatics tools, we analyzed LGICs from 41 neodermatan species and expanded our investigation to encompass vertebrates, other invertebrates, and non-bilaterians to trace LGIC evolutionary pathways across Metazoa. We identified 2,269 putative LGICs within neodermatan species, which we classified into the cys-loop, ASIC/Deg/ENaC, iGluR, and P2X families. Our phylogenetic and clustering analyses reveal lineage-specific patterns with distinct evolutionary trajectories for each LGIC family in neodermatans compared to free-living platyhelminths and other taxa. Notably, the ASIC/Deg/ENaC family displayed the greatest degree of neodermatan-specific divergence, while cys-loop and P2X families were more conserved across taxa. To provide insight into their potential physiological roles, we analyzed LGIC expression patterns in Schistosoma mansoni, revealing widespread expression across neuronal and muscle cell types. The distribution of acid-sensing ion channels (ASICs) in both neurons and muscles suggests a role in neuromuscular signalling, while the P2X receptor (Smp_333600) exhibited sex-specific expression, potentially indicating distinct functional roles in males and females. Additionally, several cys-loop acetylcholine and GABA receptors showed differential neuronal and muscle expression, highlighting their likely contributions to cholinergic and inhibitory neurotransmission. These findings underscore the relevance of LGICs in parasite physiology, particularly in neuromuscular and sensory processes, and suggest potential targets for antiparasitic interventions.
Collapse
Affiliation(s)
- Víctor Hugo Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico; Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador.
| | - Ahmed A Z Dawoud
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK
| | - Ivana Ramos-de la Cruz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico
| | - Lizeth C Flores-Méndez
- Universidad Autónoma de Occidente, Unidad Regional Mazatlán. Av. del Mar, Tellería, Mazatlán 82100 Sinaloa, Mexico
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen 72076 Tübingen, Germany
| | - Jesús Briones-Mendoza
- Carrera de Biología, Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica "Eloy Alfaro" de Manabí, Ciudadela Universitaria vía San Mateo, Manta, Ecuador
| | - Luis A Yañez-Guerra
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK; Institute for Life Sciences. University of Southampton, University Road SO17 1BJ Southampton, UK.
| |
Collapse
|
4
|
Kawabata R, Fujita A, Oke Y, Yao I, Koga K. The elevated open platform stress suppresses excitatory synaptic transmission in the layer V anterior cingulate cortex. Neuroscience 2025; 564:243-259. [PMID: 39369946 DOI: 10.1016/j.neuroscience.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
There are various forms of stress including; physical, psychological and social stress. Exposure to physical stress can lead to physical sensations (e.g. hyperalgesia) and negative emotions including anxiety and depression in animals and humans. Recently, our studies in mice have shown that acute physical stress induced by the elevated open platform (EOP) can provoke long-lasting mechanical hypersensitivity. This effect appears to be related to activity in the anterior cingulate cortex (ACC) at the synaptic level. Indeed, EOP exposure induces synaptic plasticity in layer II/III pyramidal neurons from the ACC. However, it is still unclear whether or not EOP exposure alters intrinsic properties and synaptic transmission in layer V pyramidal neurons. This is essential because these neurons are known to be a primary output to subcortical structures which may ultimately impact the behavioral stress response. Here, we studied both intrinsic properties and excitatory/inhibitory synaptic transmission by using whole-cell patch-clamp method in brain slice preparations. The EOP exposure did not change intrinsic properties including resting membrane potentials and action potentials. In contrast, EOP exposure suppressed the frequency of miniature and spontaneous excitatory synaptic transmission with an alteration of kinetics of AMPA/GluK receptors. EOP exposure also reduced evoked synaptic transmission induced by electrical stimulation. Furthermore, we investigated projection-selective responses of the mediodorsal thalamus to the layer V ACC neurons. EOP exposure produced short-term depression in excitatory synaptic transmission on thalamo-ACC projections. These results suggest that the EOP stress provokes abnormal excitatory synaptic transmission in layer V pyramidal neurons of the ACC.
Collapse
Affiliation(s)
- Ryo Kawabata
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan; Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ayumi Fujita
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoshihiko Oke
- Department of Physiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ikuko Yao
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kohei Koga
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
5
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. Metabotropic Glutamate Receptor 5: A Potential Target for Neuropathic Pain Treatment. Curr Neuropharmacol 2025; 23:276-294. [PMID: 39411936 PMCID: PMC11808587 DOI: 10.2174/1570159x23666241011163035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 02/12/2025] Open
Abstract
Neuropathic pain, a multifaceted and incapacitating disorder, impacts a significant number of individuals globally. Despite thorough investigation, the development of efficacious remedies for neuropathic pain continues to be a formidable task. Recent research has revealed the potential of metabotropic glutamate receptor 5 (mGlu5) as a target for managing neuropathic pain. mGlu5 is a receptor present in the central nervous system that has a vital function in regulating synaptic transmission and the excitability of neurons. This article seeks to investigate the importance of mGlu5 in neuropathic pain pathways, analyze the pharmacological approach of targeting mGlu5 for neuropathic pain treatment, and review the negative allosteric mGlu5 modulators used to target mGlu5. By comprehending the role of mGlu5 in neuropathic pain, we can discover innovative treatment approaches to ease the distress endured by persons afflicted with this incapacitating ailment.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Audino JA, McElroy KE, Serb JM, Marian JEAR. Anatomy and transcriptomics of the common jingle shell (Bivalvia, Anomiidae) support a sensory function for bivalve tentacles. Sci Rep 2024; 14:31539. [PMID: 39733126 PMCID: PMC11682238 DOI: 10.1038/s41598-024-83313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
| | - Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - José E A R Marian
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
da Silva J, de Souza LO, Severo MPA, Rodrigues SLC, Molz P, Schonhofen P, Herlinger AL, Schröder N. Effects of the AMPAR Antagonist, Perampanel, on Cognitive Function in Rats Exposed to Neonatal Iron Overload. Mol Neurobiol 2024; 61:10083-10096. [PMID: 38696064 DOI: 10.1007/s12035-024-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 11/24/2024]
Abstract
Iron accumulation has been associated with the pathogenesis of neurodegenerative diseases and memory decline. As previously described by our research group, iron overload in the neonatal period induces persistent memory deficits and increases oxidative stress and apoptotic markers. The neuronal insult caused by iron excess generates an energetic imbalance that can alter glutamate concentrations and thus trigger excitotoxicity. Drugs that block glutamatergic receptor eligibly mitigate neurotoxicity; among them is perampanel (PER), a reversible AMPA receptor (AMPAR) antagonist. In the present study, we sought to investigate the neuroprotective effects of PER in rats subjected to iron overload in the neonatal period. Recognition and aversive memory were evaluated, AMPAR subunit phosphorylation, as well as the relative expression of genes such as GRIA1, GRIA2, DLG4, and CAC, which code proteins involved in AMPAR anchoring. Male rats received vehicle or carbonyl iron (30 mg/kg) from the 12th to the 14th postnatal day and were treated with vehicle or PER (2 mg/kg) for 21 days in adulthood. The excess of iron caused recognition memory deficits and impaired emotional memory, and PER was able to improve the rodents' memory. Iron increased the phosphorylation of GLUA1 subunit, which was reversed by PER. Furthermore, iron overload increased the expression of the GRIA1 gene and decreased the expression of the DLG4 gene, demonstrating the influence of metal accumulation on the metabolism of AMPAR. These results suggest that iron can interfere with AMPAR functionality, through altered phosphorylation of its subunits, and the expression of genes that code for proteins critically involved in the assembly and anchoring of AMPAR. The blockade of AMPAR with PER is capable of partially reversing the cognitive deficits caused by iron overload.
