1
|
Haddon JE, Titherage D, Heckenast JR, Carter J, Owen MJ, Hall J, Wilkinson LS, Jones MW. Linking haploinsufficiency of the autism- and schizophrenia-associated gene Cyfip1 with striatal-limbic-cortical network dysfunction and cognitive inflexibility. Transl Psychiatry 2024; 14:256. [PMID: 38876996 PMCID: PMC11178837 DOI: 10.1038/s41398-024-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.
Collapse
Affiliation(s)
- Josephine E Haddon
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.
| | - Daniel Titherage
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health sciences, University of Bristol, Bristol, UK
| | - Julia R Heckenast
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Jennifer Carter
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Clement MK, Pimentel CS, McGaughy JA. Dopaminergic lesions of the anterior cingulate cortex of rats increase vulnerability to salient distractors. Eur J Neurosci 2024; 59:3353-3375. [PMID: 38654478 DOI: 10.1111/ejn.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
The anterior cingulate cortex (ACC) has been shown to be critical to many aspects of executive function including filtering irrelevant information, updating response contingencies when reinforcement contingencies change and stabilizing task sets. Nonspecific lesions to this region in rats produce a vulnerability to distractors that have gained salience through prior associations with reinforcement. These lesions also exacerbate cognitive fatigue in tests of sustained attention but do not produce global attentional impairments nor do they produce distractibility to novel distractors that do not have a prior association with reinforcement. To determine the neurochemical basis of these cognitive impairments, dopaminergically selective lesions of the ACC were made in both male and female Long-Evans, hooded rats prior to assessment in two attentional tasks. Dopaminergic lesions of the ACC increase the vulnerability of subjects to previously reinforced distractors and impede formation of an attentional set. Lesioned rats were not more susceptible to the effects of novel, irrelevant stimuli in a test of sustained attention as has been previously shown. Additionally, the effects of dopaminergic lesions were found to differ based on sex. Lesioned female, but not male, rats were more vulnerable than sham-lesioned females to the effects of prolonged testing and the removal of reinforcement during a test of sustained attention. Together, these data support the hypothesis that dopamine in the ACC is critical to filtering distractors whose salience has been gained through reinforcement.
Collapse
Affiliation(s)
- Madison K Clement
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Cynthia S Pimentel
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Jill A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
3
|
Tranter MM, Faget L, Hnasko TS, Powell SB, Dillon DG, Barnes SA. Postnatal Phencyclidine-Induced Deficits in Decision Making Are Ameliorated by Optogenetic Inhibition of Ventromedial Orbitofrontal Cortical Glutamate Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:264-274. [PMID: 38298783 PMCID: PMC10829674 DOI: 10.1016/j.bpsgos.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background The orbitofrontal cortex (OFC) is essential for decision making, and functional disruptions within the OFC are evident in schizophrenia. Postnatal phencyclidine (PCP) administration in rats is a neurodevelopmental manipulation that induces schizophrenia-relevant cognitive impairments. We aimed to determine whether manipulating OFC glutamate cell activity could ameliorate postnatal PCP-induced deficits in decision making. Methods Male and female Wistar rats (n = 110) were administered saline or PCP on postnatal days 7, 9, and 11. In adulthood, we expressed YFP (yellow fluorescent protein) (control), ChR2 (channelrhodopsin-2) (activation), or eNpHR 3.0 (enhanced halorhodopsin) (inhibition) in glutamate neurons within the ventromedial OFC (vmOFC). Rats were tested on the probabilistic reversal learning task once daily for 20 days while we manipulated the activity of vmOFC glutamate cells. Behavioral performance was analyzed using a Q-learning computational model of reinforcement learning. Results Compared with saline-treated rats expressing YFP, PCP-treated rats expressing YFP completed fewer reversals, made fewer win-stay responses, and had lower learning rates. We induced similar performance impairments in saline-treated rats by activating vmOFC glutamate cells (ChR2). Strikingly, PCP-induced performance deficits were ameliorated when the activity of vmOFC glutamate cells was inhibited (halorhodopsin). Conclusions Postnatal PCP-induced deficits in decision making are associated with hyperactivity of vmOFC glutamate cells. Thus, normalizing vmOFC activity may represent a potential therapeutic target for decision-making deficits in patients with schizophrenia.
Collapse
Affiliation(s)
- Michael M. Tranter
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Research Service, VA San Diego Healthcare System, La Jolla, California
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Thomas S. Hnasko
- Research Service, VA San Diego Healthcare System, La Jolla, California
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Susan B. Powell
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Research Service, VA San Diego Healthcare System, La Jolla, California
| | - Daniel G. Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Research Service, VA San Diego Healthcare System, La Jolla, California
| |
Collapse
|
4
|
Teneqexhi P, Khalid A, Nisbett KE, Job GA, Messer WS, Ragozzino ME. The Partial M 1 Muscarinic Cholinergic Receptor Agonist, CDD-0102A, Differentially Modulates Glutamate Efflux in Striatal Subregions during Stereotyped Motor Behavior in the BTBR Mouse Model of Autism. ACS Chem Neurosci 2023; 14:2699-2709. [PMID: 37434313 PMCID: PMC10401636 DOI: 10.1021/acschemneuro.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
The BTBR T+ Itpr3tf/J (BTBR) mouse displays elevated repetitive motor behaviors. Treatment with the partial M1 muscarinic receptor agonist, CDD-0102A, attenuates stereotyped motor behaviors in BTBR mice. The present experiment investigated whether CDD-0102A modifies changes in striatal glutamate concentrations during stereotyped motor behavior in BTBR and B6 mice. Using glutamate biosensors, change in striatal glutamate efflux was measured during bouts of digging and grooming behavior with a 1 s time resolution. Mice displayed both decreases and increases in glutamate efflux during such behaviors. Magnitude of changes in glutamate efflux (decreases and increases) from dorsomedial and dorsolateral striatum were significantly greater in BTBR mice compared to those of B6 mice. In BTBR mice, CDD-0102A (1.2 mg/kg) administered 30 min prior to testing significantly reduced the magnitude change in glutamate decreases and increases from the dorsolateral striatum and decreased grooming behavior. Conversely, CDD-0102A treatment in B6 mice potentiated glutamate decreases and increases in the dorsolateral striatum and elevated grooming behavior. The findings suggest that activation of M1 muscarinic receptors modifies glutamate transmission in the dorsolateral striatum and self-grooming behavior.
