1
|
Kolligundla LP, Sullivan KM, Mukhi D, Andrade-Silva M, Liu H, Guan Y, Gu X, Wu J, Doke T, Hirohama D, Guarnieri P, Hill J, Pullen SS, Kuo J, Inamoto M, Susztak K. Glutathione-specific gamma-glutamylcyclotransferase 1 ( CHAC1) increases kidney disease risk by modulating ferroptosis. Sci Transl Med 2025; 17:eadn3079. [PMID: 40267214 DOI: 10.1126/scitranslmed.adn3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/20/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association studies (GWASs) have identified more than 1000 loci where genetic variants correlate with kidney function. However, the specific genes, cell types, and mechanisms influenced by these genetic variants remain largely uncharted. Here, we identified glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) on chromosome 15 as affected by GWAS variants by analyzing human kidney gene expression and methylation information. Both CHAC1 RNA and protein were expressed in the loop of Henle region in mouse and human kidneys, and CHAC1 expression was higher in patients carrying disease risk variants. Using CRISPR technology, we created mice with a single functional copy of the Chac1 gene (Chac1+/-) that displayed no baseline phenotypic alterations in kidney structure or function. These mice demonstrated resilience to kidney disease in multiple models, including folic acid-induced nephropathy, adenine-induced chronic kidney disease, and uninephrectomy-streptozotocin-induced diabetic nephropathy. We further showed that CHAC1 plays a critical role in degrading the cellular antioxidant glutathione. Tubule cells isolated from Chac1+/- mice showed increased glutathione, decreased lipid peroxidation, improved cell viability, and protection against ferroptosis. Expression of ferroptosis-associated genes was also lower in mice with only one copy of Chac1. Higher CHAC1 protein also correlated with ferroptosis-related protein abundance in kidney biopsies from patients with kidney disease. This study positions CHAC1 as an important mediator of kidney disease that influences glutathione concentrations and ferroptosis, suggesting potential avenues to explore for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Lakshmi P Kolligundla
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Katie M Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Pediatrics, Medical College of Wisconsin Pediatric Nephrology, Milwaukee, WI 53226, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Magaiver Andrade-Silva
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Yuting Guan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Xiangchen Gu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Daigoro Hirohama
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Paolo Guarnieri
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jon Hill
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jay Kuo
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
2
|
Ying X, Gao K, Luo Z, Ren Y, Shen C, Zhang H, Zhan C, Xu Z, Wu J, Wu G. Paliperidone Inhibits Ferroptosis Mediated by Autophagy in Renal Tubular Epithelial Cells by Targeting CHAC1. Adv Biol (Weinh) 2025:e2400648. [PMID: 40259582 DOI: 10.1002/adbi.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Renal tubular epithelial cell injury is a significant factor in the formation of kidney stones. However, the regulatory mechanisms behind this injury, especially the association with autophagy-mediated ferroptosis, remain unclear. This study first identified the upregulated ferroptosis related gene ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1 (CHAC1) in kidney stone samples through bioinformatics analysis. Subsequently, a damage model is established by treating renal tubular epithelial cells (HK-2) cells with calcium oxalate (CaOx) and investigated its function by downregulating CHAC1 expression through shRNA transfection. Autophagy status and oxidative stress are evaluated by detecting autophagy (LC3I, LC3II, Beclin 1) and ferroptosis (GPX4) related protein expression using GFP-LC3 adenovirus and Western Blot. In addition, the interaction between small molecule drug Paliperidone (Pali) and CHAC1 is also investigated through molecular docking and cell thermal migration assays to explore therapeutic potential. CHAC1 is upregulated in kidney stones and associated with ferroptosis. Knockdown of CHAC1 weakened CaOx-induced autophagy and ferroptosis. Moreover, Pali can target CHAC1 protein, reduce CHAC1 activity, and inhibit autophagy-mediated ferroptosis during cellular injury. Pali can inhibit autophagy-mediated ferroptosis in renal tubular epithelial cells by targeting CHAC1, offering a new direction for the treatment of kidney stones.
