1
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Chen K, Huang W, Hu B, Fu F, Cao Y, Xu H, Ruan L, Li Y, Li Y, Chen J, Liang F, Wang X, Du X, Lin L, Li X. Mediation Analysis of Serum Fibroblast Growth Factor 20 and Poor Prognosis After Ischemic Stroke. J Am Heart Assoc 2024; 13:e036721. [PMID: 39575721 DOI: 10.1161/jaha.124.036721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND We aimed to examine the relationship between serum FGF20 (fibroblast growth factor 20) levels and stroke prognosis in a multicenter cohort study. METHODS AND RESULTS Patients with ischemic stroke/transient ischemic attack were prospectively recruited from 5 participating centers and followed up at 3 months and 1 year. FGF20 levels were measured using the ELISA method. The primary outcome was poor stroke functional outcome (modified Rankin Scale score of 3-6), and secondary outcomes included death and composite vascular events. Multivariable logistic regression analysis or Cox proportional hazards regression analysis was employed to estimate the relationship between FGF20 and study outcomes. Mediation analysis was conducted to examine the mediating effects of traditional risk factors on the association between FGF20 and stroke outcomes. A total of 1011 patients with ischemic stroke were included in the study. After adjusting for potential confounding factors, an elevated serum FGF20 level was associated with a reduced risk of the poor outcome and death. Multivariable adjusted spline regression analysis demonstrated a linear correlation between serum FGF20 levels and the stroke outcomes. The incorporation of FGF20 alongside conventional risk factors marginally enhanced the reclassification of adverse outcomes. Renal function and white blood cell count partially mediated the relationship between FGF20 and the prognosis of ischemic stroke. CONCLUSIONS Elevated FGF20 level is associated with decreased risks of adverse outcomes after ischemic stroke, which was partially mediated by renal function and white blood cells with a modest amount, indicating that serum FGF20 might serve as a promising biomarker for predicting stroke prognosis. REGISTRATION URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100051104.
Collapse
Affiliation(s)
- Keyang Chen
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research Chinese Academy of Medical Science, Wenzhou Medical University Wenzhou China
| | - Wenting Huang
- Department of Neurology The First Affiliated Hospital Hospital of Wenzhou Medical University Wenzhou China
| | - Beilei Hu
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Fangwang Fu
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yungang Cao
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Huiqin Xu
- Department of Neurology The First Affiliated Hospital Hospital of Wenzhou Medical University Wenzhou China
| | - Lixin Ruan
- The People's Hospital of Pingyang Wenzhou China
| | - Yongang Li
- The First People's Hospital of Wenling Taizhou China
| | - Yan Li
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Jun Chen
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| | - Fei Liang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| | - Xue Wang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research Chinese Academy of Medical Science, Wenzhou Medical University Wenzhou China
| | - Xudong Du
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Li Lin
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research Chinese Academy of Medical Science, Wenzhou Medical University Wenzhou China
| | - Xiaokun Li
- Department of Neurology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research Chinese Academy of Medical Science, Wenzhou Medical University Wenzhou China
| |
Collapse
|
3
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Buhidma Y, Hobbs C, Malcangio M, Duty S. Periaqueductal grey and spinal cord pathology contribute to pain in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:69. [PMID: 37100804 PMCID: PMC10133233 DOI: 10.1038/s41531-023-00510-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Pain is a key non-motor feature of Parkinson's disease (PD) that significantly impacts on life quality. The mechanisms underlying chronic pain in PD are poorly understood, hence the lack of effective treatments. Using the 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, we identified reductions in dopaminergic neurons in the periaqueductal grey (PAG) and Met-enkephalin in the dorsal horn of the spinal cord that were validated in human PD tissue samples. Pharmacological activation of D1-like receptors in the PAG, identified as the DRD5+ phenotype located on glutamatergic neurons, alleviated the mechanical hypersensitivity seen in the Parkinsonian model. Downstream activity in serotonergic neurons in the Raphé magnus (RMg) was also reduced in 6-OHDA lesioned rats, as detected by diminished c-FOS positivity. Furthermore, we identified increased pre-aggregate α-synuclein, coupled with elevated activated microglia in the dorsal horn of the spinal cord in those people that experienced PD-related pain in life. Our findings have outlined pathological pathways involved in the manifestation of pain in PD that may present targets for improved analgesia in people with PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Carl Hobbs