Collapse
Affiliation(s)
- José da Silva
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lariza Oliveira de Souza
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Schonhofen
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, Brazil
| | - Nadja Schröder
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil.
| |
Collapse
|
8
|
Rathing F, Schepmann D, Wünsch B. Quinolone bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists. Arch Pharm (Weinheim) 2024; 357:e2400279. [PMID: 38889396 DOI: 10.1002/ardp.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,β-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (Ki > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively.
Collapse
Affiliation(s)
- Friederike Rathing
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Münster, Germany
| |
Collapse
|
9
|
Li Z, Cao Z, Chen F, Li B, Jin H. Lutein inhibits glutamate-induced apoptosis in HT22 cells via the Nrf2/HO-1 signaling pathway. Front Neurosci 2024; 18:1432969. [PMID: 39193525 PMCID: PMC11347311 DOI: 10.3389/fnins.2024.1432969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Excessive glutamate levels induce oxidative stress, resulting in neuronal damage, and cell death. While natural antioxidants show promise for neuroprotection, their effectiveness in the central nervous system (CNS) is limited by the blood -brain barrier. Lutein, a neuroprotective carotenoid, has gained attention for its ability to traverse this barrier and accumulate in various brain regions. This study aimed to elucidate the mechanisms underlying the protective effects of lutein against glutamateinduced cell death in HT22 cells. METHODS HT22 cells were treated with lutein (1.25-20 μM) for 24 hours. Cell viability, ROS levels, apoptosis, and mitochondrial membrane potential were assessed following lutein pretreatment and glutamate exposure. Protein expression of apoptotic markers was analyzed using Western blotting. RESULTS Lutein effectively attenuated glutamate-induced apoptosis due to its antioxidant properties. Additionally, lutein inhibited glutamate-induced mitochondrial-mediated apoptosis. We observed that lutein modulated the nuclear translocation of nuclear factor erythroid 2 -related factor 2 (Nrf2) and upregulated the expression of heme oxygenase-1 (HO-1). Inhibition of HO-1 by tin protoporphyrin (SnPP), a synthetic inhibitor, weakened the protective effect of lutein. Furthermore, we demonstrated that lutein prevented the aberrant activation of MAPKs induced by glutamate, including ERK1/2, p38, and JNK, thereby conferring oxidative protection. DISCUSSION Our study highlights the potent antioxidant properties of lutein, which effectively safeguards against glutamate-induced mitochondrial apoptotic cell death through the Nrf2/HO-1 signaling pathway and inhibition of MAPK activation. These findings demonstrate that lutein exerts a neuroprotective effect against glutamate-induced neuronal cell damage.
Collapse
Affiliation(s)
- Zhenhua Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhuohua Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Fangmei Chen
- Institute of Science and Technology Information Research of Tibet Autonomous Region, Lhasa, China
| | - Bin Li
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Department of Pharmacy, Qingdao University of Science and Technology, Qingdao, China
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
11
|
Gholipour P, Ebrahimi Z, Mohammadkhani R, Ghahremani R, Salehi I, Sarihi A, Komaki A, Karimi SA. Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in prenatal valproic acid-induced rat model of autism. Sci Rep 2024; 14:13168. [PMID: 38849397 PMCID: PMC11161498 DOI: 10.1038/s41598-024-63728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition characterized by social interaction deficits, communication impairments, repetitive behaviors, and sensory sensitivities. While the etiology of ASD is multifaceted, abnormalities in glutamatergic neurotransmission and synaptic plasticity have been implicated. This study investigated the role of metabotropic glutamate receptor 8 (mGlu8) in modulating long-term potentiation (LTP) in a rat model of ASD induced by prenatal valproic acid (VPA) exposure. To induce an animal model with autism-like characteristics, pregnant rats received an intraperitoneal injection of 500 mg/kg of sodium valproate (NaVPA) on embryonic day 12.5. High-frequency stimulation was applied to the perforant path-dentate gyrus (PP-DG) synapse to induce LTP, while the mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) was administered into the DG. The results revealed that VPA-exposed rats exhibited reduced LTP compared to controls. DCPG had contrasting effects, inhibiting LTP in controls and enhancing it in VPA-exposed rats. Moreover, reduced social novelty preference index (SNPI) in VPA-exposed rats was reversed by intra-DG administration of S-3,4-DCPG. In conclusion, our study advances our understanding of the complex relationship between glutamatergic neurotransmission, synaptic plasticity, and VPA-induced autism model. The findings suggest that mGlu8 receptor dysfunction plays a role in the impaired synaptic plasticity seen in ASD.
Collapse
Affiliation(s)
- Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reihaneh Mohammadkhani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Polinski JM, Castellano KR, Buckley KM, Bodnar AG. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Cell Rep 2024; 43:114021. [PMID: 38564335 DOI: 10.1016/j.celrep.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.
Collapse
Affiliation(s)
| | | | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
13
|
Moisan GJ, Kamath N, Apgar S, Schwehr M, Vedmurthy P, Conner O, Hayes K, Toro CP. Alternative Splicing and Nonsense-Mediated Decay of a Zebrafish GABA Receptor Subunit Transcript. Zebrafish 2024; 21:198-205. [PMID: 37751193 DOI: 10.1089/zeb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The superfamily of Cys-loop ionotropic neurotransmitter receptors includes those that detect GABA, glutamate, glycine, and acetylcholine. There is ample evidence that many Cys-loop receptor subunit genes include alternatively spliced exons. In this study, we report a novel example of alternative splicing (AS): we show that the 68-bp exon 3 in the zebrafish gabrr2b gene-which codes for the ρ2b GABAAR subunit-is an alternative cassette exon. Skipping of gabrr2b exon 3 results in a downstream frame shift and a premature termination codon (PTC). We provide evidence in larval zebrafish that transcripts containing the PTC are subject to degradation through nonsense-mediated decay. We also compile reports of AS of homologous exons in other Cys-loop receptor genes in multiple species. Our data add to a large body of research demonstrating that exon 3 in Cys-loop receptor genes is a conserved site for AS, the effects of which can vary from novel splice-isoform generation to downregulation of gene expression through transcript degradation.