Collapse
Affiliation(s)
- Pamela Teneqexhi
- Department
of Psychology, University of Illinois Chicago, 1007 West Harrison Street, Chicago, Illinois 60607, United States
| | - Alina Khalid
- Department
of Psychology, University of Illinois Chicago, 1007 West Harrison Street, Chicago, Illinois 60607, United States
| | - Khalin E. Nisbett
- Department
of Psychology, University of Illinois Chicago, 1007 West Harrison Street, Chicago, Illinois 60607, United States
- Graduate
Program in Neuroscience, University of Illinois
Chicago, Chicago, Illinois 60607, United States
| | - Greeshma A. Job
- Department
of Psychology, University of Illinois Chicago, 1007 West Harrison Street, Chicago, Illinois 60607, United States
| | - William S. Messer
- Departments
of Pharmacology and Experimental Therapeutics, and Medicinal and Biological
Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Michael E. Ragozzino
- Department
of Psychology, University of Illinois Chicago, 1007 West Harrison Street, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Mali I, Payne M, King C, Maze TR, Davison T, Challans B, Bossmann SH, Plakke B. Adolescent female valproic acid rats have impaired extra-dimensional shifts of attention and enlarged anterior cingulate cortices. Brain Res 2023; 1800:148199. [PMID: 36509128 PMCID: PMC9835202 DOI: 10.1016/j.brainres.2022.148199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In order to develop better treatments for autism spectrum disorder (ASD) it is critical to understand the developmental trajectory of the disorder and the accompanying brain changes. This study used the valproic acid (VPA) model to induce ASD-like symptoms in rodents. Prior studies have demonstrated that VPA animals are impaired on executive function tasks, paralleling results in humans with ASD. Here, VPA adolescent female rats were impaired on a set-shifting task and had enlarged frontal cortices compared to control females. The deficits observed in the VPA female rats mirrors results in females with ASD. In addition, adolescent VPA females with enlarged frontal cortices performed the worst across the entire task. These brain changes in adolescence are also found in adolescent humans with ASD. These novel findings highlight the importance of studying the brain at different developmental stages.
Collapse
Affiliation(s)
- Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Tessa R Maze
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Taylor Davison
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Brandon Challans
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
7
|
Lhost J, More S, Watabe I, Louber D, Ouagazzal AM, Liberge M, Amalric M. Interplay Between Inhibitory Control and Behavioural Flexibility: Impact of Dorsomedial Striatal Dopamine Denervation in Mice. Neuroscience 2021; 477:25-39. [PMID: 34634423 DOI: 10.1016/j.neuroscience.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In Parkinson's disease, nigrostriatal dopamine (DA) degeneration is commonly associated with motor symptomatology. However, non-motor symptoms affecting cognitive function, such as behavioural flexibility and inhibitory control may also appear early in the disease. Here we addressed the role of DA innervation of the dorsomedial striatum (DMS) in mediating these functions in 6-hydroxydopamine (6-OHDA)-lesioned mice using instrumental conditioning in various tasks. Behavioural flexibility was studied in a simple reversal task (nose-poke discrimination) or in reversal of a two-step sequence of actions (central followed by lateral nose-poke). Our results show that mild DA lesions of the DMS induces behavioural flexibility deficits in the sequential reversal learning only. In the first sessions following reversal of contingency, lesioned mice enhanced perseverative sequence of actions to the initial rewarded side then produced premature responses directly to the correct side omitting the central response, thus disrupting the two-step sequence of actions. These deficits may be linked to increased impulsivity as 6-OHDA-lesioned mice were unable to inhibit a previously learned motor response in a cued response inhibition task assessing proactive inhibitory control. Our findings show that partial DA denervation restricted to DMS impairs behavioural flexibility and proactive response inhibition in mice. Such striatal DA lesion may thus represent a valuable animal model for exploring deficits in executive control documented in early stage of Parkinson's disease.
Collapse
Affiliation(s)
| | - Simon More
- Aix Marseille Univ, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Bruce RA, Weber MA, Volkman RA, Oya M, Emmons EB, Kim Y, Narayanan NS. Experience-related enhancements in striatal temporal encoding. Eur J Neurosci 2021; 54:5063-5074. [PMID: 34097793 PMCID: PMC8511940 DOI: 10.1111/ejn.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.
Collapse
Affiliation(s)
- R. Austin. Bruce
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Matthew A. Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | - Mayu Oya
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Eric B. Emmons
- Department of Biology, Wartburg College, Waverly, IA, 50677
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
9
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
10
|
Bubb EJ, Aggleton JP, O’Mara SM, Nelson AJD. Chemogenetics Reveal an Anterior Cingulate-Thalamic Pathway for Attending to Task-Relevant Information. Cereb Cortex 2021; 31:2169-2186. [PMID: 33251536 PMCID: PMC7945017 DOI: 10.1093/cercor/bhaa353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.