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Marzia Malcangio
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
6
|
Prakash N. Developmental pathways linked to the vulnerability of adult midbrain dopaminergic neurons to neurodegeneration. Front Mol Neurosci 2022; 15:1071731. [PMID: 36618829 PMCID: PMC9815185 DOI: 10.3389/fnmol.2022.1071731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The degeneration of dopaminergic and other neurons in the aging brain is considered a process starting well beyond the infantile and juvenile period. In contrast to other dopamine-associated neuropsychiatric disorders, such as schizophrenia and drug addiction, typically diagnosed during adolescence or young adulthood and, thus, thought to be rooted in the developing brain, Parkinson's Disease (PD) is rarely viewed as such. However, evidences have accumulated suggesting that several factors might contribute to an increased vulnerability to death of the dopaminergic neurons at an already very early (developmental) phase in life. Despite the remarkable ability of the brain to compensate such dopamine deficits, the early loss or dysfunction of these neurons might predispose an individual to suffer from PD because the critical threshold of dopamine function will be reached much earlier in life, even if the time-course and strength of naturally occurring and age-dependent dopaminergic cell death is not markedly altered in this individual. Several signaling and transcriptional pathways required for the proper embryonic development of the midbrain dopaminergic neurons, which are the most affected in PD, either continue to be active in the adult mammalian midbrain or are reactivated at the transition to adulthood and under neurotoxic conditions. The persistent activity of these pathways often has neuroprotective functions in adult midbrain dopaminergic neurons, whereas the reactivation of silenced pathways under pathological conditions can promote the survival and even regeneration of these neurons in the lesioned or aging brain. This article summarizes our current knowledge about signaling and transcription factors involved in midbrain dopaminergic neuron development, whose reduced gene dosage or signaling activity are implicated in a lower survival rate of these neurons in the postnatal or aging brain. It also discusses the evidences supporting the neuroprotection of the midbrain dopaminergic system after the external supply or ectopic expression of some of these secreted and nuclear factors in the adult and aging brain. Altogether, the timely monitoring and/or correction of these signaling and transcriptional pathways might be a promising approach to a much earlier diagnosis and/or prevention of PD.
Collapse
|
7
|
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021; 10:cells10113242. [PMID: 34831463 PMCID: PMC8622657 DOI: 10.3390/cells10113242] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation, as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLCγ), and signal transducer and activator of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on the importance of FGF signaling in mechanisms of tissue repair and regeneration.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Correspondence:
| |
Collapse
|
8
|
Guo R, Wang X, Fang Y, Chen X, Chen K, Huang W, Chen J, Hu J, Liang F, Du J, Dordoe C, Tian X, Lin L. rhFGF20 promotes angiogenesis and vascular repair following traumatic brain injury by regulating Wnt/β-catenin pathway. Biomed Pharmacother 2021; 143:112200. [PMID: 34649342 DOI: 10.1016/j.biopha.2021.112200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
The pathology of cerebrovascular disorders takes an important role in traumatic brain injury (TBI) by increasing intracranial pressure. Fibroblast growth factor 20 (FGF20) is a brain-derived neurotrophic factor, that has been shown to play an important role in the survival of dopaminergic neurons and the treatment of Parkinson's disease (PD). However, little is known about the role of FGF20 in the treatment of TBI and its underlying mechanism. The purpose of this study was to evaluate the protective effect of recombinant human FGF20 (rhFGF20) on protecting cerebral blood vessels after TBI. In this study, we indicated that rhFGF20 could reduce brain edema, Evans blue penetration and upregulated the expression of blood-brain barrier (BBB)-related tight junction (TJ) proteins, exerting a protective effect on the BBB in vivo after TBI. In the TBI repair phase, rhFGF20 promoted angiogenesis, neurological and cognitive function recovery. In tumor necrosis factor-α (TNF-α)-induced human brain microvascular endothelial cells (hCMEC/D3), an in vitro BBB disruption model, rhFGF20 reversed the impairment in cell migration and tube formation induced by TNF-α. Moreover, in both the TBI mouse model and the in vitro model, rhFGF20 increased the expression of β-catenin and GSK3β, which are the two key regulators in the Wnt/β-catenin signaling pathway. In addition, the Wnt/β-catenin inhibitor IWR-1-endo significantly reversed the effects of rhFGF20. These results indicate that rhFGF20 may prevent vascular repair and angiogenesis through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingting Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xianxi Tian