Collapse
Affiliation(s)
- Gaia J Moisan
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Nitika Kamath
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Shannon Apgar
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Megan Schwehr
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Pooja Vedmurthy
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Olivya Conner
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Kyler Hayes
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Cecilia Phillips Toro
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
- Biology Department, Linfield University, McMinnville, Oregon, USA
| |
Collapse
|
14
|
Zinchenko VP, Dolgacheva LP, Tuleukhanov ST. Calcium-permeable AMPA and kainate receptors of GABAergic neurons. Biophys Rev 2024; 16:165-171. [PMID: 38737208 PMCID: PMC11078900 DOI: 10.1007/s12551-024-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 05/14/2024] Open
Abstract
This Commentary presents a brief discussion of the action of glutamate calcium permeable receptors present with neurons on the release of the neurotransmitter gamma-aminobutyric acid (GABA). In particular, Glutamate sensitive Kainic Acid Receptors (KARs) and α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid Receptor (AMPARs) are Na+ channels that typically cause neuronal cells to depolarize and release GABA. Some of these receptors are also permeable to Ca2+ and are hence involved in the calcium-dependent release of GABA neurotransmitters. Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs) are predominantly located in GABAergic neurons in the mature brain and their primary role is to regulate GABA release. AMPARs which do not contain the GluA2 subunit are mainly localized in the postsynaptic membrane. CP-KAR receptors are located mainly in the presynapse. GABAergic neurons expressing CP-KARs and CP-AMPARs respond to excitation earlier and faster, suppressing hyperexcitation of other neurons by the advanced GABA release due to an early rapid [Ca2+]i increase. CP-AMPARs have demonstrated a more pronounced impact on plasticity compared to NMDARs because of their capacity to elevate intracellular Ca2+ levels independently of voltage. GABAergic neurons that express CP-AMPARs contribute to the disinhibition of glutamatergic neurons by suppressing GABAergic neurons that express CP-KARs. Hence, the presence of glutamate CP-KARs and CP-AMPARs is crucial in governing hyperexcitation and synaptic plasticity in GABAergic neurons.
Collapse
Affiliation(s)
- V. P. Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, Pushchino, Russia 142290
| | - L. P. Dolgacheva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, Pushchino, Russia 142290
| | - S. T. Tuleukhanov
- Al-Farabi Kazakh National University, 050040 Al-Farabi Avenue 71, Almaty, Republic of Kazakhstan
| |
Collapse
|
15
|
Galambos AR, Papp ZT, Boldizsár I, Zádor F, Köles L, Harsing LG, Al-Khrasani M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024; 12:421. [PMID: 38398023 PMCID: PMC10886540 DOI: 10.3390/biomedicines12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers β-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| |
Collapse
|
16
|
Nagori K, Pradhan M, Sharma M, Ajazuddin, Badwaik HR, Nakhate KT. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:50-68. [PMID: 38529600 DOI: 10.2174/0115672050306008240321034006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur 493661, Chhattisgarh, India
| | - Mukesh Sharma
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| |
Collapse
|
17
|
Díaz-Rodríguez SM, Ivorra I, Espinosa J, Vegar C, Herrero-Turrión MJ, López DE, Gómez-Nieto R, Alberola-Die A. Enhanced Membrane Incorporation of H289Y Mutant GluK1 Receptors from the Audiogenic Seizure-Prone GASH/Sal Model: Functional and Morphological Impacts on Xenopus Oocytes. Int J Mol Sci 2023; 24:16852. [PMID: 38069190 PMCID: PMC10706347 DOI: 10.3390/ijms242316852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.
Collapse
Affiliation(s)
- Sandra M. Díaz-Rodríguez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Isabel Ivorra
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Javier Espinosa
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - Celia Vegar
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| | - M. Javier Herrero-Turrión
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
- Neurological Tissue Bank INCYL (BTN-INCYL), University of Salamanca, E-37007 Salamanca, Spain
| | - Dolores E. López
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, E-37007 Salamanca, Spain; (S.M.D.-R.); (M.J.H.-T.); (R.G.-N.)
- Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Armando Alberola-Die
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03690 Alicante, Spain; (I.I.); (J.E.); (C.V.); (A.A.-D.)
| |
Collapse
|
18
|
Pan F, Massey SC. Dye coupling of horizontal cells in the primate retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1173706. [PMID: 38983052 PMCID: PMC11182241 DOI: 10.3389/fopht.2023.1173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
In the monkey retina, there are two distinct types of axon-bearing horizontal cells, known as H1 and H2 horizontal cells (HCs). In this study, cell bodies were prelabled using 4',6-diamidino-2-phenylindole (DAPI), and both H1 and H2 horizontal cells were filled with Neurobiotin™ to reveal their coupling, cellular details, and photoreceptor contacts. The confocal analysis of H1 and H2 HCs was used to assess the colocalization of terminal dendrites with glutamate receptors at cone pedicles. After filling H1 somas, a large coupled mosaic of H1 cells was labeled. The dendritic terminals of H1 cells contacted red/green cone pedicles, with the occasional sparse contact with blue cone pedicles observed. The H2 cells were also dye-coupled. They had larger dendritic fields and lower densities. The dendritic terminals of H2 cells preferentially contacted blue cone pedicles, but additional contacts with nearly all cones within the dendritic field were still observed. The red/green cones constitute 99% of the input to H1 HCs, whereas H2 HCs receive a more balanced input, which is composed of 58% red/green cones and 42% blue cones. These observations confirm those made in earlier studies on primate horizontal cells by Dacey and Goodchild in 1996. Both H1 and H2 HCs were axon-bearing. H1 axon terminals (H1 ATs) were independently coupled and contacted rod spherules exclusively. In contrast, the H2 axon terminals contacted cones, with some preference for blue cone pedicles, as reported by Chan and Grünert in 1998. The primate retina contains three independently coupled HC networks in the outer plexiform layer (OPL), identified as H1 and H2 somatic dendrites, and H1 ATs. At each cone pedicle, the colocalization of both H1 and H2 dendritic tips with GluA4 subunits close to the cone synaptic ribbons indicates that glutamate signaling from the cones to H1 and H2 horizontal cells is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
20
|
Korff M, Lüken J, Schmidt J, Schepmann D, Goerges G, Ritter N, Disse P, Schreiber JA, Seebohm G, Wünsch B. Negative allosteric modulators of NMDA receptors with GluN2B subunit: synthesis of β-aminoalcohols by epoxide opening and subsequent rearrangement. Org Biomol Chem 2023; 21:7616-7638. [PMID: 37682049 DOI: 10.1039/d3ob01208e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In order to obtain novel antagonists of GluN2B subunit containing NMDA receptors, aryloxiranes were opened with benzylpiperidines. Phenyloxiranes 6 and (indazolyl)oxirane 15 were opened regioselectively at the position bearing the aryl moiety. Reaction of the resulting β-aminoalcohols 7 and 16 with carboxylic acids under Mitsunobu conditions (DIAD, PPh3) led to rearrangement and after ester hydrolysis to the regioisomeric β-aminoalcohols 9 and 18. This strategy allows the synthesis of amino-ifenprodil 12 as well using phthalimide in the Mitsunobu reaction. Unexpectedly, the isomeric (indazolyl)oxirane 21 reacted with benzylpiperidines to afford both regioisomeric β-aminoalcohols 22 and 23. In radioligand receptor binding studies, the indazolyl derivative 18a, which can be regarded as indazole bioisostere of ifenprodil, showed high GluN2B affinity (Ki = 31 nM). Replacement of the benzylic OH moiety of ifenprodil by the NH2 moiety in amino-ifenprodil 12 also resulted in low nanomolar GluN2B affinity (Ki = 72 nM). In TEVC experiments, 18a inhibited the ion flux to the same extent as ifenprodil proving that the phenol of ifenprodil can be replaced bioisosterically by an indazole ring maintaining affinity and inhibitory activity. Whereas 10-fold selectivity was found for the ifenprodil binding site over σ1 receptors, only low preference for the GluN2B receptor over σ2 receptors was detected. The log D7.4 value of 18a (log D7.4 = 2.08) indicates promising bioavailability.