Collapse
Affiliation(s)
- Xiangrong Ying
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Ke Gao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Zhengang Luo
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Yu Ren
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Chong Shen
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Haojie Zhang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Chuanchuan Zhan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Zibin Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Jintao Wu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Gangfeng Wu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, China
| |
Collapse
|
3
|
Hong J, Yang Z, Gao J, Yu K, Hu A, Kuang Y, Gajendran B, Zacksenhaus E, Xiao X, Wang C, Liu W, Ben-David Y. Vitamin D3 and its active form calcitriol suppress erythroleukemia through upregulation of CHAC1 and downregulation of NOTCH1. Med Oncol 2025; 42:138. [PMID: 40146328 DOI: 10.1007/s12032-025-02695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Vitamin D3 (VD3) and its active form calcitriol (Ca) exhibit anti-neoplastic activity against several types of cancer, although the underlying mechanism is not fully understood. Herein, we tested the effects of VD3 and Ca on erythro-leukemogenesis and investigated the underlying mechanism. VD3 and Ca treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by the Friend virus. In tissue culture, VD3 and Ca inhibited proliferation of leukemic cell lines. Growth inhibition was associated with induction of G1 phase cell cycle arrest and apoptosis. Transcription of the VD3 receptor, VDR, is strongly induced by Ca, but not VDR. However, leukemia growth suppression by both VD3 and Ca is shown to be independent of VDR. In leukemic cells, both VD3 and Ca induced genes associated with metabolic pathways. Both VD3 and Ca induce the cytosolic glutathione degradase CHAC1 through activation of the ER stress response pathway ATF3/ATF4/CHOP genes. Higher expression of CHAC1 also suppressed the oncogene NOTCH1. Accordingly, knockdown of CHAC1 antagonized the inhibitory effect of VD3 and Ca on leukemic growth leading to higher NOTCH1 expression. Conversely, overexpression of CHAC1 suppressed leukemia cell growth and inhibited the expression of NOTCH1. Additionally, glutathione antagonized leukemia cell suppression induced by VD3 and Ca, demonstrating that this vitamin inhibits the proliferation of leukemic cells via CHAC1. Taken together, our results demonstrated that VD3 and Ca can prolong the survival of leukemia mice and inhibit the proliferation of erythroleukemia cell HEL through CHAC1 or CHAC1-mediated NOTCH1 inhibition.
Collapse
MESH Headings
- Animals
- Calcitriol/pharmacology
- Mice
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/biosynthesis
- Cholecalciferol/pharmacology
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Up-Regulation/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Zhongyou Yang
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Jian Gao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Kunlin Yu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Anling Hu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Yi Kuang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Babu Gajendran
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Xiao Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Chunlin Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| | - Wuling Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| | - Yaacov Ben-David
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| |
Collapse
|
4
|
Ho KH, Hsu SY, Chen PH, Cheng CH, Liu AJ, Chien MH, Chen KC. Hypoxia enhances IL-8 signaling through inhibiting miR-128-3p expression in glioblastomas. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119885. [PMID: 39631468 DOI: 10.1016/j.bbamcr.2024.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive type of brain tumor known for its hypoxic microenvironment. Understanding the dysregulated mechanisms in hypoxic GBM is crucial for its effective treatment. Through data mining of The Cancer Genome Atlas (TCGA) with hypoxia enrichment scores and in vitro experiments, miR-128-3p was negatively correlated with hypoxia signaling and the epithelial-mesenchymal transition (EMT). Additionally, lower miR-128-3p levels existed in hypoxic GBM, leading to desensitizing temozolomide (TMZ)'s efficacy, a first-line therapeutic drug for GBM. Overexpressing miR-128-3p enhanced both the in vitro and in vivo sensitivity of hypoxic gliomas to TMZ treatment. Mechanistically, HIF-1α suppressed miR-128-3p expression in hypoxic GBM. Through establishing miR-128-3p-mediated transcriptomic profiles and data mining, interleukin (IL)-8 was selected. IL-8 respectively showed positive and negative correlations with hypoxia and miR-128-3p, and was associated with