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
9
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
10
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Tang J, Xu Y, Liu C, Fang Y, Cao S, Zhao C, Huang H, Zou M, Chen Z. PET imaging with [ 18F]FP-(+)-DTBZ in 6-OHDA-induced partial and full unilaterally-lesioned model rats of Parkinson's disease and the correlations to the biological data. Nucl Med Biol 2020; 90-91:1-9. [PMID: 32861175 DOI: 10.1016/j.nucmedbio.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The deficit of dopaminergic neurons in the nigrostriatal pathway is one of the pathological features of Parkinson's disease (PD). The decline of vesicular monoamine transporter type 2 (VMAT2) has been verified to relate with the severity of PD. The purpose of this study was to evaluate the ability of [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) to detect dopaminergic neuron dysfunction in a standard rat model of PD using PET imaging. Specifically, two different doses of 6-hydroxydopamine (6-OHDA) were injected unilaterally into the medial forebrain bundle (MFB) to create the models with two different severities. METHODS Male Sprague-Dawley rats were intracranially injected with 8 μg 6-OHDA (partial lesion group), 16 μg 6-OHDA (full lesion group) and vehicle (sham group) into MFB, respectively. Thirty minutes static [18F]FP-(+)-DTBZ microPET scanning was performed to determine the dopaminergic neuron integrity on the 28th day post-injection and the behavioral tests were carried out in the next two days. Then, the rats were decapitated, and the brains were collected for biogenic amines content analysis or dissected for autoradiography and immunohistochemical (IHC) staining. The correlations of PET results to the behavioral, biological, histological, autoradiography results were analyzed, respectively. RESULTS The standardized uptake value ratio (ST to CB) of [18F]FP-(+)-DTBZ in the ipsilateral striata decreased significantly in partial lesion group and full lesion group. Compared with the sham group, the ratio of the standardized uptake value in ipsilateral striatum to that in contralateral striatum decreased by 57.09 ± 2.30% (full lesion group) and 25.31 ± 5.70% (partial lesion group), respectively. The dopaminergic neuronal dysfunction was corroborated by in vitro autoradiography, IHC, and quantitative analysis of DA as well as its metabolites concentration tests. The motor function impairments of 6-OHDA-treated animals were manifested by a series of behavioral tests. The results of microPET imaging were linearly correlated with behavioral, biological, histological, and autoradiography results, respectively. CONCLUSION Our data suggest that [18F]FP-(+)-DTBZ may be useful for detecting different degrees of dopaminergic neuronal lesions by PET imaging in PD models induced by 6-OHDA.
Collapse
Affiliation(s)
- Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yingjiao Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Nanjing Medical University, Nanjing 211166, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | | | - Chao Zhao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongbo Huang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Meifen Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
12
|
FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotox Res 2020; 37:616-627. [PMID: 31997152 DOI: 10.1007/s12640-019-00151-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor21 (FGF21), a member of the FGF family, plays multiple biological functions including anti-inflammation, anti-oxidative stress, and anti-apoptosis. It has been shown that FGF21 protects cells from acute injury in several kinds of cells such as islet β-cells, endothelial cells, cardiomyocytes, and dopaminergic neurons. However, whether FGF21 plays neuroprotective roles against Parkinsonian syndrome in vivo has not been elucidated. Our results showed that FGF21 markedly improves cell survival in MPP+-treated SH-SY5Y cells and primary dopaminergic neurons. Furthermore, we treated MPTP-induced Parkinson's disease (PD) model mice with the recombinant FGF21 via intranasal pathway. The results showed that FGF21 treatment significantly improves behavioral performances and prevents tyrosine hydroxylase (TH) loss in the substantia nigra par compacta (SNpc) and striatum. Mechanistically, FGF21 stimulates the AMPK/PGC-1α axis to promote mitochondrial functions. Moreover, FGF21 attenuates microglia and astrocyte activation induced by MPTP, leading to a low level of inflammation in the brain. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against MPTP-induced PD syndrome in mice, indicating it might be a potent candidate for developing novel drugs to deal with PD.