Collapse
Affiliation(s)
- Emma J Bubb
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| | - John P Aggleton
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| | - Shane M O’Mara
- Institute of Neuroscience, Trinity College Dublin D02 PN40, Ireland
| | | |
Collapse
|
11
|
Dorsomedial striatal contributions to different forms of risk/reward decision making. Neurobiol Learn Mem 2020; 178:107369. [PMID: 33383183 DOI: 10.1016/j.nlm.2020.107369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
Optimal decision making involving reward uncertainty is integral to adaptive goal-directed behavior. In some instances, these decisions are guided by internal representations of reward history, whereas in other situations, external cues inform a decision maker about how likely certain actions are to yield reward. Different regions of the frontal lobe form distributed networks with striatal and amygdalar regions that facilitate different types of risk/reward decision making. The dorsal medial striatum (DMS) is one key output region of the prefrontal cortex, yet there have been few preclinical studies investigating the involvement of the DMS in different forms of risk/reward decision making. The present study addressed this issue, wherein separate groups of male rats were trained on one of two tasks where they chose between a small/certain or a large/risky reward. In a probabilistic discounting task, reward probabilities changed systematically over blocks of trials (100-6.25% or 6.25-100%), requiring rats to use internal representations of reward history to guide choice. Cue-guided decision-making was assessed with a "Blackjack" task, where different auditory cues indicated the odds associated with the large/risky option (50 or 12.5%). Inactivation of the DMS with GABA agonists impaired adjustments in choice biases during probabilistic discounting, resulting in either increases or decreases in risky choice as the probabilities associated with the large/risky reward decreased or increased over a session. In comparison, DMS inactivation increased risky choices on poor-odds trials on the Blackjack task, which was associated with a reduced impact that non-rewarded choices had on subsequent choices. DMS inactivation also impaired performance of an auditory conditional discrimination. These findings highlight a previously uncharacterized role for the DMS in facilitating flexible action selection during multiple forms of risk/reward decision making.
Collapse
|
12
|
Waddell J, Hill E, Tang S, Jiang L, Xu S, Mooney SM. Choline Plus Working Memory Training Improves Prenatal Alcohol-Induced Deficits in Cognitive Flexibility and Functional Connectivity in Adulthood in Rats. Nutrients 2020; 12:E3513. [PMID: 33202683 PMCID: PMC7696837 DOI: 10.3390/nu12113513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the leading known cause of intellectual disability, and may manifest as deficits in cognitive function, including working memory. Working memory capacity and accuracy increases during adolescence when neurons in the prefrontal cortex undergo refinement. Rats exposed to low doses of ethanol prenatally show deficits in working memory during adolescence, and in cognitive flexibility in young adulthood. The cholinergic system plays a crucial role in learning and memory processes. Here we report that the combination of choline and training on a working memory task during adolescence significantly improved cognitive flexibility (performance on an attentional set shifting task) in young adulthood: 92% of all females and 81% of control males formed an attentional set, but only 36% of ethanol-exposed males did. Resting state functional magnetic resonance imaging showed that functional connectivity among brain regions was different between the sexes, and was altered by prenatal ethanol exposure and by choline + training. Connectivity, particularly between prefrontal cortex and striatum, was also different in males that formed a set compared with those that did not. Together, these findings indicate that prenatal exposure to low doses of ethanol has persistent effects on brain functional connectivity and behavior, that these effects are sex-dependent, and that an adolescent intervention could mitigate some of the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Elizabeth Hill
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Li Jiang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Sandra M. Mooney
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
13
|
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
14
|
D2 receptors and cognitive flexibility in marmosets: tri-phasic dose-response effects of intra-striatal quinpirole on serial reversal performance. Neuropsychopharmacology 2019; 44:564-571. [PMID: 30487652 PMCID: PMC6333796 DOI: 10.1038/s41386-018-0272-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Behavioral flexibility, which allows organisms to adapt their actions in response to environmental changes, is impaired in a number of neuropsychiatric conditions, including obsessive-compulsive disorder and addiction. Studies in human subjects and monkeys have reported correlations between individual differences in dopamine D2-type receptor (D2R) levels in the caudate nucleus and performance in a discrimination reversal task, in which established contingent relationships between abstract stimuli and rewards (or punishments) are reversed. Global genetic deletion of the D2R in mice disrupts reversal performance, indicating a likely causal role for this receptor in supporting flexible behaviors. To directly examine the specific role of caudate D2-type receptors in reversal performance, the D2/3/4R agonist quinpirole was infused via chronic indwelling cannulae into the medial caudate of male and female marmoset monkeys performing a touchscreen-based serial discrimination reversal task. Given prior evidence for dose-dependent effects of quinpirole and other dopaminergic drugs, a full dose-response curve was established. Individually, marmosets displayed marked differences in behavioral sensitivity to specific doses of intra-caudate quinpirole. Collectively, they exhibited a behaviorally specific bi-phasic deficit in reversal learning, being consistently impaired at both relatively low and high doses of quinpirole. However, intermediate doses of intra-caudate quinpirole produced significant improvement in reversal performance. These data support previous human and monkey neuroimaging studies by providing causal evidence of a U-shaped function describing how dopamine modulates cognitive flexibility in the primate striatum.
Collapse
|
15
|
Yegla B, Foster TC, Kumar A. Behavior Model for Assessing Decline in Executive Function During Aging and Neurodegenerative Diseases. Methods Mol Biol 2019; 2011:441-449. [PMID: 31273715 PMCID: PMC8223146 DOI: 10.1007/978-1-4939-9554-7_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Executive dysfunction is a characteristic of several psychiatric and neurodegenerative diseases. Interestingly, executive function, which is mediated by the prefrontal cortex (PFC), commonly declines during aging. The attentional set-shifting task (AST) is commonly and extensively used to assess executive function in rodents, primates, and humans. When properly employed, this task can behaviorally assess attention, response inhibition, and cognitive flexibility. The following section uses research on age-related decline in executive function to demonstrate the methods employed and highlight areas that can confound a study if not employed properly.