Collapse
Affiliation(s)
- Marvin Korff
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
- Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany
| | - Judith Lüken
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
| | - Judith Schmidt
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
| | - Dirk Schepmann
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
| | - Gunnar Goerges
- University Hospital Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Nadine Ritter
- University Hospital Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Robert-Koch-Str. 45, D-48149 Münster, Germany
- Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany
| | - Paul Disse
- University Hospital Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Robert-Koch-Str. 45, D-48149 Münster, Germany
- Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany
| | - Julian A Schreiber
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
- University Hospital Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Guiscard Seebohm
- University Hospital Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Robert-Koch-Str. 45, D-48149 Münster, Germany
- Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, D-48149 Münster, Germany.
- Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
21
|
Chałupnik P, Vialko A, Pickering DS, Nielsen B, Bay Y, Skov Kristensen A, Hinkkanen M, Szczepańska K, Karcz T, Latacz G, Johansen TN, Szymańska E. Structure-Activity Relationship and Solubility Studies of N1-Substituted Quinoxaline-2,3-diones as Kainate Receptor Antagonists. ChemMedChem 2023; 18:e202300278. [PMID: 37387321 DOI: 10.1002/cmdc.202300278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 μM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.
Collapse
Affiliation(s)
- Paulina Chałupnik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
| | - Alina Vialko
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Anders Skov Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Markus Hinkkanen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
| | - Tommy N Johansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688, Kraków, Poland
| |
Collapse
|
22
|
Huang J, Xue S, Buchmann P, Teixeira AP, Fussenegger M. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metab 2023; 5:1395-1407. [PMID: 37524785 PMCID: PMC10447240 DOI: 10.1038/s42255-023-00850-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
Wearable electronic devices are playing a rapidly expanding role in the acquisition of individuals' health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Bechthold E, Grey L, Diamant E, Schmidt J, Steigerwald R, Zhao F, Hansen KB, Bunch L, Clausen RP, Wünsch B. In vitro ADME characterization of a very potent 3-acylamino-2-aminopropionic acid-derived GluN2C-NMDA receptor agonist and its ester prodrugs. Biol Chem 2023; 404:255-265. [PMID: 36427206 PMCID: PMC10012426 DOI: 10.1515/hsz-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12a-c of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12a-c showed higher lipophilicity (higher logD 7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12a-c were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12a-c. The isopropyl ester 12c showed a promising logD 7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.
Collapse
Affiliation(s)
- Elena Bechthold
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Lucie Grey
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Emil Diamant
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Judith Schmidt
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Ruben Steigerwald
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhua West Road, Lixia District, Ji’nan, Shandong, 250012, China
| | - Kasper B. Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT59812, USA
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100Copenhagen, Denmark
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Corrensstraße 48, D-48149Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149Münster, Germany
| |
Collapse
|
24
|
Korff M, Steigerwald R, Bechthold E, Schepmann D, Schreiber JA, Meuth SG, Seebohm G, Wünsch B. Chemical, pharmacodynamic and pharmacokinetic characterization of the GluN2B receptor antagonist 3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1 H-3-benzazepine-1,7-diol - starting point for PET tracer development. Biol Chem 2023; 404:279-289. [PMID: 36215695 DOI: 10.1515/hsz-2022-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
GluN2B-NMDA receptors play a key role in several neurological and neurodegenerative disorders. In order to develop novel negative allosteric GluN2B-NMDA receptor modulators, the concept of conformational restriction was pursued, i.e. the flexible aminoethanol substructure of ifenprodil was embedded into a more rigid tetrahydro-3-benzazepine system. The resulting tetrahydro-3-benzazepine-1,7-diol (±)-2 (WMS-1410) showed promising receptor affinity in receptor binding studies (K i = 84 nM) as well as pharmacological activity in two-electrode-voltage-clamp experiments (IC 50 = 116 nM) and in cytoprotective assays (IC 50 = 18.5 nM). The interactions of (R)-2 with the ifenprodil binding site of GluN2B-NMDA receptors were analyzed on the molecular level and the "foot-in-the-door" mechanism was developed. Due to promising pharmacokinetic parameters (logD7.4 = 1.68, plasma protein binding of 76-77%, sufficient metabolic stability) F-substituted analogs were prepared and evaluated as tracers for positron emission tomography (PET). Both fluorine-18-labeled PET tracers [18F]11 and [18F]15 showed high brain uptake, specific accumulation in regions known for high GluN2B-NMDA receptor expression, but no interactions with σ 1 receptors. Radiometabolites were not observed in the brain. Both PET tracers might be suitable for application in humans.
Collapse
Affiliation(s)
- Marvin Korff
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Ruben Steigerwald
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Elena Bechthold
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| | - Julian A Schreiber
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
- Department of Cardiovascular Medicine, Westfälische Wilhelms-Universität Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Sven G Meuth
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Guiscard Seebohm
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Department of Cardiovascular Medicine, Westfälische Wilhelms-Universität Münster, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, GRK 2515 Munster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
25
|
Mocci I, Casu MA, Sogos V, Liscia A, Angius R, Cadeddu F, Fanti M, Muroni P, Talani G, Diana A, Collu M, Setzu MD. Effects of memantine on mania-like phenotypes exhibited by Drosophila Shaker mutants. CNS Neurosci Ther 2023. [PMID: 36942502 DOI: 10.1111/cns.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.