Collapse
|
13
|
Fletcher EJR, Moon LDF, Duty S. Chondroitinase ABC reduces dopaminergic nigral cell death and striatal terminal loss in a 6-hydroxydopamine partial lesion mouse model of Parkinson's disease. BMC Neurosci 2019; 20:61. [PMID: 31862005 PMCID: PMC6923832 DOI: 10.1186/s12868-019-0543-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
Background Parkinson’s disease (PD) is characterised by dopaminergic cell loss within the substantia nigra pars compacta (SNc) that leads to reduced striatal dopamine content and resulting motor deficits. Identifying new strategies to protect these cells from degeneration and retain striatal dopaminergic innervation is therefore of great importance. Chondroitin sulphate proteoglycans (CSPGs) are recognised contributors to the inhibitory extracellular milieu known to hinder tissue recovery following CNS damage. Digestion of these molecules by the bacterial lyase chondroitinase ABC (ChABC) has been shown to promote functional recovery in animal models of neurological injury. Although ChABC has been shown to promote sprouting of dopaminergic axons following transection of the nigrostriatal pathway, its ability to protect against nigrostriatal degeneration in a toxin-based module with better construct validity for PD has yet to be explored. Here we examined the neuroprotective efficacy of ChABC treatment in the full and partial 6-hydroxydopamine (6-OHDA) lesion mouse models of PD. Results In mice bearing a full 6-OHDA lesion, ChABC treatment failed to protect against the loss of either nigral cells or striatal terminals. In contrast, in mice bearing a partial 6-OHDA lesion, ChABC treatment significantly protected cells of the rostral SNc, which remained at more than double the numbers seen in vehicle-treated animals. In the partial lesion model, ChABC treatment also significantly preserved dopaminergic fibres of the rostral dorsal striatum which increased from 15.3 ± 3.5% of the intact hemisphere in saline-treated animals to 36.3 ± 6.5% in the ChABC-treated group. These protective effects of ChABC treatment were not accompanied by improvements in either the cylinder or amphetamine-induced rotations tests of motor function. Conclusions ChABC treatment provided significant protection against a partial 6-OHDA lesion of the nigrostriatal tract although the degree of protection was not sufficient to improve motor outcomes. These results support further investigations into the benefits of ChABC treatment for providing neuroprotection in PD.
Collapse
Affiliation(s)
- Edward J R Fletcher
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Lawrence D F Moon
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
14
|
The effect of dextromethorphan use in Parkinson's disease: A 6-hydroxydopamine rat model and population-based study. Eur J Pharmacol 2019; 862:172639. [DOI: 10.1016/j.ejphar.2019.172639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
|
15
|
Fletcher EJR, Jamieson AD, Williams G, Doherty P, Duty S. Targeted repositioning identifies drugs that increase fibroblast growth factor 20 production and protect against 6-hydroxydopamine-induced nigral cell loss in rats. Sci Rep 2019; 9:8336. [PMID: 31171821 PMCID: PMC6554393 DOI: 10.1038/s41598-019-44803-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Endogenous fibroblast growth factor 20 (FGF20) supports maintenance of dopaminergic neurones within the nigrostriatal pathway. Moreover, direct intracerebral infusion of FGF20 protects against nigrostriatal tract loss in the 6-hydroxydopamine lesion rat model of Parkinson’s disease. Increasing endogenous FGF20 production might provide a less-invasive, more translational way of providing such protection. Accordingly, we adopted a targeted repositioning approach to screen for candidate FDA-approved drugs with potential to enhance endogenous FGF20 production in brain. In silico interrogation of the Broad Institute’s Connectivity Map database (CMap), revealed 50 candidate drugs predicted to increase FGF20 transcription, 16 of which had profiles favourable for use in Parkinson’s disease. Of these, 11 drugs were found to significantly elevate FGF20 protein production in MCF-7 cells, between two- and four-fold. Four drugs were selected for examination in vivo. Following oral dosing in rats for 7 days, salbutamol and triflusal, but not dimethadione or trazodone, significantly elevated FGF20 levels in the nigrostriatal tract. Preliminary examination in the unilateral 6-hydroxydopamine-lesioned rat revealed a modest but significant protection against nigral cell loss with both drugs. Our data demonstrate the power of targeted repositioning as a method to identify existing drugs that may combat disease progression in Parkinson’s by boosting FGF20 levels.