poor TMZ therapeutic results in GBM. Elevated miR-128-3p, which targets both the 3'-untranslated region (UTR) and 5'UTR of IL-8, resulted in suppression of IL-8 expression. Moreover, IL-8 was validated to be involved in HIF-1α/miR-128-3p-regulated TMZ sensitivity and the EMT in hypoxic GBM cells. Collectively, the HIF-1α/miR-128-3p/IL-8 signaling pathway plays a critical role in promoting the progression of hypoxic GBM. Targeting this signaling pathway holds promise as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shao-Yuan Hsu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Peng-Hsu Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Pandey R, Natarajan P, Reddy UK, Du W, Sirbu C, Sissoko M, Hankins GR. Deciphering the dose-dependent effects of thymoquinone on cellular proliferation and transcriptomic changes in A172 glioblastoma cells. PLoS One 2025; 20:e0318185. [PMID: 39874307 PMCID: PMC11774404 DOI: 10.1371/journal.pone.0318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers. However, its specific anti-cancer mechanisms and pathways in glioblastoma remain to be completely elucidated. In this study, we assessed the impact of different TQ concentrations on the viability of A172 cells using WST-8 and Toluidine blue assays, followed by RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs). We confirmed their expression levels through quantitative RT-PCR and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for these DEGs. RNA-seq revealed no significant gene expression changes at 2.5 μM and 5 μM TQ concentrations. However, at 25 μM and 50 μM, TQ significantly reduced cell viability dose-dependently. We identified 1548 DEGs at 25 μM TQ (684 up-regulated, 864 down-regulated) and 2797 DEGs at 50 μM TQ (1528 up-regulated, 1269 downregulated), with 1202 DEGs common to both concentrations. TQ inhibited key pathways such as PI3K-Akt signaling, calcium signaling, focal adhesion, and ECM-receptor interaction in A172 cells. It downregulated several potential oncogenes (e.g., AEBP1, MIAT) and genes linked to GBM proliferation and migration (e.g., SOCS2, HCP5) while modulating Wnt signaling and up-regulating tumor suppressor genes (e.g., SPRY4, BEX2). TQ also affected p53 downstream targets, maintaining p53 levels. This study elucidates the anti-cancer mechanisms of TQ in A172 GBM cells, underscoring its effects on multiple signaling pathways and positioning TQ as a promising candidate for innovative glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Rachana Pandey
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, WV, United States of America
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| | - Wei Du
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Cristian Sirbu
- Cancer Center, Charleston Area Medical Center, Charleston, WV, United States of America
- Institute for Academic Medicine, Charleston, WV, United States of America
| | - Moussa Sissoko
- Katmai Oncology Group, Anchorage, Alaska, United States of America
| | - Gerald R. Hankins
- Department of Biology, West Virginia State University, Institute, WV, United States of America
| |
Collapse
|
6
|
Wang Q, Xue X, Chen Z, Zhang W, Qian Y, Chen D, Lin L, Yuan Y, Zhao W, Huang Z, Wang Y. Nootkatone inhibits the progression of glioblastoma by activating the ATF4-CHOP-CHAC1 pathway. Mol Med 2025; 31:13. [PMID: 39819316 PMCID: PMC11737244 DOI: 10.1186/s10020-025-01064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
Glioblastoma multiforme (GBM) represents a primary brain tumor that is widely prevalent, and clinical drugs available for its treatment exhibit varying degrees of resistance. Nootkatone (NKT) is a functional sesquiterpene sourced from traditional Chinese medicine --Alpinia Oxyphylla Miq and has been reported to have a diverse range of pharmacological properties. However, it remains unknown whether there are effects of NKT on GBM. In this study, we found that NKT inhibited the growth of GBM cells in a dose-dependent manner in vitro. Subsequently, we observed that NKT suppressed the migration and arrested cell cycle at G2/M phase of GBM cells. Furthermore, NKT induced the death of GBM cells accompanied by an increase in reactive oxygen species (ROS) production. Mechanistically, we found that NKT inhibited the progression of GBM cells through activating the ATF4-CHOP-CHAC1 pathway in GBM cells. Furthermore, NKT-induced inhibition of migration and proliferation in GBM cells was partially restored by ATF4 or CHAC1 knockdown. Finally, we found that NKT inhibited the growth of tumor in GBM orthotopic mice model through activation of ATF4-CHOP-CHAC1 axis. Taken together, our findings show that NKT suppresses the growth and migration of GBM cells by activating the ATF4-CHOP-CHAC1 pathway, which in turn prevents the tumorigenesis of GBMs and provides a novel perspective for the development of drugs against GBM.