Collapse
Affiliation(s)
- Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Maria Antonietta Casu
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rossella Angius
- Unit of Biomedical Research Support, NMR Laboratory and Bioanalytical Technologies, Sardegna Ricerche, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Francesca Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
26
|
Identification of rare missense mutations in the glutamate ionotropic receptor AMPA type subunit genes in schizophrenia. Psychiatr Genet 2023; 33:20-25. [PMID: 36617743 DOI: 10.1097/ypg.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors significantly regulate the synaptic transmission and functions of various synaptic receptors. This study aimed to identify single nucleotide mutations in the glutamate receptor, ionotropic, AMPA type (GRIA) gene family, which is associated with schizophrenia. METHODS The exon regions of four genes (GRIA1, GRIA2, GRIA3, and GRIA4) encoding glutamate ionotropic receptor AMPA type proteins were resequenced in 516 patients with schizophrenia. We analyzed the protein function of the identified rare mutants via immunoblotting. RESULTS A total of 24 coding variants were detected in the GRIA gene family, including six missense mutations, 17 synonymous mutations, and one frameshift insertion. Notably, three ultra-rare missense mutations (GRIA1p.V182A, GRIA2p.P123Q, and GRIA4p.Y491H) were not documented in the single nucleotide polymorphism database, gnomAD genomes, and 1517 healthy controls available from Taiwan BioBank. Immunoblotting revealed GRIA4p.Y491H mutant with altered protein expressions in cultured cells compared with the wild type. CONCLUSION Our findings suggest that, in some patients affected by schizophrenia, the GRIA gene family harbors rare functional mutations, which support rare coding variants that could contribute to the genetic architecture of this illness. The in-vitro impacts of these rare pathological mutations on the pathophysiology of schizophrenia are worthy of future investigation.
Collapse
|
27
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
28
|
Chałupnik P, Szymańska E. Kainate Receptor Antagonists: Recent Advances and Therapeutic Perspective. Int J Mol Sci 2023; 24:1908. [PMID: 36768227 PMCID: PMC9916396 DOI: 10.3390/ijms24031908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Since the 1990s, ionotropic glutamate receptors have served as an outstanding target for drug discovery research aimed at the discovery of new neurotherapeutic agents. With the recent approval of perampanel, the first marketed non-competitive antagonist of AMPA receptors, particular interest has been directed toward 'non-NMDA' (AMPA and kainate) receptor inhibitors. Although the role of AMPA receptors in the development of neurological or psychiatric disorders has been well recognized and characterized, progress in understanding the function of kainate receptors (KARs) has been hampered, mainly due to the lack of specific and selective pharmacological tools. The latest findings in the biology of KA receptors indicate that they are involved in neurophysiological activity and play an important role in both health and disease, including conditions such as anxiety, schizophrenia, epilepsy, neuropathic pain, and migraine. Therefore, we reviewed recent advances in the field of competitive and non-competitive kainate receptor antagonists and their potential therapeutic applications. Due to the high level of structural divergence among the compounds described here, we decided to divide them into seven groups according to their overall structure, presenting a total of 72 active compounds.
Collapse
Affiliation(s)
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, PL 30-688 Kraków, Poland
| |
Collapse
|
29
|
Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int J Mol Sci 2023; 24:ijms24021718. [PMID: 36675230 PMCID: PMC9865595 DOI: 10.3390/ijms24021718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.
Collapse
|
30
|
Zhang Y, Lu Y, Zhang P, Shang X, Li Y. Brain Injury Induced by Mercury in Common Carp: Novel Insight from Transcriptome Analysis. Biol Trace Elem Res 2023; 201:403-411. [PMID: 35233713 DOI: 10.1007/s12011-022-03161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/12/2022] [Indexed: 01/11/2023]
Abstract
Mercury is a heavy metal which causes irreversible toxicity to fish and is detected in aquatic environment around the world. We aimed to explore the relative mechanism of mercury exposure on the brain injury. In this study, high-throughput sequencing RNA-Seq technology was carried out to analyze the changes of gene expression of brain tissues exposed to mercury. A large number of differentially expressed genes were identified. And 366 genes were up-regulated and 688 genes were down-regulated. Gene Ontology (GO) functional enrichment analysis showed that DNA-templated and transport were highly enriched in the biological process. Membrane, nucleus, and cytoplasm were highly enriched in the cellular component, and metal ion binding and DNA binding were highly enriched in molecular function. The differential genes were enriched in ferroptosis, necroptosis, calcium signaling pathway, and ion channels. Real-time quantitative reverse transcription PCR (qRT-PCR) results demonstrated the selected genes exhibited the same trends with the RNA-Seq results, which indicates the transcriptome sequencing data is reliable. Our results may provide an insightful view for the toxic effects of mercury on brain injury of common carp.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin, 150070, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, 150070, Heilongjiang, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
31
|
Shinozaki Y, Saito K, Kashiwagi K, Koizumi S. Ocular P2 receptors and glaucoma. Neuropharmacology 2023; 222:109302. [PMID: 36341810 DOI: 10.1016/j.neuropharm.2022.109302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Adenosine triphosphate (ATP), an energy source currency in cells, is released or leaked to the extracellular space under both physiological and pathological conditions. Extracellular ATP functions as an intercellular signaling molecule through activation of purinergic P2 receptors. Ocular tissue and cells release ATP in response to physiological stimuli such as intraocular pressure (IOP), and P2 receptor activation regulates IOP elevation or reduction. Dysregulated purinergic signaling may cause abnormally elevated IOP, which is one of the major risk factors for glaucoma. Glaucoma, a leading cause of blindness worldwide, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs), which are essential retinal neurons that transduce visual information to the brain. An elevation in IOP may stress RGCs and increase the risk for glaucoma pathogenesis. In the aqueous humor of human patients with glaucoma, the ATP level is significantly elevated. Such excess amount of ATP may directly cause RGC death via a specific subtype of P2 receptors. Dysregulated purinergic signaling may also trigger inflammation, oxidative stress, and excitotoxicity via activating non-neuronal cell types such as glial cells. In this review, we discussed the physiological roles of extracellular nucleotides in the ocular tissue and their potential role in the pathogenesis of glaucoma. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
32
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
33
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Sex differences in the vulnerability of the hippocampus to prenatal stress. Dev Psychobiol 2022; 64:e22305. [PMID: 36282753 DOI: 10.1002/dev.22305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