Collapse
Affiliation(s)
- Edward J R Fletcher
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Aran D Jamieson
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Gareth Williams
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Patrick Doherty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
17
|
Wang AQ, Kong LN, Meng MZ, Zhao XH, Chen S, Wang XT. Mechanisms by which fibroblast growth factor 20 improves motor performance in a mouse model of Parkinson's disease. Neural Regen Res 2019; 14:1438-1444. [PMID: 30964070 PMCID: PMC6524521 DOI: 10.4103/1673-5374.253527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies have reported that Parkinson’s disease is associated with abnormal expression of various growth factors. In this study, male C57BL/6 mice aged 10 weeks were used to establish Parkinson’s disease models using an intraperitoneal injection of 60 mg/kg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 28 days later, 10 or 100 ng fibroblast growth factor 20 was injected intracerebroventricularly. The electrophysiological changes in the mouse hippocampus were recorded using a full-cell patch clamp. Expression of Kv4.2 in the substantia nigra was analyzed using a western blot assay. Serum malondialdehyde levels were analyzed by enzyme-linked immunosorbent assay. The motor coordination of mice was evaluated using the rotarod test. The results showed that fibroblast growth factor 20 decreased A-type potassium current in neurons of the substantia nigra, increased long-term potentiation amplitude in the hippocampus, and downregulated Kv4.2 expression. A high dose of fibroblast growth factor 20 reduced serum malondialdehyde levels and enhanced the motor coordination of mice. These findings confirm that fibroblast growth factor 20 has a therapeutic effect on the toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and its mechanism of action is associated with the inhibition of A-type K+ currents and Kv4.2 expression. All animal procedures were approved by the Animal Care and Use Committee of Qilu Hospital of Shandong University, China in 2017 (approval No. KYLL-2017-0012).
Collapse
Affiliation(s)
- Ai-Qin Wang
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Li-Na Kong
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ming-Zhu Meng
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiu-He Zhao
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Si Chen
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao-Tang Wang
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
Miyanishi K, Choudhury ME, Watanabe M, Kubo M, Nomoto M, Yano H, Tanaka J. Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson's disease model. Neurochem Int 2018; 122:38-46. [PMID: 30419255 DOI: 10.1016/j.neuint.2018.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is a frequent neurodegenerative disease causing bradykinesia, tremor, muscle rigidity and postural instability. Although its main pathology is progressive dopaminergic (DArgic) neuron loss in the substantia nigra, motor deficits are thought not to become apparent until most DArgic neurons are lost, probably due to compensatory mechanisms that overcome the decline of DA level in the striatum. Even in animal PD models, it is difficult to detect motor deficits when most DArgic neurons are functional. In this study, we performed various behavioral tests (apomorphine-induced rotation, cylinder, forepaw adjustment steps (FAS), beam walking, rota-rod, and open-field), using 6-hydroxydopamine (OHDA) and lipopolysaccharide (LPS)-induced hemi-PD model rats with various striatal DA levels, to find the best way to predict the DA level from earlier disease stages. Different from the 6-OHDA-induced model, reduction in the striatal DA levels in the LPS-model was less significant. Among the behavioral tests, data from cylinder and FAS tests, which evaluate forelimb movements, best correlated with decline of the DA level. They also correlated well with decreased body weight gain. The beam and apomorphine tests showed less significant correlation than the cylinder and FAS tests. Open-field and rota-rod tests were not useful. Expressional levels of mRNA encoding tyrosine hydroxylase (TH), a marker of DArgic neurons, correlated well with the DA level. Metabotropic glutamate receptor 4 mRNA expression correlated with the striatal DA level and may be related to compensatory mechanisms. These results suggest that motor impairments of PD should be evaluated by forelimb movements, or hands and forearms in clinical settings, rather than movement of the body or large joints. The combination of cylinder and FAS tests may be the best to evaluate the rat PD models, in which many DArgic neurons survive.