Collapse
Affiliation(s)
- Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhichao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqiao Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Sun J, Ren H, Wang J, Xiao X, Zhu L, Wang Y, Yang L. CHAC1: a master regulator of oxidative stress and ferroptosis in human diseases and cancers. Front Cell Dev Biol 2024; 12:1458716. [PMID: 39534397 PMCID: PMC11554486 DOI: 10.3389/fcell.2024.1458716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
CHAC1, an essential regulator of oxidative stress and ferroptosis, is increasingly recognized for its significant roles in these cellular processes and its impact on various human diseases and cancers. This review aims to provide a comprehensive overview of CHAC1's molecular functions, regulatory mechanisms, and effects in different pathological contexts. Specifically, the study objectives are to elucidate the biochemical pathways involving CHAC1, explore its regulatory network, and discuss its implications in disease progression and potential therapeutic strategies. As a γ-glutamyl cyclotransferase, CHAC1 degrades glutathione, affecting calcium signaling and mitochondrial function. Its regulation involves transcription factors like ATF4 and ATF3, which control CHAC1 mRNA expression. CHAC1 is crucial for maintaining redox balance and regulating cell death pathways in cancer. Its elevated levels are associated with poor prognosis in many cancers, indicating its potential as a biomarker and therapeutic target. Additionally, CHAC1 influences non-cancerous diseases such as neurodegenerative and cardiovascular disorders. Therapeutically, targeting CHAC1 could increase cancer cell sensitivity to ferroptosis, aiding in overcoming resistance to standard treatments. This review compiles current knowledge and recent discoveries, emphasizing CHAC1's vital role in human diseases and its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jiasen Sun
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Hui Ren
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Jiawen Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Xiang Xiao
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lin Zhu
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanyan Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lili Yang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| |
Collapse
|
8
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
9
|
Besser E, Gelfand A, Procaccia S, Berman P, Meiri D. Cannabinoid combination targets NOTCH1-mutated T-cell acute lymphoblastic leukemia through the integrated stress response pathway. eLife 2024; 12:RP90854. [PMID: 39258755 PMCID: PMC11390110 DOI: 10.7554/elife.90854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.