Collapse
Affiliation(s)
- Brittney Yegla
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Aluisi F, Rubinchik A, Morris G. Animal Learning in a Multidimensional Discrimination Task as Explained by Dimension-Specific Allocation of Attention. Front Neurosci 2018; 12:356. [PMID: 29922123 PMCID: PMC5996033 DOI: 10.3389/fnins.2018.00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/08/2018] [Indexed: 12/03/2022] Open
Abstract
Reinforcement learning describes the process by which during a series of trial-and-error attempts, actions that culminate in reward are reinforced, becoming more likely to be chosen in similar circumstances. When decisions are based on sensory stimuli, an association is formed between the stimulus, the action and the reward. Computational, behavioral and neurobiological accounts of this process successfully explain simple learning of stimuli that differ in one aspect, or along a single stimulus dimension. However, when stimuli may vary across several dimensions, identifying which features are relevant for the reward is not trivial, and the underlying cognitive process is poorly understood. To study this we adapted an intra-dimensional/ extra-dimensional set-shifting paradigm to train rats on a multi-sensory discrimination task. In our setup, stimuli of different modalities (spatial, olfactory and visual) are combined into complex cues and manipulated independently. In each set, only a single stimulus dimension is relevant for reward. To distinguish between learning and decision-making we suggest a weighted attention model (WAM). Our model learns by assigning a separate learning rule for the values of features of each dimension (e.g., for each color), reinforced after every experience. Decisions are made by comparing weighted averages of the learnt values, factored by dimension specific weights. Based on the observed behavior of the rats we estimated the parameters of the WAM and demonstrated that it outperforms an alternative model, in which a learnt value is assigned to each combination of features. Estimated decision weights of the WAM reveal an experience-based bias in learning. In the first experimental set the weights associated with all dimensions were similar. The extra-dimensional shift rendered this dimension irrelevant. However, its decision weight remained high for the early learning stage in this last set, providing an explanation for the poor performance of the animals. Thus, estimated weights can be viewed as a possible way to quantify the experience-based bias.
Collapse
Affiliation(s)
- Flavia Aluisi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Anna Rubinchik
- Department of Economics, University of Haifa, Haifa, Israel
| | - Genela Morris
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Tait DS, Bowman EM, Neuwirth LS, Brown VJ. Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci Biobehav Rev 2018; 89:72-84. [PMID: 29474818 DOI: 10.1016/j.neubiorev.2018.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023]
Abstract
The rat intradimensional/extradimensional (ID/ED) task, first described by Birrell and Brown 18 years ago, has become the predominant means by which attentional set-shifting is investigated in rodents: the use of rats in the task has been described in over 135 publications by researchers from nearly 90 universities and pharmaceutical companies. There is variation in the protocols used by different groups, including differences in apparatus, stimuli (both stimulus dimensions and exemplars within), and also the methodology. Nevertheless, most of these variations seem to be of little consequence: there is remarkable similarity in the profile of published data, with consistency of learning rates and in the size and reliability of the set-shifting and reversal 'costs'. However, we suspect that there may be inconsistent data that is unpublished or perhaps 'failed experiments' that may have been caused by unintended deviations from effective protocols. The purpose of this review is to describe our approach and the rationale behind certain aspects of the protocol, including common pitfalls that are encountered when establishing an effective local protocol.
Collapse
Affiliation(s)
- David S Tait
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK.
| | - Eric M Bowman
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| | - Lorenz S Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, 11568, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, 11568, USA
| | - Verity J Brown
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| |
Collapse
|
18
|
Abstract
In Huntington's disease (HD), the medium spiny projection neurons of the neostriatum degenerate early in the course of the disease. While genetic mutant models of HD provide an excellent resource for studying the molecular and cellular effects of the inherited polyQ huntingtin mutation, they do not typically present with overt atrophy of the basal ganglia, despite this being a major pathophysiological hallmark of the disease. By contrast, excitotoxic lesion models, which use quinolinic acid to specifically target the striatal projection neurons, are employed to study the functional consequences of striatal atrophy and to investigate potential therapeutic interventions that target the neuronal degeneration. This chapter provides a detailed guide to the generation of excitotoxic lesion models of HD in rats.
Collapse
|
19
|
Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol. Nutrients 2017; 9:nu9101080. [PMID: 28961168 PMCID: PMC5691697 DOI: 10.3390/nu9101080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal ethanol exposure is associated with deficits in executive function such as working memory, reversal learning and attentional set shifting in humans and animals. These behaviors are dependent on normal structure and function in cholinergic brain regions. Supplementation with choline can improve many behaviors in rodent models of fetal alcohol spectrum disorders and also improves working memory function in normal rats. We tested the hypothesis that supplementation with choline in the postnatal period will improve working memory during adolescence in normal and ethanol-exposed animals, and that working memory engagement during adolescence will transfer to other cognitive domains and have lasting effects on executive function in adulthood. Male and female offspring of rats fed an ethanol-containing liquid diet (ET; 3% v/v) or control dams given a non-ethanol liquid diet (CT) were injected with choline (Cho; 100 mg/kg) or saline (Sal) once per day from postnatal day (P) 16–P30. Animals were trained/tested on a working memory test in adolescence and then underwent attentional set shifting and reversal learning in young adulthood. In adolescence, ET rats required more training to reach criterion than CT-Sal. Choline improved working memory performance for both CT and ET animals. In young adulthood, ET animals also performed poorly on the set shifting and reversal tasks. Deficits were more robust in ET male rats than female ET rats, but Cho improved performance in both sexes. ET male rats given a combination of Cho and working memory training in adolescence required significantly fewer trials to achieve criterion than any other ET group, suggesting that early interventions can cause a persistent improvement.