Collapse
Affiliation(s)
- Kazuya Miyanishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Minori Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Madoka Kubo
- Department of Neurology and Clinical Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Masahiro Nomoto
- Department of Neurology and Clinical Pharmacology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
19
|
Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, Song L, Zhuge D, Li X, Zhao Y, Huang Z. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25:1560-1569. [PMID: 30043675 PMCID: PMC6060384 DOI: 10.1080/10717544.2018.1482972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor-20 (FGF20) is a paracrine member of the FGF family that is preferentially expressed in the substantia nigra pars compacta (SNpc). Previous studies have demonstrated that FGF20 enhances the survival of dopaminergic neurons suggesting the potential use of FGF20 to treat Parkinson's disease (PD). However, the reduced solubility of the bacterial recombinant human FGF20 (rhFGF20) and the absence of efficient strategies to transport rhFGF20 across the blood-brain barrier (BBB) have halted its clinical application. In the present study, we have examined the efficiency of fuzing a small ubiquitin-related modifier (SUMO) to rhFGF20 to enhance its soluble expression and further investigated the efficacy of FUS-guided, rhFGF20-liposome transport across the BBB. We also examined the bioavailability and behavioral improvement in a 6-hydroxydopamine-lesioned rat model of PD following 2 weeks' FUS-liposomal combinatorial treatment. Our results showed that, in contrast with rhFGF20 or LIP-FGF20, the FUS-LIP-rhFGF20 treatment could significantly improve the apomorphine-induced rotations by protecting against the loss of dopaminergic neurons in the SNpc. Our Results suggest that our combinatorial method would help overcome key challenges that hinder the currently available methods for the use of rhFGF20 in PD treatment.
Collapse
Affiliation(s)
- Jianlou Niu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjun Xie
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiwen Guo
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Zhang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Xia
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deli Zhuge
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Nasrolahi A, Mahmoudi J, Akbarzadeh A, Karimipour M, Sadigh-Eteghad S, Salehi R, Farhoudi M. Neurotrophic factors hold promise for the future of Parkinson's disease treatment: is there a light at the end of the tunnel? Rev Neurosci 2018; 29:475-489. [PMID: 29305570 DOI: 10.1515/revneuro-2017-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a spectrum of clinicopathologic signs and a complex etiology. PD results from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra. Current therapies for PD are only able to alleviate symptoms without stopping disease progression. In addition, the available therapeutic strategies do not have long-lasting effects. Furthermore, these therapies cause different ranges of adverse side effects. There is great interest in neurotrophic factors (NTFs) due to their ability to promote the survival of different neural cells. These factors are divided into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly recognized cerebral DA NTF/mesencephalic astrocyte-derived NTF family. The protective and therapeutic effects of these factors on DAergic neurons make them suitable for the prevention of progressive cell loss in PD. Based on the above premise, we focus on the protective effects of NTFs, especially CDNF and MANF, on nigrostriatal DAergic neurons in PD.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mohammad Karimipour
- Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran.,Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran.,Neuroscience Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| |
Collapse
|
21
|
Boshoff EL, Fletcher EJR, Duty S. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology 2018; 137:156-163. [PMID: 29698669 PMCID: PMC6063078 DOI: 10.1016/j.neuropharm.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Neuroprotective strategies are an unmet medical need for Parkinson's disease. Fibroblast growth factor 20 (FGF20) enhances survival of cultured dopaminergic neurons but little is known about its in vivo potential. We set out to examine whether manipulation of the FGF20 system affected nigrostriatal tract integrity in rats, to identify which fibroblast growth factor receptors (FGFRs) might reside on dopaminergic neurons and to discover the source of endogenous FGF20 in the substantia nigra (SN). Male Sprague Dawley rats were subject to a partial 6-OHDA lesion alongside treatment with exogenous FGF20 or an FGFR antagonist. Behavioural readouts and tyrosine-hydroxylase (TH) immunohistochemistry were used to evaluate nigrostriatal tract integrity. Fluorescent immunohistochemistry was used to examine FGFR subtype expression on TH-positive