Collapse
Affiliation(s)
- Elazar Besser
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Anat Gelfand
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Paula Berman
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
10
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
11
|
Wang Y, Xu M, Yao Y, Li Y, Zhang S, Fu Y, Wang X. Extracellular cancer‑associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor‑promoting roles and prognosis biomarker functions. Oncol Lett 2024; 27:167. [PMID: 38449793 PMCID: PMC10915806 DOI: 10.3892/ol.2024.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024] Open
Abstract
Tumor invasion and metastasis are the processes that primarily cause adverse outcomes in patients with cervical cancer. Cancer-associated fibroblasts (CAFs), which participate in cancer progression and metastasis, are novel targets for the treatment of tumors. The present study aimed to assess the heterogeneity of CAFs in the cervical cancer microenvironment through single-cell RNA sequencing. After collecting five cervical cancer samples and obtaining the CAF-associated gene sets, the CAFs in the cervical cancer microenvironment were divided into myofibroblastic CAFs and extracellular (ec)CAFs. The ecCAFs appeared with more robust pro-tumorigenic effects than myCAFs according to enrichment analysis. Subsequently, through combining the ecCAF hub genes and bulk gene expression data for cervical cancer obtained from The Cancer Genome Atlas and Gene Ontology databases, univariate Cox regression and least absolute shrinkage and selection operator analyses were performed to establish a CAF-associated risk signature for patients with cancer. The established risk signature demonstrated a stable and strong prognostic capability in both the training and validation cohorts. Subsequently, the association between the risk signature and clinical data was evaluated, and a nomogram to facilitate clinical application was established. The risk score was demonstrated to be associated with both the tumor immune microenvironment and the therapeutic responses. Moreover, the signature also has predictive value for the prognosis of head and neck squamous cell carcinoma, and bladder urothelial carcinoma, which were also associated with human papillomavirus infection. In conclusion, the present study assessed the heterogeneity of CAFs in the cervical cancer microenvironment, and a subgroup of CAFs that may be closely associated with tumor progression was defined. Moreover, a signature based on the hub genes of ecCAFs was shown to have biomarker functionality in terms of predicting survival rates, and therefore this CAF subgroup may become a therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Yuehan Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mingxia Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yeli Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yunfeng Fu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
12
|
Chen W, Lei C, Wang Y, Guo D, Zhang S, Wang X, Zhang Z, Wang Y, Ma W. Prognostic Prediction Model for Glioblastoma: A Ferroptosis-Related Gene Prediction Model and Independent External Validation. J Clin Med 2023; 12:jcm12041341. [PMID: 36835877 PMCID: PMC9960289 DOI: 10.3390/jcm12041341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant intracranial tumor with a poor prognosis. Ferroptosis is a newly discovered, iron-dependent, regulated cell death, and recent studies suggest its close correlation to GBM. The transcriptome and clinical data were obtained for patients diagnosed with GBM from TCGA, GEO, and CGGA. Ferroptosis-related genes were identified, and a risk score model was constructed using Lasso regression analyses. Survival was evaluated by univariate or multivariate Cox regressions and Kaplan-Meier analyses, and further analyses were performed between the high- and low-risk groups. There were 45 ferroptosis-related different expressed genes between GBM and normal brain tissues. The prognostic risk score model was based on four favorable genes, CRYAB, ZEB1, ATP5MC3, and NCOA4, and four unfavorable genes, ALOX5, CHAC1, STEAP3, and MT1G. A significant difference in OS between high- and low-risk groups was observed in both the training cohort (p < 0.001) and the validation cohorts (p = 0.029 and 0.037). Enrichment analysis of pathways and immune cells and functioning was conducted between the two risk groups. A novel prognostic model for GBM patients was developed based on eight ferroptosis-related genes, suggesting a potential prediction effect of the risk score model in GBM.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuxiang Lei
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Guo
- Clinical Biobank, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sumei Zhang
- Clinical Biobank, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoxi Wang
- Clinical Biobank, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixin Zhang
- Clinical Biobank, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (Y.W.); (W.M.)
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (Y.W.); (W.M.)
