1
|
Jana S, Das S, Giri B, Archak R, Bandyopadhyay S, Jana NR. Prenatal Exposure to Azadiradione Leads to Developmental Disabilities. Mol Neurobiol 2025; 62:3601-3614. [PMID: 39312066 DOI: 10.1007/s12035-024-04493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 02/04/2025]
Abstract
Azadiradione is a brain-permeable phytochemical present in the seed of an Indian medicinal plant, Azadirachta Indica, well known as neem. Recently, this small bioactive molecule has been revealed to induce the expression of Ube3a, a ubiquitin ligase whose loss and gain of function are associated with two diverse neurodevelopmental disorders. Here, we report that in utero exposure to azadiradione in mice results in severe developmental disabilities. Treatment of a well-tolerated dose of azadiradione into the pregnant dam (at embryonic days 12 and 14) causes a substantial decrease in the body weight of the newborn pups during their early developmental periods along with significant cognitive, motor, and communication deficits and increased anxiety-like behaviors. As the animals grow from adolescence to adulthood, their body weight and many behavioral deficits are gradually restored to normalcy, although the cognitive deficit persists significantly. Biochemical analysis reveals that the azadiradione prenatally exposed mice brain exhibits about 2-3 fold increase in the level of Ube3a at postnatal day 25 along with a significant increase in some of its target proteins linked to synaptic function and plasticity, indicating the enduring effect of the drug on Ube3a expression. The prenatally azadiradione-exposed mice also display increased dendritic spines in the hippocampal and cortical pyramidal neurons. These results suggest that Ube3a might be one of the key players in azadiradione-induced developmental disabilities.
Collapse
Affiliation(s)
- Sudipta Jana
- Neurobiology of Disease Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sagarika Das
- Neurobiology of Disease Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Bhaskarjyoti Giri
- Neurobiology of Disease Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Raghavendra Archak
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sharba Bandyopadhyay
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Nihar Ranjan Jana
- Neurobiology of Disease Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
2
|
Rahmatkar SN, Singh D. Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04776-x. [PMID: 40014269 DOI: 10.1007/s12035-025-04776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.
Collapse
Affiliation(s)
- Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Panneerselvam DS, Kanakaraja A, Sakthivelu M, Gopinath SCB, Raman P. A Comprehensive Review of Therapeutic Compounds from Plants for Neurodegenerative Diseases. Curr Med Chem 2025; 32:1887-1933. [PMID: 38367263 DOI: 10.2174/0109298673272435231204072922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 02/19/2024]
Abstract
Neurodegenerative diseases (NDDs) comprise a large number of disorders that affects the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination in neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses, which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered as a good source of biologically active molecules and hence phytochemical screening of plants will pave way for the discovering new drugs. Neurodegeneration has been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidative activity, making them a potential application in the management or prevention of neurodegenerative disorders. Further, it gives the insights to the future researchers about considering the peptide based therapeutics through various mechanisms for delaying or curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhaya Shankaran Panneerselvam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Abinaya Kanakaraja
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute Nano Electronic Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Center for Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Ma Z, Xu Y, Lian P, Wu Y, Liu K, Zhang Z, Tang Z, Yang X, Cao X. Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression. Neurosci Bull 2024:10.1007/s12264-024-01323-x. [PMID: 39609371 DOI: 10.1007/s12264-024-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 11/30/2024] Open
Abstract
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
Collapse
Affiliation(s)
- Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
5
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
6
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
7
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Geng X, Zou Y, Li J, Li S, Qi R, Yu H, Zhong L. BDNF alleviates Parkinson's disease by promoting STAT3 phosphorylation and regulating neuronal autophagy. Cell Tissue Res 2023; 393:455-470. [PMID: 37450039 PMCID: PMC10485099 DOI: 10.1007/s00441-023-03806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual death of dopaminergic neurons. Brain-derived neurotrophic factor (BDNF) and its receptors are widely distributed throughout the central nervous system, which can promote the survival and growth of neurons and protect neurons. This study revealed that BDNF promotes STAT3 phosphorylation and regulates autophagy in neurons. The PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Moreover, SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridinium (MPP+) to establish a PD cell model. The level of BDNF was low in PD model mice and SH-SY5Y cells treated with MPP+. BDNF enhanced the levels of p-TrkB, P-STAT3, PINK1, and DJ-1. BDNF promoted autophagy, inhibited the level of p-α-syn (Ser129) and enhanced cell proliferation. The autophagy inhibitor 3-Methyladenine (3-methyladenine, 3-MA) reversed the protective effects of BDNF on neurons. BiFC assay results showed that there was a direct physical interaction between BDNF and STAT3, and coimmunoprecipitation experiments indicated an interaction between STAT3 and PI3K. The PI3K agonist Recilisib activated the PI3K/AKT/mTOR pathway, promoted autophagy, and alleviated neuronal cell damage. BDNF alleviates PD pathology by promoting STAT3 phosphorylation and regulating neuronal autophagy in SH-SY5Y cells and cultured primary neurons. Finally, BDNF has neuroprotective effects on PD model mice.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| | - Lianmei Zhong
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
9
|
Mohammed S, Russo I, Ramazzina I. Uncovering the Role of Natural and Synthetic Small Molecules in Counteracting the Burden of α-Synuclein Aggregates and Related Toxicity in Different Models of Parkinson's Disease. Int J Mol Sci 2023; 24:13370. [PMID: 37686175 PMCID: PMC10488152 DOI: 10.3390/ijms241713370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A proteostasis network represents a sophisticated cellular system that controls the whole process which leads to properly folded functional proteins. The imbalance of proteostasis determines a quantitative increase in misfolded proteins prone to aggregation and elicits the onset of different diseases. Among these, Parkinson's Disease (PD) is a progressive brain disorder characterized by motor and non-motor signs. In PD pathogenesis, alpha-Synuclein (α-Syn) loses its native structure, triggering a polymerization cascade that leads to the formation of toxic inclusions, the PD hallmark. Because molecular chaperones represent a "cellular arsenal" to counteract protein misfolding and aggregation, the modulation of their expression represents a compelling PD therapeutic strategy. This review will discuss evidence concerning the effects of natural and synthetic small molecules in counteracting α-Syn aggregation process and related toxicity, in different in vitro and in vivo PD models. Firstly, the role of small molecules that modulate the function(s) of chaperones will be highlighted. Then, attention will be paid to small molecules that interfere with different steps of the protein-aggregation process. This overview would stimulate in-depth research on already-known small molecules or the development of new ones, with the aim of developing drugs that are able to modify the progression of the disease.