Collapse
|
20
|
Tait DS, Phillips JM, Blackwell AD, Brown VJ. Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat. Neuroscience 2017; 345:287-296. [PMID: 27522961 PMCID: PMC5321403 DOI: 10.1016/j.neuroscience.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
Patients with Parkinson's disease (PD) show cognitive impairments, including difficulty in shifting attention between perceptual dimensions of complex stimuli. Inactivation of the subthalamic nucleus (STN) has been shown to be effective in ameliorating the motor abnormalities associated with striatal dopamine (DA) depletion, but it is possible that STN inactivation might result in additional, perhaps attentional, deficits. This study examined the effects of: DA depletion from the dorsomedial striatum (DMS); lesions of the STN area; and the effects of the two lesions together, on the ability to shift attentional set in the rat. In a single session, rats performed the intradimensional/extradimensional (ID/ED) test of attentional set-shifting. This comprises a series of seven, two-choice discriminations, including acquisitions of novel discriminations in which the relevant stimulus is either in the currently attended dimension (ID) or the currently unattended dimension (ED shift) and reversals (REVs) following each acquisition stage. Bilateral lesions were made by injection of 6-hydroxydopamine (6-OHDA) into the DMS, resulting in a selective impairment in reversal learning. Large bilateral ibotenic acid lesions centered on the STN resulted in an increase in trials to criterion in the initial stages, but learning rate improved within the session. There was no evidence of a 'cost' of set-shifting - the ED stage was completed in fewer trials than the ID stage - and neither was there a cost of reversal learning. Strikingly, combined lesions of both regions did not resemble the effects of either lesion alone and resulted in no apparent deficits.
Collapse
Affiliation(s)
- David S Tait
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK.
| | - Janice M Phillips
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| | - Andrew D Blackwell
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| | - Verity J Brown
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| |
Collapse
|
21
|
Desai SJ, Allman BL, Rajakumar N. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D 1 receptor antagonists impairs executive function. Behav Brain Res 2017; 323:24-31. [PMID: 28115219 DOI: 10.1016/j.bbr.2017.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 02/02/2023]
Abstract
Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.
Collapse
Affiliation(s)
- Sagar J Desai
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Nagalingam Rajakumar
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Psychiatry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
22
|
Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects. PLoS One 2016; 11:e0165301. [PMID: 27798669 PMCID: PMC5087839 DOI: 10.1371/journal.pone.0165301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Methods Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein’s Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Results Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. Conclusions These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.
Collapse
|
23
|
Linley SB, Gallo MM, Vertes RP. Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Res 2016; 1649:110-122. [PMID: 27544424 PMCID: PMC5796786 DOI: 10.1016/j.brainres.2016.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and the medial prefrontal cortex (mPFC) and has been shown to mediate the transfer of information between these structures. It has become increasingly well established that RE serves a critical role in mnemonic tasks requiring the interaction of the HF and mPFC, but essentially not tasks relying solely on the HF. Very few studies have addressed the independent actions of RE on prefrontal executive functioning. The present report examined the effects of lesions of the ventral midline thalamus, including RE and the dorsally adjacent rhomboid nucleus (RH) in rats on attention and behavioral flexibility using the attentional set shifting task (AST). The task uses odor and tactile stimuli to test for attentional set formation, attentional set shifting, behavioral flexibility and reversal learning. By comparison with sham controls, lesioned rats were significantly impaired on reversal learning and intradimensional (ID) set shifting. Specifically, RE/RH lesioned rats were impaired on the first reversal stage of the task which required a change in response strategy to select a previously non-rewarded stimulus for reward. RE/RH lesioned rats also exhibited deficits in the ability to transfer or generalize rules of the task which requires making the same modality-based choices (e.g., odor vs. tactile) to different sets of stimuli in the ID stage of the task. These results demonstrate that in addition to its role in tasks dependent on HF-mPFC interactions, nucleus reuniens is also critically involved cognitive/executive functions associated with the medial prefrontal cortex. As such, the deficits in the AST task produced by RE/RH lesions suggest the ventral midline thalamus directly contributes to flexible goal directed behavior.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Michelle M Gallo
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
24
|
Badanich KA, Fakih ME, Gurina TS, Roy EK, Hoffman JL, Uruena-Agnes AR, Kirstein CL. Reversal learning and experimenter-administered chronic intermittent ethanol exposure in male rats. Psychopharmacology (Berl) 2016; 233:3615-26. [PMID: 27518574 DOI: 10.1007/s00213-016-4395-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/23/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Chronic alcohol exposure is associated with impaired decision making skills, cognitive deficits, and poor performance on tasks requiring behavioral flexibility. Although oral routes of alcohol administration are commonly used to examine effects of alcohol on various behaviors in rodents, only a few investigations have used intragastric exposures to evaluate ethanol's effects on behavioral flexibility in the adult rat. OBJECTIVES The aim of the current series of experiments was to determine if behavioral flexibility impairments would be demonstrated across a variety of procedural factors, including route of administration [intraperitoneal injection (i.p.), intragastric gavage (i.g.)], ethanol dose (3-5 g/kg), number of daily exposures (once/day, twice/day), duration of exposure (2-6 weeks), or length of abstinence (5-7 days). METHODS Adult male Sprague-Dawley rats were exposed to chronic intermittent ethanol (CIE) or vehicle and evaluated for behavioral intoxication, blood ethanol concentrations (BEC), and performance on a reversal learning odor discrimination task. RESULTS While all rats displayed behavioral intoxication and elevated BECs, CIE i.p. rats had prolonged elevation in BECs and made the most errors during the reversal learning task. Unexpectedly, CIE i.g. exposures failed to produce deficits during reversal learning tasks regardless of ethanol dose, frequency/duration of exposure, or length of abstinence. CONCLUSIONS Behavioral flexibility deficits resulting from CIE i.p. exposures may be due to the severity and chronicity of alcohol intoxication. Elucidating the impact of ethanol on behavioral flexibility is critical for developing a better understanding of the behavioral consequences of chronic alcohol exposure.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA.