| |
Collapse
|
13
|
Riggins TE, Whitsitt QA, Saxena A, Hunter E, Hunt B, Thompson CH, Moore MG, Purcell EK. Gene Expression Changes in Cultured Reactive Rat Astrocyte Models and Comparison to Device-Associated Effects in the Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522870. [PMID: 36712012 PMCID: PMC9881929 DOI: 10.1101/2023.01.06.522870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Implanted microelectrode arrays hold immense therapeutic potential for many neurodegenerative diseases. However, a foreign body response limits long-term device performance. Recent literature supports the role of astrocytes in the response to damage to the central nervous system (CNS) and suggests that reactive astrocytes exist on a spectrum of phenotypes, from beneficial to neurotoxic. The goal of our study was to gain insight into the subtypes of reactive astrocytes responding to electrodes implanted in the brain. In this study, we tested the transcriptomic profile of two reactive astrocyte culture models (cytokine cocktail or lipopolysaccharide, LPS) utilizing RNA sequencing, which we then compared to differential gene expression surrounding devices inserted into rat motor cortex via spatial transcriptomics. We interpreted changes in the genetic expression of the culture models to that of 24 hour, 1 week and 6 week rat tissue samples at multiple distances radiating from the injury site. We found overlapping expression of up to ∼250 genes between in vitro models and in vivo effects, depending on duration of implantation. Cytokine-induced cells shared more genes in common with chronically implanted tissue (≥1 week) in comparison to LPS-exposed cells. We revealed localized expression of a subset of these intersecting genes (e.g., Serping1, Chi3l1, and Cyp7b1) in regions of device-encapsulating, glial fibrillary acidic protein (GFAP)-expressing astrocytes identified with immunohistochemistry. We applied a factorization approach to assess the strength of the relationship between reactivity markers and the spatial distribution of GFAP-expressing astrocytes in vivo . We also provide lists of hundreds of differentially expressed genes between reactive culture models and untreated controls, and we observed 311 shared genes between the cytokine induced model and the LPS-reaction induced control model. Our results show that comparisons of reactive astrocyte culture models with spatial transcriptomics data can reveal new biomarkers of the foreign body response to implantable neurotechnology. These comparisons also provide a strategy to assess the development of in vitro models of the tissue response to implanted electrodes.
Collapse
|
14
|
CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress. Allergol Immunopathol (Madr) 2023; 51:99-110. [PMID: 36916093 DOI: 10.15586/aei.v51i2.760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is a singularly grievous and life-threatening syndrome. Its pathogenesis is closely related to inflammatory response, apoptosis, oxidative stress, and ferroptosis. Cation transport regulator-like protein 1 (CHAC1), as a proapoptic factor, may be involved in apoptosis, oxidative stress, and ferroptosis. This study aimed to explore the role of CHAC1 in the lipopolysaccharide (LPS)-induced the human renal proximal tubular epithelial (HK-2) cells. METHODS HK-2 cells were challenged with LPS to construct a model of sepsis-induced AKI in vitro. The role of CHAC1 in the LPS-induced HK-2 cells was explored using Western blot assay, cell counting kit-8 (CCK-8), flow cytometry, and colorimetric assays. Additionally, N-acetyl cysteine (NAC) was incubated with HK-2 cells to define deeply the relation between oxidative stress and apoptosis or ferroptosis. RESULTS The expression of CHAC1 was enhanced in the kidney tissues of mice with sepsis--induced multiple organ dysfunction syndrome (MODS), through the Gene Expression Omnibus database (GSE60088 microarray dataset), and in the LPS-induced HK-2 cells. The cell viability was significantly reduced by LPS treatment, which was at least partly restored by the transfection of siCHAC1#1 and siCHAC1#2 but not siNC. In addition, down-regulation of CHAC1 counteracted the LPS-induced reactive oxygen species level and malonaldehyde concentrations while restored the LPS-induced glutathione concentrations. Meanwhile, interference of CHAC1 neutralized LPS-induced apoptosis rate, and the relative level of cleaved poly(ADP-ribose) polymerase (PARP)/PARP, and cleaved caspase-3/caspase-3. In addition, silencing of CHAC1 recovered the LPS-induced enhanced protein level of glutathione peroxidase 4 (GPx4) whereas antagonized the LPS-induced relative protein level of ACSL4 and that of iron. Moreover, application of NAC inverted the effect of CHAC1 on apoptosis and ferroptosis in HK-2 cells. CONCLUSION CHAC1 exacerbated ferroptosis and apoptosis by enhancing oxidative stress in LPS-induced HK-2 cells.