Collapse
Affiliation(s)
- Salihu Mohammed
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, Via Europa 11, 25123 Brescia, Italy;
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Biostructures and Biosystems National Institute (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
10
|
Neurotrophin mimetics and tropomyosin kinase receptors: a futuristic pharmacological tool for Parkinson's. Neurol Sci 2023:10.1007/s10072-023-06684-1. [PMID: 36870001 DOI: 10.1007/s10072-023-06684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Parkinson's disease is a complex age-related progressive dopaminergic neurodegenerative disease consistently viewed as a disorder of movement and is characterized by its cardinal motor symptoms. While the motor symptoms and its clinical manifestations are attributed to the nigral dopaminergic neuronal death and basal ganglia dysfunction, studies have subsequently proven that the non-dopaminergic neurons in various brain regions are also additionally involved with the disease progression. Thus, it is now well accepted that the involvement of various neurotransmitters and other ligands accounts for the non-motor symptoms (NMS) associated with the Parkinson's disease. Consequently, this has demonstrated to possess remarkable clinical concerns to the patients in terms of various disability, such impaired to compromised quality of life and increased risk of morbidity and mortality. Currently, available pharmacological, non-pharmacological, and surgical therapeutic strategies neither prevent, arrest, nor reverse the nigral dopaminergic neurodegeneration. Thus, there is an imminent medical necessity to increase patient's quality of life and survival, which in turn decreases the incidence and prevalence of the NMS. The current research article reviews the potential direct involvement of neurotrophin and its mimetics to target and modulate neurotrophin-mediated signal transduction pathways to enlighten a new and novel therapeutic strategy along with the pre-existing treatments for Parkinson's disease and other neurological/neurodegenerative disorders which are associated with the downregulation of neurotrophins.
Collapse
|
11
|
Kasanga EA, Han Y, Navarrete W, McManus R, Shifflet MK, Parry C, Barahona A, Manfredsson FP, Nejtek VA, Richardson JR, Salvatore MF. Differential expression of RET and GDNF family receptor, GFR-α1, between striatum and substantia nigra following nigrostriatal lesion: a case for diminished GDNF-signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530671. [PMID: 36909534 PMCID: PMC10002742 DOI: 10.1101/2023.03.01.530671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment across all studies began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), and is later than the timing of GDNF treatment in preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemi-parkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) lesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred that returned to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. Significance Statement Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, clinical data supporting its efficacy to alleviate motor impairment in Parkinson's disease patients remains uncertain. Using the established 6-OHDA hemi-parkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery. Highlights GDNF expression was minimally affected by nigrostriatal lesionGDNF family receptor, GFR-α1, progressively decreased in striatum and in TH neurons in SN.GFR-α1 expression decreased along with TH neurons as lesion progressedGFR-α1 increased bilaterally in GFAP+ cells suggesting an inherent response to offset TH neuron lossRET expression was severely reduced in striatum, whereas it increased in SN early after lesion induction.
Collapse
|
12
|
Clarke E, Stocki P, Sinclair EH, Gauhar A, Fletcher EJR, Krawczun-Rygmaczewska A, Duty S, Walsh FS, Doherty P, Rutkowski JL. A Single Domain Shark Antibody Targeting the Transferrin Receptor 1 Delivers a TrkB Agonist Antibody to the Brain and Provides Full Neuroprotection in a Mouse Model of Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071335. [PMID: 35890231 PMCID: PMC9318160 DOI: 10.3390/pharmaceutics14071335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Single domain shark antibodies that bind to the transferrin receptor 1 (TfR1) on brain endothelial cells have been used to shuttle antibodies and other cargos across the blood brain barrier (BBB) to the brain. For these studies the TXB4 brain shuttle was fused to a TrkB neurotrophin receptor agonist antibody. The TXB4-TrkB fusion retained potent agonist activity at its cognate receptor and after systemic administration showed a 12-fold increase in brain levels over the unmodified antibody. Only the TXB4-TrkB antibody fusion was detected within the brain and localized to TrkB positive cells in the cortex and tyrosine hydroxylase (TH) positive dopaminergic neurons in the substantia nigra pars compacta (SNc), where it was associated with activated ERK1/2 signaling. When tested in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson’s disease (PD), TXB4-TrkB, but not the unmodified antibody, completely prevented the 6-OHDA induced death of TH positive neurons in the SNc. In conclusion, the fusion of the TXB4 brain shuttle allows a TrkB agonist antibody to reach neuroprotective concentrations in the brain parenchyma following systemic administration.
Collapse
Affiliation(s)
- Emily Clarke
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Pawel Stocki
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Elizabeth H. Sinclair
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Aziz Gauhar
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Edward J. R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Alicja Krawczun-Rygmaczewska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Frank S. Walsh
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Patrick Doherty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Julia Lynn Rutkowski
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
- Correspondence: ; Tel.: +1-(610)-291-1724
| |
Collapse
|
13
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
14
|
Yin S, Han C, Xia Y, Wan F, Hu J, Kou L, Sun Y, Wu J, Li Y, Zhou Q, Xiong N, Huang J, Wang T. Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A): Could It Be a Promising Biomarker and Therapeutic Target in Parkinson's Disease? Mol Neurobiol 2022; 59:1333-1344. [PMID: 34984583 PMCID: PMC8857133 DOI: 10.1007/s12035-021-02670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Parkinson’s disease (PD) is an incurable neurodegenerative disease characterized by aggregation of pathological alpha-synuclein (α-syn) and loss of dopaminergic neuron in the substantia nigra. Inhibition of phosphorylation of the α-syn has been shown to mediate alleviation of PD-related pathology. Protein phosphatase 2A (PP2A), an important serine/threonine phosphatase, plays an essential role in catalyzing dephosphorylation of the α-syn. Here, we identified and validated cancerous inhibitor of PP2A (CIP2A), as a potential diagnostic biomarker for PD. Our data showed that plasma CIP2A concentrations in PD patients were significantly lower compared to age- and sex-matched controls, 1.721 (1.435–2.428) ng/ml vs 3.051(2.36–5.475) ng/ml, p < 0.0001. The area under the curve of the plasma CIP2A in distinguishing PD from the age- and sex-matched controls was 0.776. In addition, we evaluated the role of CIP2A in PD-related pathogenesis in PD cellular and MPTP-induced mouse model. The results demonstrated that CIP2A is upregulated in PD cellular and MPTP-induced mouse models. Besides, suppression of the CIP2A expression alleviates rotenone induced aggregation of the α-syn as well as phosphorylation of the α-syn in SH-SY5Y cells, which is associated with increased PP2A activity. Taken together, our data demonstrated that CIP2A plays an essential role in the mechanisms related to PD development and might be a novel PD biomarker.