| | - Mackinzie E Fakih
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA
| | - Tatyana S Gurina
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA
| | - Emalie K Roy
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA
| | - Jessica L Hoffman
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA
| | | | - Cheryl L Kirstein
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA.,Department of Physiology and Molecular Pharmacology, University of South Florida College of Medicine, Tampa, FL, 33620, USA
| |
Collapse
|
25
|
Torres C, Glueck AC, Conrad SE, Morón I, Papini MR. Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience 2016; 332:13-25. [DOI: 10.1016/j.neuroscience.2016.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
|
26
|
The effects of PDE10 inhibition on attentional set-shifting do not depend on the activation of dopamine D1 receptors. Behav Pharmacol 2016; 27:331-8. [DOI: 10.1097/fbp.0000000000000201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Wong SA, Thapa R, Badenhorst CA, Briggs AR, Sawada JA, Gruber AJ. Opposing effects of acute and chronic d-amphetamine on decision-making in rats. Neuroscience 2016; 345:218-228. [PMID: 27113327 DOI: 10.1016/j.neuroscience.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/15/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022]
Abstract
Amphetamine and other drugs of abuse have both short-term and long-lasting effects on brain function, and drug sensitization paradigms often result in chronic impairments in behavioral flexibility. Here we show that acute amphetamine administration temporarily renders rats less sensitive to reward omission, as revealed by a decrease in lose-shift responding during a binary choice task. Intracerebral infusions of amphetamine into the ventral striatum did not affect lose-shift responding but did increase impulsive behavior in which rats chose to check both reward feeders before beginning the next trial. In contrast to acute systemic and intracerebral infusions, sensitization through repeated exposure induced long-lasting increased sensitivity to reward omission. These treatments did not affect choices on trials following reward delivery (i.e. win-stay responding), and sensitization increased spine density in the sensorimotor striatum. The dichotomous effects of amphetamine on short-term and long-term loss sensitivity, and the null effect on win-stay responding, are consistent with a shift of behavioral control to the sensorimotor striatum after drug sensitization. These data provide a new demonstration of such a shift in a novel task unrelated to drug administration, and suggests that the dominance of sensorimotor control persists over many hundreds of trials after sensitization.
Collapse
Affiliation(s)
- Scott A Wong
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Raj Thapa
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Cecilia A Badenhorst
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Alicia R Briggs
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Justan A Sawada
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
28
|
Regional distribution of serotonergic receptors: a systems neuroscience perspective on the downstream effects of the multimodal-acting antidepressant vortioxetine on excitatory and inhibitory neurotransmission. CNS Spectr 2016; 21:162-83. [PMID: 26250622 DOI: 10.1017/s1092852915000486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work from this laboratory hypothesized that the multimodal antidepressant vortioxetine enhances cognitive function through a complex mechanism, using serotonergic (5-hydroxytryptamine, 5-HT) receptor actions to modulate gamma-butyric acid (GABA) and glutamate neurotransmission in key brain regions like the prefrontal cortex (PFC) and hippocampus. However, serotonergic receptors have circumscribed expression patterns, and therefore vortioxetine's effects on GABA and glutamate neurotransmission will probably be regionally selective. In this article, we attempt to develop a conceptual framework in which the effects of 5-HT, selective serotonin reuptake inhibitors (SSRIs), and vortioxetine on GABA and glutamate neurotransmission can be understood in the PFC and striatum-2 regions with roles in cognition and substantially different 5-HT receptor expression patterns. Thus, we review the anatomy of the neuronal microcircuitry in the PFC and striatum, anatomical data on 5-HT receptor expression within these microcircuits, and electrophysiological evidence on the effects of 5-HT on the behavior of each cell type. This analysis suggests that 5-HT and SSRIs will have markedly different effects within the PFC, where they will induce mixed effects on GABA and glutamate neurotransmission, compared to the striatum, where they will enhance GABAergic interneuron activity and drive down the activity of medium spiny neurons. Vortioxetine is expected to reduce GABAergic interneuron activity in the PFC and concomitantly increase cortical pyramidal neuron firing. However in the striatum, vortioxetine is expected to increase activity at GABAergic interneurons and have mixed excitatory and inhibitory effects in medium spiny neurons. Thus the conceptual framework developed here suggests that vortioxetine will have regionally selective effects on GABA and glutamate neurotransmission.
Collapse
|
29
|
Neurophysiology of rule switching in the corticostriatal circuit. Neuroscience 2016; 345:64-76. [PMID: 26851774 DOI: 10.1016/j.neuroscience.2016.01.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/06/2023]
Abstract
The ability to adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. While lesion and pharmacological studies have supported a crucial role for mPFC in this type of set-shifting, an understanding of how mPFC represents current rules or detects and resolves conflict between different rules is still unclear. Meanwhile, medial dorsal striatum (mDS) receives major projections from mPFC and neural activity of mDS is closely linked to action selection, making the mDS a potential major player for enacting rule-guided action policies. However, exactly what is signaled by mPFC and how this impacts neural signals in mDS is not well known. In this review, we will summarize what is known about neural signals of rules and set shifting in both prefrontal cortex and dorsal striatum, as well as provide questions and directions for future experiments.