Collapse
|
15
|
Gene Expression Profiling Elucidates Cellular Responses to NCX4040 in Human Ovarian Tumor Cells: Implications in the Mechanisms of Action of NCX4040. Cancers (Basel) 2022; 15:cancers15010285. [PMID: 36612280 PMCID: PMC9818835 DOI: 10.3390/cancers15010285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The nitric oxide donor, NCX4040 is a non-steroidal anti-inflammatory-NO donor and has been shown to be extremely cytotoxic to a number of human tumors, including ovarian tumors cells. We have found that NCX4040 is cytotoxic against both OVCAR-8 and its adriamycin-selected OVCAR-8 variant (NCI/ADR-RES) tumor cell lines. While the mechanism of action of NCX4040 is not entirely clear, we as well as others have shown that NCX4040 generates reactive oxygen species (ROS) and induces DNA damage in tumor cells. Recently, we have reported that NCX4040 treatment resulted in a significant depletion of cellular glutathione, and formation of both reactive oxygen and nitrogen species (ROS/RNS), resulting in oxidative stress in these tumor cells. Furthermore, our results indicated that more ROS/RNS were generated in OVCAR-8 cells than in NCI/ADR-RES cells due to increased activities of superoxide dismutase (SOD), glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. Further studies suggested that NCX4040-induced cell death may be mediated by peroxynitrite formed from NCX4040 in cells. In this study we used microarray analysis following NCX4040 treatment of both OVCAR-8 and its ADR-resistant variant to identify various molecular pathways involved in NCX4040-induced cell death. Here, we report that NCX4040 treatment resulted in the differential induction of oxidative stress genes, inflammatory response genes (TNF, IL-1, IL-6 and COX2), DNA damage response and MAP kinase response genes. A mechanism of tumor cell death is proposed based on our findings where oxidative stress is induced by NCX4040 from simultaneous induction of NOX4, TNF-α and CHAC1 in tumor cell death.
Collapse
|
16
|
Cui Y, Guo H, Zhang Q, Fang J, Xie Y, Chen S, Ma X, Gou L, Cui H, Geng Y, Ye G, Zhong Z, Ren Z, Wang Y, Deng J, Yu S, Cao S, Wang Z, Zuo Z. The combination of high glucose and LPS induces autophagy in bovine kidney epithelial cells via the Notch3/mTOR signaling pathway. BMC Vet Res 2022; 18:307. [PMID: 35953831 PMCID: PMC9367163 DOI: 10.1186/s12917-022-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aside respiratory diseases, beef cattle may also suffer from serious kidney diseases after transportation. Hyperglycemia and gram-negative bacterial infection may be the main reasons why bovine is prone to severe kidney disease during transportation stress, however, the precise mechanism is still unclear. The purpose of the current study is to explore whether the combined treatment of high glucose (HG) and lipopolysaccharide (LPS) could induce madin-darby bovine kidney (MDBK) cells injury and autophagy, as well as investigate the potential molecular mechanisms involved. RESULTS As we discovered, the combined effect of HG and LPS decreased MDBK cells viability. And, HG and LPS combination also induced autophagy in MDBK cells, which was characterized by increasing the expression of LC3-II/I and Beclin1 and decreasing p62 expression. LC3 fluorescence signal formation was also significantly increased by HG and LPS combination treatment. Furthermore, we measured whether the mammalian target of rapamycin (mTOR) and the Notch3 signaling pathways were involved in HG and LPS-induced autophagy. The results showed that the combination of HG and LPS significantly increased the protein expression of Notch3 and decreased protein expression of p-mTOR, indicating that Notch3 and mTOR signaling pathways were activated. However, co-treatment with the Notch3 inhibitor (DAPT) could reverse the induction of autophagy, and increased the protein expression of p-mTOR. CONCLUSIONS This study demonstrated that the combination effect of HG and LPS could induce autophagy in MDBK cells, and the Notch3/mTOR signaling pathway was involved in HG and LPS-induced autophagy.