Collapse
Affiliation(s)
- Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
15
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
16
|
Soman SK, Tingle D, Dagda RY, Torres M, Dagda M, Dagda RK. Cleaved PINK1 induces neuronal plasticity through PKA-mediated BDNF functional regulation. J Neurosci Res 2021; 99:2134-2155. [PMID: 34046942 DOI: 10.1002/jnr.24854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKβ. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKβ. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David Tingle
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Mariana Torres
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
17
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
18
|
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T, Wilson CM. Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188429. [DOI: 10.1016/j.bbcan.2020.188429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
|
19
|
Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson’s Disease. Neuroscience 2020; 433:53-71. [DOI: 10.1016/j.neuroscience.2020.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
|
20
|
Tan Y, Xu Y, Cheng C, Zheng C, Zeng W, Wang J, Zhang X, Yang X, Wang J, Yang X, Nie S, Cao X. LY354740 Reduces Extracellular Glutamate Concentration, Inhibits Phosphorylation of Fyn/NMDARs, and Expression of PLK2/pS129 α-Synuclein in Mice Treated With Acute or Sub-Acute MPTP. Front Pharmacol 2020; 11:183. [PMID: 32180729 PMCID: PMC7059821 DOI: 10.3389/fphar.2020.00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Glutamate overactivity in basal ganglia critically contributes to the exacerbation of dopaminergic neuron degeneration in Parkinson's disease (PD). Activation of group II metabotropic glutamate receptors (mGlu2/3 receptors), which can decrease excitatory glutamate neurotransmission, provides an opportunity to slow down the degeneration of the dopaminergic system. However, the roles of mGlu2/3 receptors in relation to PD pathology were partially recognized. By using mGlu2/3 receptors agonist (LY354740) and mGlu2/3 receptors antagonist (LY341495) in mice challenged with different cumulative doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we demonstrated that systemic injection of LY354740 reduced the level of extracellular glutamate and the extent of nigro-striatal degeneration in both acute and sub-acute MPTP mice, while LY341495 amplified the lesions in sub-acute MPTP mice only. LY354740 treatment improved behavioral dysfunctions mainly in acute MPTP mice and LY341495 treatment seemed to aggravate motor deficits in sub-acute MPTP mice. In addition, ligands of mGlu2/3 receptors also influenced the total amount of glutamate and dopamine in brain tissue. Interestingly, compared with normal mice, MPTP-treated mice abnormally up-regulated the expression of polo-like kinase 2 (PLK2)/pS129 α-synuclein and phosphorylation of Fyn/N-methyl-D-aspartate receptor subunit 2A/2B (GluN2A/2B). Both acute and sub-acute MPTP mice treated with LY354740 dose-dependently reduced all the above abnormal expression. Compared with MPTP mice treated with vehicle, mice pretreated with LY341495 exhibited much higher expression of p-Fyn Tyr416/p-GluN2B Tyr1472 and PLK2/pS129 α-synuclein in sub-acute MPTP mice models. Thus, our current data indicated that mGlu2/3 receptors ligands could influence MPTP-induced toxicity, which supported a role for mGlu2/3 receptors in PD pathogenesis.
Collapse
Affiliation(s)
- Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zheng
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone Attenuates Lipopolysaccharide-Induced Oxidative Stress, Dopaminergic Neuronal Loss and Neurobehavioral Impairment by Activating Nrf2/ARE/HO-1. Neurochem Res 2019; 44:10.1007/s11064-019-02907-0. [PMID: 31713708 DOI: 10.1007/s11064-019-02907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.
Collapse
Affiliation(s)
- Aya Zakaria
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt.
| | - Mona Rady
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt
| | - Laila Mahran
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt.
| |
Collapse
|
22
|
Han C, Xiong N, Guo X, Huang J, Ma K, Liu L, Xia Y, Shen Y, Li J, Jiang H, Wang L, Guo S, Xu X, Zhang G, Liu J, Cao X, Zhang Z, Lin Z, Wang T. Exosomes from patients with Parkinson's disease are pathological in mice. J Mol Med (Berl) 2019; 97:1329-1344. [PMID: 31302715 DOI: 10.1007/s00109-019-01810-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023]
Abstract
Cell-to-cell transport of risk molecules is a highly anticipated pathogenic mechanism in the initiation and progression of various neurodegenerative diseases. Extracellular exosome-mediated neuron to neuron transport of α-synuclein (α-syn) is increasingly recognized as a potential etiologic mechanism in Parkinson's disease (PD). Exosomal inflammation has also been increasingly implicated in PD pathogenesis and could trigger, facilitate, or aggravate disease development. However, these mechanisms have not been verified systematically, especially in vivo. Since serum contains abundant exosomes, the correlation between serum exosomes and PD pathogenesis remains unknown. Here, we show that exosomes from PD patient serum contain more α-syn and inflammatory factors such as IL-1β and TNF-α than neurological normal controls, eventually cause α-syn, ubiquitin, and P62 aggregation in recipient cells. More importantly, the intravenous or intrastriatal treatment of mice with exosomes from PD patient serum could evoke protein aggregation, trigger dopamine neuron degeneration, induce microglial activation, and cause apomorphine-coaxed rotation and movement defects. All these findings imply the exosome pathway as a new pathogenesis mechanism for PD, and therefore may present new targets for therapeutics. KEY MESSAGES: We have presented the evidence for a relationship between PD (Parkinson's disease) patients' serum exosomes and pathogenesis. PD patients' serum-derived exosomes could induce α-syn, ubiquitin and P62 aggregation in recipient cells. Intravenous or intrastriatal treatments of mice with PD exosomes were able to recapitulate the molecular, cellular and behavioral phenotypes of PD.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China.,Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China.,Department of Neurology, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Xiaoyun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Centre for Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School; Division of Basic Neuroscience, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, 02478, USA
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
23
|
Farrand AQ, Helke KL, Aponte-Cofresí L, Gooz MB, Gregory RA, Hinson VK, Boger HA. Effects of vagus nerve stimulation are mediated in part by TrkB in a parkinson's disease model. Behav Brain Res 2019; 373:112080. [PMID: 31301412 DOI: 10.1016/j.bbr.2019.112080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Vagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson's disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB). We have previously shown that striatal BDNF is increased after VNS in a lesion model of PD. By chronically administering ANA-12, a TrkB-specific antagonist, we aimed to determine TrkB's role in beneficial VNS effects for a PD model. In this study, we administered a noradrenergic neurotoxin, DSP-4, intraperitoneally and one week later administered a bilateral intrastriatal dopaminergic neurotoxin, 6-OHDA. At this time, the left vagus nerve was cuffed for stimulation. Eleven days later, rats received VNS twice per day for ten days, with daily locomotor assessment. Daily ANA-12 injections were given one hour prior to the afternoon stimulation and concurrent locomotor session. Following the final VNS session, rats were euthanized, and left striatum, bilateral substantia nigra and locus coeruleus were sectioned for immunohistochemical detection of neurons, α-synuclein, astrocytes, and microglia. While ANA-12 did not avert behavioral improvements of VNS, and only partially prevented VNS-induced attenuation of neuronal loss in the locus coeruleus, it did stop neuronal and anti-inflammatory effects of VNS in the nigrostriatal system, indicating a role for TrkB in mediating VNS efficacy. However, our data also suggest that BDNF-TrkB is not the sole mechanism of action for VNS in PD.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA; Dept of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave, Children's Hospital 309, MSC 908, Charleston, SC, 29425, USA