Collapse
|
30
|
Wright NF, Vann SD, Aggleton JP, Nelson AJD. A critical role for the anterior thalamus in directing attention to task-relevant stimuli. J Neurosci 2015; 35:5480-8. [PMID: 25855166 PMCID: PMC4388916 DOI: 10.1523/jneurosci.4945-14.2015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex mediates adaption to changing environmental contingencies. The anterior thalamic nuclei, which are closely interconnected with the prefrontal cortex, are important for rodent spatial memory, but their potential role in executive function has received scant attention. The current study examined whether the anterior thalamic nuclei are involved in attentional processes akin to those of prefrontal regions. Remarkably, the results repeatedly revealed attentional properties opposite to those of the prefrontal cortex. Two separate cohorts of rats with anterior thalamic lesions were tested on an attentional set-shifting paradigm that measures not only the ability of stimuli dimensions that reliably predict reinforcement to gain attention ("intradimensional shift"), but also their ability to shift attention to another stimulus dimension when contingencies change ("extradimensional shift"). In stark contrast to the effects of prefrontal damage, anterior thalamic lesions impaired intradimensional shifts but facilitated extradimensional shifts. Anterior thalamic lesion animals were slower to acquire discriminations based on the currently relevant stimulus dimension but acquired discriminations involving previously irrelevant stimulus dimensions more rapidly than controls. Subsequent tests revealed that the critical determinant of whether anterior thalamic lesions facilitate extradimensional shifts is the degree to which the stimulus dimension has been established as an unreliable predictor of reinforcement over preceding trials. This pattern of performance reveals that the anterior thalamic nuclei are vital for attending to those stimuli that are the best predictors of reward. In their absence, unreliable predictors of reward usurp attentional control.
Collapse
Affiliation(s)
- Nick F Wright
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
31
|
Abstract
In this review, we explore the similarities and differences in the behavioural neurobiology found in the mouse models of Huntington's disease (HD) and the human disease state. The review is organised with a comparative focus on the functional domains of motor control, cognition and behavioural disturbance (akin to psychiatric disturbance in people) and how our knowledge of the underlying physiological changes that are manifest in the HD mouse lines correspond to those seen in the HD clinical population. The review is framed in terms of functional circuitry and neurotransmitter systems and how abnormalities in these systems impact on the behavioural readouts across the mouse lines and how these may correspond to the deficits observed in people. In addition, interpretational issues associated with the data from animal studies are discussed.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, Division of Neuroscience, Cardiff University School of Bioscience, Museum Avenue, Cardiff, Wales, UK,
| | | |
Collapse
|
32
|
Abstract
Attentional set-shifting, as a measure of executive flexibility, has been a staple of investigations into human cognition for over six decades. Mediated by the frontal cortex in mammals, the cognitive processes involved in forming, maintaining and shifting an attentional set are vulnerable to dysfunction arising from a number of human neurodegenerative diseases (such as Alzheimer's, Parkinson's and Huntington's diseases) and other neurological disorders (such as schizophrenia, depression, and attention deficit/hyperactivity disorder). Our understanding of these diseases and disorders, and the cognitive impairments induced by them, continues to advance, in tandem with an increasing number of tools at our disposal. In this chapter, we review and compare commonly used attentional set-shifting tasks (the Wisconsin Card Sorting Task and Intradimensional/Extradimensional tasks) and their applicability across species. In addition to humans, attentional set-shifting has been observed in a number of other animals, with a substantial body of literature describing performance in monkeys and rodents. We consider the task designs used to investigate attentional set-shifting in these species and the methods used to model human diseases and disorders, and ultimately the comparisons and differences between species-specific tasks, and between performance across species.
Collapse
|
33
|
Abstract
Components of human executive function, like rule generation and selection in response to stimuli (attention set-shifting) or overcoming a habit (reversal learning), can be reliably modelled in rodents. The rodent paradigms are based upon tasks that assess cognitive flexibility in clinical populations and have been effective in distinguishing the neurobiological substrates and the underlying neurotransmitter systems relevant to executive function. A review of the literature on the attentional set-shifting task highlights a prominent role for the medial region of the prefrontal cortex in the ability to adapt to a new rule (extradimensional shift) while the orbitofrontal cortex has been associated with the reversal learning component of the task. In other paradigms specifically developed to examine reversal learning in rodents, the orbitofrontal cortex also plays a prominent role. Modulation of dopamine, serotonin, and glutamatergic receptors can disrupt executive function, a feature commonly exploited to develop concepts underlying psychiatric disorders. While these paradigms do have excellent translational construct validity, they have been less effective as predictive preclinical models for cognitive enhancers, especially for cognition in health subjects. Accordingly, a more diverse battery of tasks may be necessary to model normal human executive function in the rodent for drug development.