Distressing events during pregnancy that engage activity of the body's endocrine stress response have been linked with later life cognitive deficits in offspring and associated with developmental changes in cognitive-controlling neural regions. Interestingly, prenatal stress (PS)-induced alterations have shown some sex specificity. Here, we review the literature of animal studies examining sex-specific effect of physical PS on the function and structure of the hippocampus as hippocampal impairments likely underlie PS-associated deficits in learning and memory. Furthermore, the connectivity between the hypothalamic-pituitary-adrenal (HPA) axis and the hippocampus as well as the heavy presence of glucocorticoid receptors (GRs) in the hippocampus suggests this structure plays an important role in modulation of activity within stress circuitry in a sex-specific pattern. We hope that better understanding of sex-specific, PS-related hippocampal impairment will assist in uncovering the molecular mechanisms behind sex-based risk factors in PS populations across development, and perhaps contribute to greater precision in management of cognitive disturbances in this vulnerable population.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Kelkar S, Nailwal N, Bhatia NY, Doshi G, Sathaye S, Godad AP. An Update On Proficiency of Voltage-gated Ion Channel Blockers in the Treatment of Inflammation-associated Diseases. Curr Drug Targets 2022; 23:1290-1303. [PMID: 35996239 DOI: 10.2174/1389450123666220819141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Inflammation is the body's mechanism to trigger the immune system, thereby preventing bacteria and viruses from manifesting their toxic effect. Inflammation plays a vital role in regulating inflammatory mediator levels to initiate the wound healing process depending on the nature of the stimuli. This process occurs due to chemical release from white blood cells by elevating blood flow to the site of action, leading to redness and increased body temperature. Currently, there are numerous Non-steroidal anti-inflammatory drugs (NSAIDs) available, but these drugs are reported with adverse effects such as gastric bleeding, progressive kidney damage, and increased risk of heart attacks when prolonged use. For such instances, alternative options need to be adopted. The introduction of voltage-gated ion channel blockers can be a substantial alternative to mask the side effects of these currently available drugs. Chronic inflammatory disorders such as rheumatoid and osteoarthritis, cancer and migraine, etc., can cause dreadful pain, which is often debilitating for the patient. The underlying mechanism for both acute and chronic inflammation involves various complex receptors, different types of cells, receptors, and proteins. The working of voltage-gated sodium and calcium channels is closely linked to both inflammatory and neuropathic pain. Certain drugs such as carbamazepine and gabapentin, which are ion channel blockers, have greater pharmacotherapeutic activity for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states. This review intends to provide brief information on the mechanism of action, latest clinical trials, and applications of these blockers in treating inflammatory conditions.
Collapse
Affiliation(s)
- Siddesh Kelkar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Reclamation, Bandra West, Mumbai, Maharashtra 400050, India
| | - Namrata Nailwal
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nirav Yogesh Bhatia
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Angel Pavalu Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India.,Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
35
|
Liu CH, Chen MY, Cheng J, Chuang TN, Liu HP, Lin WY. Imidacloprid Impairs Glutamatergic Synaptic Plasticity and Desensitizes Mechanosensitive, Nociceptive, and Photogenic Response of Drosophila melanogaster by Mediating Oxidative Stress, Which Could Be Rescued by Osthole. Int J Mol Sci 2022; 23:ijms231710181. [PMID: 36077576 PMCID: PMC9456553 DOI: 10.3390/ijms231710181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Imidacloprid (IMD) is a widely used neonicotinoid-targeting insect nicotine acetylcholine receptors (nAChRs). However, off-target effects raise environmental concerns, including the IMD’s impairment of the memory of honeybees and rodents. Although the down-regulation of inotropic glutamate receptor (iGluR) was proposed as the cause, whether IMD directly manipulates the activation or inhibition of iGluR is unknown. Using electrophysiological recording on fruit fly neuromuscular junction (NMJ), we found that IMD of 0.125 and 12.5 mg/L did not activate glutamate receptors nor inhibit the glutamate-triggered depolarization of the glutamatergic synapse. However, chronic IMD treatment attenuated short-term facilitation (STF) of NMJ by more than 20%. Moreover, by behavioral assays, we found that IMD desensitized the fruit flies’ response to mechanosensitive, nociceptive, and photogenic stimuli. Finally, the treatment of the antioxidant osthole rescued the chronic IMD-induced phenotypes. We clarified that IMD is neither agonist nor antagonist of glutamate receptors, but chronic treatment with environmental-relevant concentrations impairs glutamatergic plasticity of the NMJ of fruit flies and interferes with the sensory response by mediating oxidative stress.
Collapse
Affiliation(s)
- Chuan-Hsiu Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Mei-Ying Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jack Cheng
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tsai-Ni Chuang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
- Correspondence: (H.-P.L.); (W.-Y.L.)
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (H.-P.L.); (W.-Y.L.)
| |
Collapse
|
36
|
Markus A, Schreiber JA, Goerges G, Frehland B, Schepmann D, Daniliuc C, Fröhlich R, Seebohm G, Wünsch B. Phenol-benzoxazolone bioisosteres of GluN2B-NMDA receptor antagonists: Unexpected rearrangement during reductive alkylation with phenylcyclohexanone. Arch Pharm (Weinheim) 2022; 355:e2200225. [PMID: 35908158 DOI: 10.1002/ardp.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Negative allosteric modulators of N-methyl- d-aspartate receptors containing the GluN2B subunit represent promising drug candidates for the treatment of various neurological disorders including stroke, epilepsy, and Parkinson's disease. To increase the bioavailability and GluN2B affinity, the phenol of the potent benzazepine-based inhibitor, WMS-1410 (3), was replaced bioisosterically by a benzoxazolone moiety and the phenylbutyl side chain was conformationally restricted in a phenylcyclohexyl substituent. A four-step, one-pot procedure transformed the oxazolo-benzazepine 7 into the phenylcyclohexyl derivative 11. The same protocol was applied to the methylated analog 12, which unexpectedly led to ring-contracted oxazolo-isoquinolines 18. This rearrangement was explained by the additional methyl moiety in the 8-position inhibiting the formation of the planar intermediate iminium ion with phenylcyclohexanone. The allyl protective group of 11 and 18 was removed with RhCl3 and HCl to obtain the tricyclic compounds 5 and 19 without substituent at the oxazolone ring. The structures of the rearranged products 18 and 19 were elucidated by X-ray crystal structure analysis. The oxazolo-isoquinoline trans-18 with allyl moiety (Ki = 89 nM) and the oxazolo-benzazepine 5 without substituent at the oxazolone ring (Ki = 114 nM) showed GluN2B affinity in the same range as the lead compound 3. In two-electrode voltage clamp measurements, 5 displayed only weak inhibitory activity.