| | - Luis Aponte-Cofresí
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Monika B Gooz
- Dept of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St, DDB 507, MSC 139, Charleston, SC, 29425, USA
| | - Rebecca A Gregory
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA
| | - Vanessa K Hinson
- Dept of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 309, MSC 606, Charleston, SC, 29425, USA
| | - Heather A Boger
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
Diamantopoulou E, Baxendale S, de la Vega de León A, Asad A, Holdsworth CJ, Abbas L, Gillet VJ, Wiggin GR, Whitfield TT. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 ( gpr126) mutant. eLife 2019; 8:44889. [PMID: 31180326 PMCID: PMC6598766 DOI: 10.7554/elife.44889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design.
Collapse
Affiliation(s)
- Elvira Diamantopoulou
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Anzar Asad
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Celia J Holdsworth
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Leila Abbas
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Valerie J Gillet
- Information School, University of Sheffield, Sheffield, United Kingdom
| | | | - Tanya T Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Saragovi HU, Galan A, Levin LA. Neuroprotection: Pro-survival and Anti-neurotoxic Mechanisms as Therapeutic Strategies in Neurodegeneration. Front Cell Neurosci 2019; 13:231. [PMID: 31244606 PMCID: PMC6563757 DOI: 10.3389/fncel.2019.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins (NTs) are a subset of the neurotrophic factor family. These growth factors were originally named based on the nerve growth functional assays used to identify them. NTs act as paracrine or autocrine factors for cells expressing NT receptors. The receptors and their function have been studied primarily in cells of the nervous system, but are also present in the cardiovascular, endocrine, and immune systems, as well as in many neoplastic cells. The signals activated by NTs can be varied, depending on cellular stage and context, healthy or disease states, and depending on whether the specific NTs and their receptors are expressed in the relevant cells. In the healthy central and peripheral adult nervous systems, NTs drive neuronal survival, phenotype, synaptic maintenance, and function. Deficiencies of the NT/NT receptor axis are causally associated with disease onset or disease progression. Paradoxically, NTs can also drive synaptic loss and neuronal death. In the embryonic stage this activity is essential for proper developmental pruning of the nervous system, but in the adult it can be associated with neurodegenerative disease. Given their key role in neuronal survival and death, NTs and NT receptors have long been considered therapeutic targets to achieve neuroprotection. The first neuroprotective approaches consisted of enhancing neuronal survival signals using NTs. Later strategies selectively targeted receptors to induce survival signals specifically, while avoiding activation of death signals. Recently, the concept of selectively targeting receptors to reduce neuronal death signals has emerged. Here, we review the rationale of each neuroprotective strategy with respect to the complex cell biology and pharmacology of each target receptor.
Collapse
Affiliation(s)
- Horacio Uri Saragovi
- Lady Davis Institute, Montreal, QC, Canada.,Jewish General Hospital, Montreal, QC, Canada.,Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| | - Alba Galan
- Lady Davis Institute, Montreal, QC, Canada.,Jewish General Hospital, Montreal, QC, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada.,McGill University Health Centre, Montreal, QC, Canada.,Montreal Neurological Institute, Mcgill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Sidorova YA, Volcho KP, Salakhutdinov NF. Neuroregeneration in Parkinson's Disease: From Proteins to Small Molecules. Curr Neuropharmacol 2019; 17:268-287. [PMID: 30182859 PMCID: PMC6425072 DOI: 10.2174/1570159x16666180905094123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostria-tal dopamine neurons. There is no cure for PD and current therapy is limited to supportive care that partially alleviates dis-ease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopamine neurons, drugs restoring these neurons may significantly improve treatment of PD. Method: A literature search was performed using the PubMed, Web of Science and Scopus databases to discuss the pro-gress achieved in the development of neuroregenerative agents for PD. Papers published before early 2018 were taken into account. Results: Here, we review several groups of potential agents capable of protecting and restoring dopamine neurons in cul-tures or animal models of PD including neurotrophic factors and small molecular weight compounds. Conclusion: Despite the promising results of in vitro and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients. Meanwhile, a few promising biologicals and small molecules have been identified. Their further clinical development can eventually give rise to disease-modifying drugs for PD. Thus, inten-sive research in the field is justified.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
27
|
Tom S, Rane A, Katewa AS, Chamoli M, Matsumoto RR, Andersen JK, Chinta SJ. Gedunin Inhibits Oligomeric Aβ1–42-Induced Microglia Activation Via Modulation of Nrf2-NF-κB Signaling. Mol Neurobiol 2019; 56:7851-7862. [DOI: 10.1007/s12035-019-1636-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
28
|
Ma K, Han C, Zhang G, Guo X, Xia Y, Wan F, Yin S, Kou L, Liu L, Huang J, Xiong N, Wang T. Reduced VMAT2 expression exacerbates the hyposmia in the MPTP model of Parkinson's disease. Biochem Biophys Res Commun 2019; 513:306-312. [PMID: 30954223 DOI: 10.1016/j.bbrc.2019.03.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 11/17/2022]
Abstract
Hyposmia occurs during the prodromal phase of Parkinson's disease (PD), while the underlying mechanisms remain unclear. Discussed are altered dopamine content and impairment of neurogenesis of olfactory bulbs (OB), which has been suggested to be linked to olfactory dysfunction. Given that mouse with reduced vesicular monoamine transporter 2 (VMAT2) expression is now deemed as a relatively new PD animal model simulating motor and nonmotor symptoms, it may provide a new insight into investigating the mechanisms of hyposmia in the context of PD. In this study, we examined the effect of subacute administration of MPTP on mice with a reduced expression of VMAT2, focusing on the histopathological and biochemical alterations, specifically, TH expression level, dopamine content as well as neurogenesis in OB. Interestingly, mice with a reduced VMAT2 expression displayed more obvious olfactory impairment in response to MPTP administration accompanied by markedly decreased dopaminergic interneurons in OB. Furthermore, neurogenesis in OB was also further impaired after MPTP due to reduced VMAT2 expression. We therefore demonstrated that reduced expression of VMAT2 contributed to the impairment of hyposmia, pathologically, the degeneration of extranigral systems and reduced neurogenesis might be the underlying mechanisms.