dopamine neurons and FGF20 cellular localisation within the SN. FGF20 (2.5 μg/day) significantly protected TH-positive cells in the SN and terminals in the striatum, while reducing the development of motor asymmetry at 5, 8 and 11 days post lesion. Conversely, the FGFR antagonist PD173074 (2 mg/kg) significantly worsened both the 6-OHDA lesion and resultant motor asymmetry. Within the SN, TH-positive cells expressed FGFR1, 3 and 4 while FGF20 co-localised with GFAP-positive astrocytes. In conclusion, FGF20 protects dopaminergic neurons in vivo, an action likely mediated through activation of FGFRs1, 3 or 4 found on these neurons. Given FGF20 is localised to astrocytes in the adult SN, endogenous FGF20 provides its protection of dopamine neurons through a paracrine action. Boosting the endogenous FGF20 production might offer potential as a future therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- Eugene L Boshoff
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Edward J R Fletcher
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
22
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
Guo X, Liu T, Zhao D, Wang X, Liu D, He Y, Shan C, Kong Y, Hu W, Tao B, Sun L, Zhao H, Li S, Liu J. FGF18 protects against 6-hydroxydopamine-induced nigrostriatal damage in a rat model of Parkinson’s disease. Neuroscience 2017; 356:229-241. [DOI: 10.1016/j.neuroscience.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023]
|
24
|
Genetic analysis of FGF20 in Chinese patients with Parkinson’s disease. Neurol Sci 2017; 38:887-891. [DOI: 10.1007/s10072-017-2868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 11/27/2022]
|
25
|
The Effect of MSCs Derived from the Human Umbilical Cord Transduced by Fibroblast Growth Factor-20 on Parkinson's Disease. Stem Cells Int 2016; 2016:5016768. [PMID: 27274736 PMCID: PMC4871973 DOI: 10.1155/2016/5016768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
Cell therapy is a potential therapeutic approach for Parkinson's disease (PD). Mesenchymal stem cells derived from the human umbilical cord (hUC-MSCs) give priority to PD patients because of multiple advantages. The appropriate gene transduction of hUC-MSC before transplantation is a promising procedure for cell therapy. Fibroblast growth factor-20 (FGF-20) has been shown to protect dopaminergic neurons against a range of toxic insults in vitro. In this study, the hUC-MSCs were gene transduced with FGF-20, and then we transplanted them into the PD mice model. The results showed that MSC-FGF-20 treatment obviously improved the behavior of PD, accompanied by the increase of tyrosine carboxylase- (TH-) positive cell and dopamine (DA). Furtherly, immunohistochemistry disclosed that MSC-FGF-20 obviously promoted the degradation of nuclear factor-κB (NF-κB), a transcription factor that controls genes encoding proinflammatory cytokines, highly expressed in the nigrostriatal dopaminergic regions in PD patients. Therefore, MSC-FGF-20 has a potential for improving PD, closely related to the degradation of NF-κB.
Collapse
|
26
|
Turner CA, Eren-Koçak E, Inui EG, Watson SJ, Akil H. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol 2016; 53:136-43. [PMID: 26454097 PMCID: PMC4833700 DOI: 10.1016/j.semcdb.2015.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
28
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
29
|
High production in E. coli of biologically active recombinant human fibroblast growth factor 20 and its neuroprotective effects. Appl Microbiol Biotechnol 2015; 100:3023-34. [PMID: 26603761 DOI: 10.1007/s00253-015-7168-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023]
Abstract
Fibroblast growth factor 20 (FGF20) has a wide range of biological activities; its expression is most pronounced in neural tissues where it has functions in development and neuroprotection. Given these activities, interest in the clinical applications of FGF20 is rising, which will lead to increasing demand for active recombinant human FGF20 (rhFGF20). To improve the production of rhFGF20, an artificial gene encoding fgf20 was cloned into pET3a and expressed in E. coli BL21(DE3)pLysS. By optimizing induction conditions, we successfully induced large amounts of insoluble rhFGF20. Following solubilization and refolding of the rhFGF20 from inclusion bodies, it was purified by HiTrap heparin affinity chromatography to a purity of over 96% with a yield of 218 mg rhFGF20/100 g wet cells. The purified rhFGF20 could stimulate proliferation of both NIH 3T3 cells and PC-12 cells, measured by the MTT assay. In a model of Aβ25-35-induced apoptosis on PC-12 cells, rhFGF20 had a clear protective effect. RT-PCR and Western blot analysis of apoptosis-related genes and proteins revealed that the FGF20-derived protective mechanism was likely due to the relief of endoplasmic reticulum stress (ER stress). In conclusion, the approach described here may be a better means to produce active rhFGF20 in good quantity, thereby allowing for its future pharmacological and clinical use.