Collapse
Affiliation(s)
- Alexander Markus
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Julian A Schreiber
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany.,University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Gunnar Goerges
- University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Bastian Frehland
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Münster, 48149, Germany
| | - Roland Fröhlich
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Münster, 48149, Germany
| | - Guiscard Seebohm
- University Hospital Münster, Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany.,Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Münster, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany.,Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Münster, Germany
| |
Collapse
|
37
|
Markus A, Frehland B, Schepmann D, Wünsch B. Negative allosteric modulators of NMDA receptors with GluN2B subunit: Alanine-derived benzoxazolone bioisosteres of 2-methyl-3-benzazepine-1,7-diols. Arch Pharm (Weinheim) 2022; 355:e2200177. [PMID: 35606890 DOI: 10.1002/ardp.202200177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
Inspired by besonprodil, the phenol of potent negative allosteric modulators of GluN2B-N-methyl-d-aspartate (NMDA) receptors was replaced by a benzoxazolone system. To increase the similarity to the lead compounds, an additional methyl moiety was installed in the 8-position of tricyclic oxazolobenzazepines, resulting in compounds 6. The additional methyl moiety originates from alanine, which was introduced by a Mitsunobu reaction of benzoxazolylethanol 7 with N-triflyl-protected alanine methyl ester. A crucial feature of the synthesis was the protection of the oxazolone ring by an allyl moiety, which was cleaved off at the end of the synthesis by RhCl3 -catalyzed isomerization. Due to the additional methyl moiety, the intramolecular Friedel-Crafts acylation of acid 10 to afford ketone 11 required careful optimization to minimize the formation of the side product tetrahydroisoquinoline 16. Alkylation or reductive alkylation of secondary amine 13 led to diastereomeric oxazolobenzazepines cis-14 and trans-14, which were separated by flash chromatography. Phenylbutyl derivatives cis-6a and trans-6a revealed twofold higher GluN2B affinity than analog 5a without 8-CH3 group. The methylated oxazolobenzazepines 6 and 14 did not interact with the phencyclidine binding site of NMDA receptors and σ2 receptors. However, the σ1 receptor preferred cis-configured oxazolobenzazepines. The highest σ1 receptor affinities were obtained for cis-14a (Ki = 26 nM) and cis-6b (Ki = 30 nM).
Collapse
Affiliation(s)
- Alexander Markus
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | - Bastian Frehland
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Münster, Germany.,Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical Biology of Ion Channels (Chembion), Münster, Germany
| |
Collapse
|
38
|
Markus A, Schreiber JA, Goerges G, Frehland B, Seebohm G, Schepmann D, Wünsch B. Phenol-Benzoxazolone bioisosteres: Synthesis and biological evaluation of tricyclic GluN2B-selective N-methyl- d-aspartate receptor antagonists. Arch Pharm (Weinheim) 2022; 355:e2200147. [PMID: 35606894 DOI: 10.1002/ardp.202200147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
Abstract
Tricyclic tetrahydrooxazolo[4,5-h]-[3]benzazepin-9-ols 22 were designed as phenol bioisosteres of tetrahydro-3-benzazepine-1,7-diols. Key features of the synthesis are the introduction of the trifluoromethylsulfonyl and allyl protective groups at the heterocyclic N-atoms. Two methods were developed to convert the triflyl-protected ketone 16 into tricyclic alcohols 21 bearing various N-substituents. According to the first method, trifluoromethanesulfinate was removed by K2 CO3 . Following the selective reduction of the imino moiety of 17 with NaBH(OAc)3 afforded the aminoketone 18, which was reductively alkylated and reduced. According to the second method, both the imine and the ketone of the iminoketone 17 were reduced with NaBH4 to yield the aminoalcohol 20, which was alkylated or reductively alkylated to form tertiary amines 21f-21r. In the last step, the allyl protective group of 21 was removed with RhCl3 and HCl to obtain oxazolones 22. In receptor binding studies using [3 H]ifenprodil as radioligand ketone, 22m showed the highest GluN2B affinity (Ki = 88 nM). However, a reduced affinity toward GluN2B subunit-containing N-methyl- d-aspartate (NMDA) receptors was observed for oxazolones 22 compared to bioisosteric 3-benzazepine-1,7-diols. High selectivity of 22m for the ifenprodil binding site of GluN2B-NMDA receptors over the 1-(1-phenylcyclohexyl)piperidine binding site and σ2 receptors was observed, but only negligible selectivity over σ1 receptors. In two-electrode voltage clamp experiments, the 4-phenylbutyl derivative 22d (Ki = 422 nM) demonstrated 80% inhibition of ion flux at a concentration of 1 µM. The differences in GluN2B affinity and inhibitory activity are explained by docking studies. In conclusion, 22d is regarded as a novel scaffold of highly potent GluN1/GluN2B antagonists.
Collapse
Affiliation(s)
- Alexander Markus
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Julian A Schreiber
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Gunnar Goerges
- Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Bastian Frehland
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
39
|
Hu TM, Wu CL, Hsu SH, Tsai HY, Cheng FY, Cheng MC. Ultrarare Loss-of-Function Mutations in the Genes Encoding the Ionotropic Glutamate Receptors of Kainate Subtypes Associated with Schizophrenia Disrupt the Interaction with PSD95. J Pers Med 2022; 12:783. [PMID: 35629206 PMCID: PMC9144110 DOI: 10.3390/jpm12050783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is a complex mental disorder with a genetic component. The GRIK gene family encodes ionotropic glutamate receptors of the kainate subtype, which are considered candidate genes for schizophrenia. We screened for rare and pathogenic mutations in the protein-coding sequences of the GRIK gene family in 516 unrelated patients with schizophrenia using the ion semiconductor sequencing method. We identified 44 protein-altered variants, and in silico analysis indicated that 36 of these mutations were rare and damaging or pathological based on putative protein function. Notably, we identified four truncating mutations, including two frameshift deletion mutations (GRIK1p.Phe24fs and GRIK1p.Thr882fs) and two nonsense mutations (GRIK2p.Arg300Ter and GRIK4p.Gln342Ter) in four unrelated patients with schizophrenia. They exhibited minor allele frequencies of less than 0.01% and were absent in 1517 healthy controls from Taiwan Biobank. Functional analysis identified these four truncating mutants as loss-of-function (LoF) mutants in HEK-293 cells. We also showed that three mutations (GRIK1p.Phe24fs, GRIK1p.Thr882fs, and GRIK2p.Arg300Ter) weakened the interaction with the PSD95 protein. The results suggest that the GRIK gene family harbors ultrarare LoF mutations in some patients with schizophrenia. The identification of proteins that interact with the kainate receptors will be essential to determine kainate receptor-mediated signaling in the brain.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
- Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Fu-Yu Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| |
Collapse
|
40
|
Zhou F, Ebea P, Mutai E, Wang H, Sukreet S, Navazesh S, Dogan H, Li W, Cui J, Ji P, Ramirez DMO, Zempleni J. Small Extracellular Vesicles in Milk Cross the Blood-Brain Barrier in Murine Cerebral Cortex Endothelial Cells and Promote Dendritic Complexity in the Hippocampus and Brain Function in C57BL/6J Mice. Front Nutr 2022; 9:838543. [PMID: 35600828 PMCID: PMC9121399 DOI: 10.3389/fnut.2022.838543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Pearl Ebea
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shya Navazesh
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wenhao Li
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Denise M. O. Ramirez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
41
|
Rao R, Shah S, Bhattacharya D, Toukam DK, Cáceres R, Pomeranz Krummel DA, Sengupta S. Ligand-Gated Ion Channels as Targets for Treatment and Management of Cancers. Front Physiol 2022; 13:839437. [PMID: 35350689 PMCID: PMC8957973 DOI: 10.3389/fphys.2022.839437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ligand-gated ion channels are an ionotropic receptor subtype characterized by the binding of an extracellular ligand, followed by the transient passage of ions through a transmembrane pore. Ligand-gated ion channels are commonly subcategorized into three superfamilies: purinoreceptors, glutamate receptors, and Cys-loop receptors. This classification is based on the differing topographical morphology of the receptors, which in turn confers functional differences. Ligand-gated ion channels have a diverse spatial and temporal expression which implicate them in key cellular processes. Given that the transcellular electrochemical gradient is finely tuned in eukaryotic cells, any disruption in this homeostasis can contribute to aberrancies, including altering the activity of pro-tumorigenic molecular pathways, such as the MAPK/ERK, RAS, and mTOR pathways. Ligand-gated ion channels therefore serve as a potential targetable system for cancer therapeutics. In this review, we analyze the role that each of the three ligand-gated ion channel superfamilies has concerning tumor proliferation and as a target for the treatment of cancer symptomatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
42
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
43
|
Ihara M. Ligand-gated ion channels as targets of neuroactive insecticides. Biosci Biotechnol Biochem 2022; 86:157-164. [PMID: 34849545 DOI: 10.1093/bbb/zbab202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022]
Abstract
The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.