Collapse
Affiliation(s)
- Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
7,8-Dihydroxyflavone Protects Nigrostriatal Dopaminergic Neurons from Rotenone-Induced Neurotoxicity in Rodents. PARKINSONS DISEASE 2019; 2019:9193534. [PMID: 30944722 PMCID: PMC6421741 DOI: 10.1155/2019/9193534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/11/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is thought to be a promising therapeutic agent for various neurodegenerative diseases. The major purpose of this study was to investigate the neuroprotective effects of 7,8-DHF on the rotenone-induced motor deficit of Parkinson's disease. Nine-month-old rats were treated with rotenone (2 mg/kg/day, i.h.) for 5 weeks to establish the animal model of Parkinson's disease (PD), and 7,8-DHF (5 mg/kg, i.p.) was administrated daily throughout the whole period of rotenone injection. Five weeks later, an open field test was used to assess the motor ability of the animals. TH immunostaining was performed to evaluate rotenone-induced neurotoxicity on substantia nigra (SN) dopaminergic neurons and the DA terminals in the striatum. Western blot analyses were used to examine the expressions of TH, BDNF/TrkB signaling cascades, phospho-α-synuclein (Ser129), α-synuclein, and phospho-tau (Ser396) in SN. The results revealed that treatment with 7,8-DHF improved PD model's behavioral performance and reduced dopaminergic neuron loss in the SN and striatum, associated with the activation of TrkB receptors and its signaling cascades, and reduced p-MAPK, p-α-synuclein, and p-tau. Collectively, these results indicated that 7,8-DHF displayed prominent neuroprotective properties, providing a promising therapeutic strategy for PD treatment.
Collapse
|
30
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
31
|
The effects of rotenone on TH, BDNF and BDNF-related proteins in the brain and periphery: Relevance to early Parkinson's disease. J Chem Neuroanat 2019; 97:23-32. [PMID: 30690135 DOI: 10.1016/j.jchemneu.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Loss of dopaminergic neurons in the substantia nigra (SN) is one of the pathological hallmarks in Parkinson's disease (PD). This neuron loss is accompanied by reduced protein and activity levels of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Reduced nigral brain-derived neurotrophic factor (BDNF) has been postulated to contribute to the loss of nigral dopaminergic neurons in PD by causing a lack of trophic support. Prior to this nigral cell loss many patients develop non-motor symptoms such as hyposmia, constipation and orthostatic hypotension. We investigated how TH, BDNF and BDNF related receptors are altered in the SN, olfactory bulb, adrenal glands and colon (which are known to be affected in PD) using rotenone-treated rats. Rotenone was administered to Sprague-Dawley rats at a dose of 2.75 mg/kg, 5 days/week for 4 weeks, via intraperitoneal injections. Rats underwent behavioural testing, and tissues were collected for western blot and ELISA analysis. This rotenone treatment induced reduced rears and distance travelled in the rearing and open field test, respectively but caused no impairments in forced movement (rotarod test). The SN had changes consistent with a pro-apoptotic state, such as increased proBDNF but no change in TH; whereas, the colon had significantly reduced TH and increased sortilin. Thus, our results indicate further investigation is warranted for this rotenone-dosing paradigm's capacity for reproducing the early stage of PD, as we observed impairments in voluntary movement and pathology in the colon without overt motor symptoms or nigral dopaminergic loss.