Collapse
|
30
|
Autophagy-related protein expression in the substantia nigra and eldepryl intervention in rat models of Parkinson׳s disease. Brain Res 2015; 1625:180-8. [DOI: 10.1016/j.brainres.2015.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
|
31
|
Li M, Li S, Li Y. Liraglutide Promotes Cortical Neurite Outgrowth via the MEK-ERK Pathway. Cell Mol Neurobiol 2015; 35:987-93. [PMID: 25862329 PMCID: PMC11488052 DOI: 10.1007/s10571-015-0193-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022]
Abstract
Liraglutide is the glucagon-like peptide-1 (GLP-1) synthetic form which has been approved by the US Food and Drug Administration to be released onto the market. The metabolic benefits of incretin hormone as an anti-diabetic agent are widely recognized, but its potential extra-pancreatic effects of GLP-1 analog (liraglutide) in the central nerve system are less well known. To this purpose, we used immunofluorescence method to examine the effect of liraglutide on neurite outgrowth in primary cortical neuron culture by measuring neurite length and confirmed the promotion effect. Then, we investigated the potential mechanisms and found that liraglutide promoted neurite outgrowth in a dose-dependant manner, and this effect could be partially inhibited by MEK-ERK inhibitor U0126. Besides, liraglutide induced an increase of p-ERK/ERK expression, which could be blocked in the presence of U0126. Similarly, phosphorylated transcription factor (p-CREB) level shared the same trend with p-ERK/ERK ratio after liraglutide treatment. Collectively, our data illustrated that that liraglutide exerts neurotrophin-like activity partly via MEK-ERK pathway, which might offer a novel idea for treatment of axon-associated neurological diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Shilun Li
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China.
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China.
| |
Collapse
|
32
|
Aly AEE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015; 12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. AREAS COVERED This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. EXPERT OPINION A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.
Collapse
Affiliation(s)
- Amirah E-E Aly
- a 1 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA
| | - Barbara L Waszczak
- b 2 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA +1 617 373 3312 ; +1 617 373 8886 ;
| |
Collapse
|
33
|
|
34
|
Itoh N, Ohta H. Roles of FGF20 in dopaminergic neurons and Parkinson's disease. Front Mol Neurosci 2013; 6:15. [PMID: 23754977 PMCID: PMC3668169 DOI: 10.3389/fnmol.2013.00015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/16/2013] [Indexed: 12/29/2022] Open
Abstract
The fibroblast growth factor (FGF) family comprises 22 members with diverse functions in development and metabolism. Fgf20 was originally identified as a new Fgf preferentially expressed in the substantia nigra pars compacta (SNpc). Fgf20, which acts on proximal cells, significantly enhanced the survival of cultured dopaminergic neurons by activating the mitogen-activated protein kinase (MAPK) pathway through Fgf receptor 1c. In the rat model of Parkinson's disease, Fgf20 afforded significant protection against the loss of dopaminergic neurons. The significant correlation of Parkinson's disease with single-nucleotide polymorphisms in FGF20 indicates that the genetic variability of FGF20 can be a Parkinson's disease risk. Neural and embryonic stem (ES) cells have been considered as cell resources for restorative transplantation strategies in Parkinson's disease. Fgf20 promoted the differentiation of these stem cells into dopaminergic neurons, which attenuated neurological symptoms in animal models of Parkinson's disease. These findings indicate the importance of FGF20 for the differentiation and survival of dopaminergic neurons and the etiology and therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences Kyoto, Japan
| | | |
Collapse
|