Collapse
Affiliation(s)
- Makoto Ihara
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
44
|
Eapen AV, Fernández-Fernández D, Georgiou J, Bortolotto ZA, Lightman S, Jane DE, Volianskis A, Collingridge GL. Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. Neuropharmacology 2021; 201:108833. [PMID: 34637787 PMCID: PMC8607330 DOI: 10.1016/j.neuropharm.2021.108833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.
Collapse
Affiliation(s)
- Alen V Eapen
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
| | - Diego Fernández-Fernández
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Arturas Volianskis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Bristol Medical School, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Collingridge GL, Abraham WC. Glutamate receptors and synaptic plasticity: The impact of Evans and Watkins. Neuropharmacology 2021; 206:108922. [PMID: 34919905 DOI: 10.1016/j.neuropharm.2021.108922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
On the occasion of the 40 year anniversary of the hugely impactful review by Richard (Dick) Evans and Jeff Watkins, we describe how their work has impacted the field of synaptic plasticity. We describe their influence in each of the major glutamate receptor subtypes: AMPARs, NMDARs, KARs and mGluRs. Particular emphasis is placed on how their work impacted our own studies in the hippocampus. For example, we describe how the tools and regulators that they identified for studying NMDARs (e.g., NMDA, D-AP5 and Mg2+) led to the understanding of the molecular basis of the induction of LTP. We also describe how other tools that they introduced (e.g., (1S,3R)-ACPD and MCPG) helped lead to the concept of metaplasticity.
Collapse
Affiliation(s)
- G L Collingridge
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - W C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand
| |
Collapse
|
46
|
Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Int J Mol Sci 2021; 22:12072. [PMID: 34769504 PMCID: PMC8584574 DOI: 10.3390/ijms222112072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.
Collapse
Affiliation(s)
- Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
| | - Nicolas Pierre Friedrich Mueller
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Carla Molteni
- Physics Department, King’s College London, London WC2R 2LS, UK;
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Rečnik LM, Thatcher RJ, Mallah S, Butts CP, Collingridge GL, Molnár E, Jane DE, Willis CL. Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. Org Biomol Chem 2021; 19:9154-9162. [PMID: 34642722 DOI: 10.1039/d1ob01653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(-)-Arctigenin and a series of new analogues have been synthesised and then tested for their potential as AMPA and kainate receptor antagonists of human homomeric GluA1 and GluK2 receptors expressed in HEK293 cells using a Ca2+ influx assay. In general, these compounds showed antagonist activity at both receptors with greater activity evident at AMPARs. Schild analysis indicates that a spirocyclic analogue 6c acts as a non-competitive antagonist. Molecular docking studies in which 6c was docked into the X-ray crystal structure of the GluA2 tetramer suggest that (-)-arctigenin and its analogues bind in the transmembrane domain in a similar manner to the known AMPA receptor non-competitive antagonists GYKI53655 and the antiepileptic drug perampanel. The arctigenin derivatives described herein may serve as novel leads for the development of drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Robert J Thatcher
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Shahida Mallah
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Craig P Butts
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Graham L Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - David E Jane
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
48
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
49
|
Ahmadpour N, Kantroo M, Stobart JL. Extracellular Calcium Influx Pathways in Astrocyte Calcium Microdomain Physiology. Biomolecules 2021; 11:1467. [PMID: 34680100 PMCID: PMC8533159 DOI: 10.3390/biom11101467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are complex glial cells that play many essential roles in the brain, including the fine-tuning of synaptic activity and blood flow. These roles are linked to fluctuations in intracellular Ca2+ within astrocytes. Recent advances in imaging techniques have identified localized Ca2+ transients within the fine processes of the astrocytic structure, which we term microdomain Ca2+ events. These Ca2+ transients are very diverse and occur under different conditions, including in the presence or absence of surrounding circuit activity. This complexity suggests that different signalling mechanisms mediate microdomain events which may then encode specific astrocyte functions from the modulation of synapses up to brain circuits and behaviour. Several recent studies have shown that a subset of astrocyte microdomain Ca2+ events occur rapidly following local neuronal circuit activity. In this review, we consider the physiological relevance of microdomain astrocyte Ca2+ signalling within brain circuits and outline possible pathways of extracellular Ca2+ influx through ionotropic receptors and other Ca2+ ion channels, which may contribute to astrocyte microdomain events with potentially fast dynamics.
Collapse
Affiliation(s)
| | | | - Jillian L. Stobart
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MG R3E 0T5, Canada; (N.A.); (M.K.)
| |
Collapse
|
50
|
Sania RE, Cardoso JCR, Louro B, Marquet N, Canário AVM. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Mol Ecol 2021; 30:6642-6658. [PMID: 34601781 DOI: 10.1111/mec.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Chemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
Collapse
Affiliation(s)
- Rubaiyat E Sania
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Nathalie Marquet
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| |
Collapse
|