Collapse
|
32
|
Zhao J, Du J, Pan Y, Chen T, Zhao L, Zhu Y, Chen Y, Zheng Y, Liu Y, Sun L, Hang P, Du Z. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med 2019; 130:557-567. [PMID: 30472367 DOI: 10.1016/j.freeradbiomed.2018.11.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) pathway has been revealed as a novel therapeutic target for several neurological diseases. Recently, small-molecule TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) has received considerable attention as a novel potential candidate for the treatment of various BDNF-implicated human disorders. However, its roles in cardiac diseases are not fully understood. Here, the present study aimed to clarify the effects and mechanisms of 7,8-DHF on doxorubicin (Dox)-induced cardiotoxicity. Kunming mice and H9c2 cells were employed to investigate the functional role of 7,8-DHF both in vivo and in vitro. 7,8-DHF markedly increased cell viability and reduced cell death of Dox-treated cells. Meanwhile, 7,8-DHF significantly increased mitochondrial respiration, membrane potential, and optic atrophy 1 (OPA1) protein expression. 7,8-DHF improved cardiac function and attenuated cardiac injury in Dox mice model. Expression of AMP-activated protein kinase (AMPK) and signal transducers and activators of transcription 3 (STAT3) was restored by 7,8-DHF. Furthermore, the protective role of 7,8-DHF was abolished by ANA-12 (a specific antagonist of TrkB). In elucidating the molecular mechanism, the phosphorylation of Akt was significantly increased while extracellular regulated protein kinase (ERK) was decreased after 7,8-DHF treatment. The regulatory effects of 7,8-DHF on STAT3 and AMPK was reversed by Akt inhibitor. In summary, 7,8-DHF attenuated Dox-induced cardiotoxicity by activating Akt and increasing mitochondrial oxidative phosphorylation and thereby regulating STAT3, AMPK, and ERK signals. The present study enhanced current understanding of TrkB receptor in the cardiovascular system and provided a novel target for prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University (Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University), Harbin 150001, PR China
| | - Jingjing Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yang Pan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Tingting Chen
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Lihui Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yanmeng Zhu
- Department of Pharmacology, Harbin Medical University, Harbin 150081, PR China
| | - Yingfu Chen
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yuyang Zheng
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Yu Liu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, PR China
| | - Pengzhou Hang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, PR China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
33
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
34
|
Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J, Cheng C, Yang X, Nie S, Xu Y, Zhang Z, Papa SM, Ye K, Cao X. TRH Analog, Taltirelin Protects Dopaminergic Neurons From Neurotoxicity of MPTP and Rotenone. Front Cell Neurosci 2018; 12:485. [PMID: 30618632 PMCID: PMC6306470 DOI: 10.3389/fncel.2018.00485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023] Open
Abstract
Dopaminergic neurons loss is one of the main pathological characters of Parkinson’s disease (PD), while no suitable neuroprotective agents have been in clinical use. Thyrotropin-releasing hormone (TRH) and its analogs protect neurons from ischemia and various cytotoxins, but whether the effect also applies in PD models remain unclear. Here, we showed that Taltirelin, a long-acting TRH analog, exhibited the neuroprotective effect in both cellular and animal models of PD. The in vitro study demonstrated that Taltirelin (5 μM) reduced the generation of reactive oxygen species (ROS) induced by MPP+ or rotenone, alleviated apoptosis and rescued the viability of SH-SY5Y cells and rat primary midbrain neurons. Interestingly, SH-SY5Y cells treated with Taltirelin also displayed lower level of p-tau (S396) and asparagine endopeptidase (AEP) cleavage products, tau N368 and α-synuclein N103 fragments, accompanied by a lower intracellular monoamine oxidase-B (MAO-B) activity. In the subacute MPTP-induced and chronic rotenone-induced PD mice models, we found Taltirelin (1 mg/kg) significantly improved the locomotor function and preserved dopaminergic neurons in the substantia nigra (SN). In accordance with the in vitro study, Taltirelin down-regulated the levels of p-tau (S396), p-α-synuclein (S129) tau N368 and α-synuclein N103 fragments in SN and striatum. Together, this study demonstrates that Taltirelin may exert neuroprotective effect via inhibiting MAO-B and reducing the oxidative stress and apoptosis, preventing AEP activation and its subsequent pathological cleavage of tau and α-synuclein, thus provides evidence for Taltirelin in protective treatment of PD.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19:ijms19113650. [PMID: 30463271 PMCID: PMC6274766 DOI: 10.3390/ijms19113650] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
It is well known that brain-derived neurotrophic factor, BDNF, has an important role in a variety of neuronal aspects, such as differentiation, maturation, and synaptic function in the central nervous system (CNS). BDNF stimulates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide-3kinase (PI3K), and phospholipase C (PLC)-gamma pathways via activation of tropomyosin receptor kinase B (TrkB), a high affinity receptor for BDNF. Evidence has shown significant contributions of these signaling pathways in neurogenesis and synaptic plasticity in in vivo and in vitro experiments. Importantly, it has been demonstrated that dysfunction of the BDNF/TrkB system is involved in the onset of brain diseases, including neurodegenerative and psychiatric disorders. In this review, we discuss actions of BDNF and related signaling molecules on CNS neurons, and their contributions to the pathophysiology of brain diseases.
Collapse
|
36
|
Komnig D, Dagli TC, Habib P, Zeyen T, Schulz JB, Falkenburger BH. Fingolimod (FTY720) is not protective in the subacute MPTP mouse model of Parkinson's disease and does not lead to a sustainable increase of brain-derived neurotrophic factor. J Neurochem 2018; 147:678-691. [PMID: 30152864 DOI: 10.1111/jnc.14575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/29/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the loss of midbrain dopaminergic neurons and aggregates of α-synuclein termed Lewy bodies. Fingolimod (FTY720) is an agonist of sphingosine-1 phosphate receptors and an approved oral treatment for multiple sclerosis. Fingolimod elevates brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for dopaminergic neurons. BDNF and fingolimod are beneficial in several animal models of PD. In order to validate the therapeutic potential of fingolimod for the treatment of PD, we tested its effect in the subacute MPTP mouse model of PD. MPTP or vehicle was applied i.p. in doses of 30 mg/kg MPTP on five consecutive days. In order to recapitulate the combination of dopamine loss and α-synuclein aggregates found in PD, MPTP was first administered in Thy1-A30P-α-synuclein transgenic mice. Fingolimod was administered i.p. at a dose of 0.1 mg/kg every second day. Nigrostriatal degeneration was assayed by stereologically counting the number of dopaminergic neurons in the substantia nigra pars compacta, by analysing the concentration of catecholamines and the density of dopaminergic fibres in the striatum. MPTP administration produced a robust nigrostriatal degeneration, comparable to previous studies. Unexpectedly, we found no difference between mice with and without fingolimod treatment, neither at baseline, nor at 14 or 90 days after MPTP. Also, we found no effect of fingolimod in the subacute MPTP mouse model when we used wildtype mice instead of α-synuclein transgenic mice, and no effect with an increased dose of 1 mg/kg fingolimod administered every day. In order to explain these findings, we analysed BDNF regulation by fingolimod. We did find an increase of BDNF protein after a single injection of fingolimod 0.1 or 1.0 mg/kg, but not after multiple injections, indicating that the BDNF response to fingolimod is unsustainable over time. Taken together we did not observe a neuroprotective effect of fingolimod in the subacute MPTP mouse model of PD. We discuss possible explanations for this discrepancy with previous findings and conclude fingolimod might be beneficial for the nonmotor symptoms of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/6xgfn/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Thomas Zeyen
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, Ye K, Zhang Y, Cao X, Chen L, Zhang Z. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci 2018; 10:303. [PMID: 30337867 PMCID: PMC6180189 DOI: 10.3389/fnagi.2018.00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
Vascular cognitive impairment (VCI) encompasses all causes of cerebrovascular disease that lead to cognitive decline, or overt dementia, atherosclerotic disease being the most common contributor. However, few rodent models that mimic the pathology of VCI replicated the clinical cerebrovascular atherosclerosis. Here we aimed to investigate the mechanism underlying VCI in an Apolipoprotein E knockout (ApoE-KO) mouse model fed with western style food with implantation of bilateral shear stress modifiers. We established a cognitive decline in spatial learning and memory developed in the bilateral modifier treated mice. Brain imaging and pathological examinations demonstrated reduced glucose intake and neuronal loss in hippocampus. Although no amyloid plaques or neurofibrillary tangles (NFTs) were observed, tau pathology including hyperphosphorylation, paired helical filament formation and pathologic truncation were found at considerable higher extent in the bilateral modifier group 8 weeks post the procedure. In addition, gliosis and microglia activation were confirmed in corpus callosum (CC) and ventral striatum. Thus, this ApoE-KO mouse model faithfully replicates the stenosis of common carotid artery (CCA) and cognitive impairment following atherosclerotic deposition and global cerebral hypoperfusion. The close correlation of cognitive decline and tau pathology indicates the toxic tau species could be at least partially responsible for the neurodegenerative changes induced by the chronic hypoxia/ischemia.