Collapse
Affiliation(s)
- John Talpos
- Janssen R&D, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
34
|
Voon V, Dalley JW. Translatable and Back-Translatable Measurement of Impulsivity and Compulsivity: Convergent and Divergent Processes. Curr Top Behav Neurosci 2015; 28:53-91. [PMID: 27418067 DOI: 10.1007/7854_2015_5013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Impulsivity and compulsivity have emerged as important dimensional constructs that challenge traditional psychiatric classification systems. Both are present in normal healthy populations where the need to act quickly and repeatedly without hesitation can be highly advantageous. However, when excessively expressed, impulsive and compulsive behavior can lead to adverse consequences and spectrum disorders exemplified by attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), autism, and drug addiction. Impulsive individuals have difficulty in deferring gratification and are inclined to 'jump the gun' and respond prematurely before sufficient information is gathered. Compulsivity involves repetitive behavior often motivated by the need to reduce or prevent anxiety, thus leading to the maladaptive perseveration of behavior. Defined in this way, impulsivity and compulsivity could be viewed as separate entities or 'traits' but overwhelming evidence indicates that both may be present in the same disorder, either concurrently or even separately at different time points. Herein we discuss the neural and cognitive heterogeneity of impulsive and compulsive endophenotypes. These constructs map onto distinct fronto-striatal neural and neurochemical structures interacting both at nodal convergent points and as opponent processes highlighting both the heterogeneity and the commonalities of function. We focus on discoveries made using both translational research methodologies and studies exclusively in humans, and implications for treatment intervention in disorders in which impulsive and compulsive symptoms prevail. We emphasize the relevance of these constructs for understanding dimensional psychiatry.
Collapse
Affiliation(s)
- Valerie Voon
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Jeffrey W Dalley
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
35
|
López-Gil X, Amat-Roldan I, Tudela R, Castañé A, Prats-Galino A, Planas AM, Farr TD, Soria G. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 2014; 6:167. [PMID: 25100993 PMCID: PMC4107676 DOI: 10.3389/fnagi.2014.00167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Collapse
Affiliation(s)
- Xavier López-Gil
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | | | - Raúl Tudela
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| | - Anna Castañé
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII Madrid, Spain
| | - Alberto Prats-Galino
- Human Anatomy and Embryology Unit, Laboratory of Surgical NeuroAnatomy, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain
| | - Tracy D Farr
- Department of Experimental Neurology, Center for Stroke Research Berlin Charité, Berlin, Germany
| | - Guadalupe Soria
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| |
Collapse
|
36
|
Amodeo DA, Jones JH, Sweeney JA, Ragozzino ME. Risperidone and the 5-HT2A receptor antagonist M100907 improve probabilistic reversal learning in BTBR T + tf/J mice. Autism Res 2014; 7:555-67. [PMID: 24894823 DOI: 10.1002/aur.1395] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions with restricted interests and repetitive behaviors (RRBs). RRBs can severely limit daily living and be particularly stressful to family members. To date, there are limited options for treating this feature in ASD. Risperidone, an atypical antipsychotic, is approved to treat irritability in ASD, but less is known about whether it is effective in treating "higher order" RRBs, for example cognitive inflexibility. Risperidone also has multiple receptor targets in which only a subset may be procognitive and others induce cognitive impairment. 5HT2A receptor blockade represents one promising and more targeted approach, as various preclinical studies have shown that 5HT2A receptor antagonists improve cognition. The present study investigated whether risperidone and/or M100907, a 5HT2A receptor antagonist, improved probabilistic reversal learning performance in the BTBR T + tf/J (BTBR) mouse model of autism. The effects of these treatments were also investigated in C57BL/6J (B6) mice as a comparison strain. Using a spatial reversal learning test with 80/20 probabilistic feedback, similar to one in which ASD individuals exhibit impairments, both risperidone (0.125 mg) and M100907 (0.01 and 0.1 mg) improved reversal learning in BTBR mice. Risperidone (0.125 mg) impaired reversal learning in B6 mice. Improvement in probabilistic reversal learning performance resulted from treatments enhancing the maintenance of the newly correct choice pattern. Because risperidone can lead to unwanted side effects, treatment with a specific 5HT2A receptor antagonist may improve cognitive flexibility in individuals with ASD while also minimizing unwanted side effects.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
37
|
Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts. J Neurosci 2014; 34:4618-26. [PMID: 24672007 DOI: 10.1523/jneurosci.5058-13.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different subregions of nucleus accumbens (NAc) have been implicated in reward seeking, promoting flexible approach responses, suppressing nonrewarded actions, and facilitating shifts between different discrimination strategies. Interestingly, the NAc does not appear to mediate shifting between stimulus-reward associations (i.e., reversal learning) when reinforcement is predictable. How these nuclei may facilitate flexible response strategies when reward delivery is uncertain remains unclear. We investigated the effects of inactivation of the NAc shell and core on probabilistic reversal learning using an operant task wherein a "correct" response delivered reward on 80% of trials, and an "incorrect" response was reinforced on 20% of trials. Reinforcement contingencies were reversed repeatedly within a session. In well-trained rats, shell inactivation reduced the number of reversals completed and selectively reduced win-stay behavior. This impairment was apparent during the first discrimination, indicating a more general deficit in the use of probabilistic reward feedback to guide action selection. Shell inactivation also impaired reversal performance on a similar task where correct/incorrect choices always/never delivered reward. However, this impairment only emerged after both levers had been associated with reward. Inactivation of NAc core did not impair reversal performance but increased latencies to approach the response levers. These results suggest the NAc shell and core facilitate reward seeking in a distinct yet complementary manner when the relationship between specific actions and reward is uncertain or ambiguous and cognitive flexibility is required. The core promotes approach toward reward-associated stimuli, whereas the shell refines response selection to those specific actions more likely to yield reward.
Collapse
|
38
|
Bissonette GB, Bae MH, Suresh T, Jaffe DE, Powell EM. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res 2013; 259:143-51. [PMID: 24211452 DOI: 10.1016/j.bbr.2013.10.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Mihyun H Bae
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tejas Suresh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Jaffe
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth M Powell
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|