Collapse
Affiliation(s)
- Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Díaz-Hung ML, Ruiz-Fuentes JL, Díaz-García A, León-Martínez R, Alberti-Amador E, Pavón-Fuentes N, Blanco-Lezcano L. Impairment in exploratory behavior is associated with arc gene overexpression in the dorsolateral striatum of rats with nigral injection of l-buthionine sulfoximine. Neurosci Lett 2018; 687:26-30. [PMID: 30223000 DOI: 10.1016/j.neulet.2018.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
The aims of the present work were to evaluate the exploratory activity in Sprague-Dawley rats, as well as to analyze the nigral and striatal mRNA expression of the plasticity-related genes bdnf and arc after L-buthionine sulfoximine (BSO) injection into substantia nigra compacta. Lesioned rats traveled less distance in open field but did not show a decline in the novel object recognition test. On the other hand, RT-PCR analysis showed overexpression of striatal arc 24 h post-lesion; no significant changes in bdnf expression were observed in nigral or striatal tissue. These results suggest that intranigral BSO injection causes impairment in exploratory behavior in these rats, by affecting locomotion, which is associated with changes in striatal synaptic plasticity.
Collapse
Affiliation(s)
- M L Díaz-Hung
- International Center for Neurological Restoration (CIREN), Havana, Cuba.
| | | | - A Díaz-García
- Pharmaceutics Biological Laboratories (LABIOFAM), Havana, Cuba
| | - R León-Martínez
- Departament of Molecular and Celular Biology, Faculty of Biology, Pontifical Catholic University of Chile, Santiago de Chile, Chile
| | - E Alberti-Amador
- International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - N Pavón-Fuentes
- International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - L Blanco-Lezcano
- International Center for Neurological Restoration (CIREN), Havana, Cuba
| |
Collapse
|
39
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson's disease. Neurotoxicology 2018; 65:166-173. [PMID: 29471019 DOI: 10.1016/j.neuro.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.
Collapse
|
41
|
Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 2018; 55:6939-6955. [PMID: 29372544 DOI: 10.1007/s12035-018-0885-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.
Collapse
|
42
|
Chen JF, Wang M, Zhuang YH, Behnisch T. Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res 2018; 13:717-726. [PMID: 29722326 PMCID: PMC5950684 DOI: 10.4103/1673-5374.230300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP+), which cause the death of dopaminergic neurons. Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents. However, it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+. In this study, MPP+ (100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease. At 7 days after administration, the number of bromodeoxyuridine (BrdU)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased, indicating enhanced neurogenesis. In contrast, a reduction in BrdU-positive cells was detected in the substantia nigra. Administration of brain-derived neurotrophic factor (100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra. These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.
Collapse
Affiliation(s)
- Jun-Fang Chen
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Man Wang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ying-Han Zhuang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:14-20. [PMID: 28899496 DOI: 10.1016/j.phymed.2017.07.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/29/2017] [Accepted: 07/01/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND For centuries, agents derived from natural sources (mother nature), especially plants have been the primary source of medicine. Neem, also referred to as Azadirachta indica is one such plant that has been so named because it provides freedom from all diseases, and used for thousands of years in Indian and African continents. Different parts of the plant including flowers, leaves, seeds and bark have been used to treat both acute and chronic human diseases; and used as insecticide; antimicrobial, larvicidal, antimalarial, antibacterial, antiviral, and spermicidal. PURPOSE What is there in neem and how it manifests its wide variety of effects is the focus of this review. How neem and its constituents modulate various cellular pathways is discussed. The animal and human studies carried out with neem and its constituents is also discussed. CONCLUSION Over 1000 research articles published on neem has uncovered over 300 structurally diverse constituents, one third of which are limonoids including nimbolide, azadarachtin, and gedunin. These agents manifest their effects by modulating multiple cell signaling pathways.
Collapse
Affiliation(s)
- Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | |
Collapse
|
44
|
Chronic mild stress augments MPTP induced neurotoxicity in a murine model of Parkinson's disease. Physiol Behav 2017; 173:132-143. [DOI: 10.1016/j.physbeh.2017.01.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
|
45
|
Abstract
In the last few years, exciting properties have emerged regarding the activation, signaling, mechanisms of action, and therapeutic targeting of the two types of neurotrophin receptors: the p75NTR with its intracellular and extracellular peptides, the Trks, their precursors and their complexes. This review summarizes these new developments, with particular focus on neurodegenerative diseases. Based on the evolving knowledge, innovative concepts have been formulated regarding the pathogenesis of these diseases, especially the Alzheimer's and two other, the Parkinson's and Huntington's diseases. The medical progresses include original procedures of diagnosis, started from studies in mice and now investigated for human application, based on innovative classes of receptor agonists and blockers. In parallel, comprehensive studies have been and are being carried out for the development of drugs. The relevance of these studies is based on the limitations of the therapies employed until recently, especially for the treatment of Alzheimer's patients. Starting from well known drugs, previously employed for non-neurodegenerative diseases, the ongoing progress has lead to the development of small molecules that cross rapidly the blood-brain barrier. Among these molecules the most promising are specific blockers of the p75NTR receptor. Additional drugs, that activate Trk receptors, were shown effective against synaptic loss and memory deficits. In the near future such approaches, coordinated with treatments with monoclonal antibodies and with developments in the microRNA field, are expected to improve the therapy of neurodegenerative diseases, and may be relevant also for other human disease conditions.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
46
|
N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson's Disease and in MPP +-Induced Neurons via Promoting the Conversion of proNGF to NGF. Mol Neurobiol 2017; 55:2258-2267. [PMID: 28321769 DOI: 10.1007/s12035-017-0486-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Insufficient production of nerve growth factor (NGF) is implicated in Parkinson's disease (PD). We recently discovered that caffeic acid derivative N-propargyl caffeamide (PACA) not only potentiated NGF-induced neurite outgrowth but also attenuated 6-hydroxydopamine neurotoxicity in neuronal culture. The aim of the present study was to investigate whether PACA could increase NGF levels against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in a mouse PD model. We induced parkinsonism in mice by intraperitoneal injection of MPTP for seven consecutive days. Animal motor functions were assessed by rotarod test and pole test. Our results showed that PACA ameliorated motor impairments in MPTP-challenged mice. Based on Western blot analysis and/or immunofluorescence staining of NGF and tyrosine hydroxylase (TH), PACA preserved TH levels in the midbrain substantia nigra pars compacta. PACA also increased NGF expression while it decreased proNGF accumulation. Interestingly, NGF was widely induced in the midbrains including astrocytes. To elucidate the mechanisms by which PACA induces NGF, we focused on the effects of PACA on two neurotrophic signaling pathways, the PI3K and MEK pathways. We found that PACA induced the phosphorylation of Akt, ERK, and CREB against MPTP-mediated alterations. Importantly, PACA increased NGF levels and subsequently induced TrkA activation in MPTP-treated mice. Consistently, PACA also increased NGF levels in dopaminergic PC12 cells and primary rat midbrain neurons against N-methyl-4-phenylpyridinium iodide (MPP+) toxicity. ERK and PI3K inhibitors attenuated the effects of PACA on NGF levels. Collectively, our results suggest that PACA may rescue NGF insufficiency via sequential activation of PI3K/Akt, ERK1/2, and CREB signaling pathways. Graphical Abstract ᅟ.
Collapse
|
47
|
Tan Y, Nie S, Zhu W, Liu F, Guo H, Chu J, Cao XB, Jiang X, Zhang Y, Li Y. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice. Front Aging Neurosci 2016; 8:287. [PMID: 27965573 PMCID: PMC5126466 DOI: 10.3389/fnagi.2016.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF), a tyrosine kinase B agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO) mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. Five-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5 mg/kg) or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterward, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP) as well as AEP-derived truncated tau N368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope). These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tau N368.
Collapse
Affiliation(s)
- Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Wende Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Fang Liu
- Department of Medicine, LuoHu Chronic Disease Control and Cure Hospital Shenzhen, China
| | - Hailong Guo
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| | - Jiewen Chu
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| | - Xue B Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| |
Collapse
|
48
|
Han C, Nie S, Chen G, Ma K, Xiong N, Zhang Z, Xu Y, Wang T, Papa SM, Cao X. Intrastriatal injection of ionomycin profoundly changes motor response to l-DOPA and its underlying molecular mechanisms. Neuroscience 2016; 340:23-33. [PMID: 27771532 DOI: 10.1016/j.neuroscience.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Long-term l-DOPA treatment of Parkinson's disease is accompanied with fluctuations of motor responses and l-DOPA-induced dyskinesia (LID). Phosphorylation of the dopamine and c-AMP regulated phosphoprotein of 32kDa (DARPP-32) plays a role in the pathogenesis of LID, and thus dephosphorylation of this protein by activated calcineurin may help reduce LID. One important activator of calcineurin is the Ca2+ ionophore ionomycin. Here, we investigated whether intrastriatal injection of ionomycin to hemiparkinsonian rats produced changes in l-DOPA responses including LID. We also analyzed the effects of ionomycin on key molecular mediators of LID. Results confirmed our hypothesis that ionomycin could downregulate the phosphorylation of DARPP32 at Thr-34 and reduce LID. Besides, ionomycin decreased two established molecular markers of LID, FosB/ΔFosB and phosphorylated ERK1/2. Ionomycin also decreased the phosphorylation of three main subunits of the NMDA receptor, NR1 phosphorylated at ser896, NR2A phosphorylated at Tyr-1325, and NR2B phosphorylated at Tyr-1472. Furthermore, the anti-LID effect of striatally injected ionomycin was not accompanied by reduction of the antiparkinsonian action of l-DOPA. These data indicate that ionomycin largely interacts with striatal mechanisms that are critical to the l-DOPA motor response highlighting the role of protein dephosphorylation by calcineurin.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Josephy-Hernandez S, Jmaeff S, Pirvulescu I, Aboulkassim T, Saragovi HU. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiol Dis 2016; 97:139-155. [PMID: 27546056 DOI: 10.1016/j.nbd.2016.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are prevalent, complex and devastating conditions, with very limited treatment options currently available. While they manifest in many forms, there are commonalities that link them together. In this review, we will focus on neurotrophins - a family of related factors involved in neuronal development and maintenance. Neurodegenerative diseases often present with a neurotrophin imbalance, in which there may be decreases in trophic signaling through Trk receptors for example, and/or increases in pro-apoptotic activity through p75. Clinical trials with neurotrophins have continuously failed due to their poor pharmacological properties as well as the unavoidable activation of p75. Thus, there is a need for drugs without such setbacks. Small molecule neurotrophin mimetics are favorable options since they can selectively activate Trks or inactivate p75. In this review, we will initially present a brief outline of how these molecules are synthesized and their mechanisms of action; followed by an update in the current state of neurotrophins and small molecules in major neurodegenerative diseases. Although there has been significant progress in the development of potential therapeutics, more studies are needed to establish clear mechanisms of action and target specificity in order to transition from animal models to the assessment of safety and use in humans.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sean Jmaeff
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Iulia Pirvulescu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tahar Aboulkassim
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Luo D, Shi Y, Wang J, Lin Q, Sun Y, Ye K, Yan Q, Zhang H. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci Lett 2016; 620:43-9. [DOI: 10.1016/j.neulet.2016.03.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/29/2022]
|