Collapse
Grants
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (Beef Cattle/Yak, CARS-37) China Agriculture Research System of MOF and MARA
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
- (SCCXTD-2020-13) Sichuan beef cattle innovation team of National modern agricultural industry technology system
Collapse
Affiliation(s)
- Yaocheng Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qin Zhang
- Chengdu Customs of the People's Republic of China, Chengdu, 610095, Sichuan, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuming Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
Song S, Shu P. Expression of ferroptosis-related gene correlates with immune microenvironment and predicts prognosis in gastric cancer. Sci Rep 2022; 12:8785. [PMID: 35610340 PMCID: PMC9129902 DOI: 10.1038/s41598-022-12800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
The study is to explore the role of ferroptosis-related genes (FRGs) in the occurrence and development of gastric cancer (GC), and to construct a new prognosis signature to predict the prognosis in GC. Clinical information and corresponding RNA data of GC patients were downloaded from TCGA and GEO databases. Consensus clustering was performed to identify new molecular subgroups. ESTIMATE, CIBERSORT, McpCounter and TIMER algorithm were used to analyze the infiltration of immune cells in two molecular subgroups. LASSO algorithm and multivariate Cox analysis were used to construct a prognostic risk signature. Functional analysis was conducted to elucidate the underlying mechanisms. Finally, the FRPGs were verified by Quantitative Real-Time PCR. We obtained 16 FRGs and divided GC patients into two subgroups by consistent clustering. Cluster C1 with a higher abundance of immune cell infiltration but lower probability in response to immunotherapy, it was reasonable to speculate that Cluster C1 was in accordance with the immune rejection type. Functional analysis showed that the biological process of DEGs in training cohort mainly included immune globulin, and human immune response mediated by circulating immune globulin. GSEA analysis showed that compared with Cluster C2, Cluster C1 showed lower expression in lipid metabolism. The nomogram combined with risk signature and clinical features can accurately predict the prognosis of GC patients. We identified two molecular subtypes, Clusters C1 and C2. In Cluster C1, patients with poor prognosis present with a hyperimmune status and low lipid metabolism, and we speculate that Cluster C1 was in accordance with the immune rejection type. The risk model based on FRPGs can accurately predict the prognosis of GC. These results indicated that ferroptosis is associated with TIME, and deserved considerable attention in determining immunotherapy treatment strategy for GC patients.
Collapse
Affiliation(s)
- Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
18
|
Wang X, He MJ, Chen XJ, Bai YT, Zhou G. Glaucocalyxin A impairs tumor growth via amplification of the ATF4/CHOP/CHAC1 cascade in human oral squamous cell carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115100. [PMID: 35151835 DOI: 10.1016/j.jep.2022.115100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The natural extract glaucocalyxin A (GLA), purified from the aboveground sections of the Chinese traditional medicinal herb Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, has various pharmacological benefits, such as anti-bacterial, anti-coagulative, anti-neoplastic, and anti-inflammatory activities. Although GLA has shown anti-tumor activity against various cancers, the therapeutic potential and biological mechanisms of GLA remain to be further explored in oral squamous cell carcinoma (OSCC). AIM OF THE STUDY This study aimed to elucidate the therapeutic potential and regulatory mechanisms of GLA in OSCC. MATERIALS AND METHODS The cell proliferation and apoptosis effects of GLA were analyzed by CCK-8, clone formation, Annexin V/PI staining, and apoptotic protein expression in vitro. An OSCC xenograft model was applied to confirm the anti-neoplastic effect in vivo. Furthermore, the changes of reactive oxygen species (ROS) were determined by DCFH-DA probe and GSH/GSSG assay, and inhibited by the pan-caspase inhibitor Z-VAD(OMe)-FMK and the ROS scavenger N-acetylcysteine (NAC). The modulation of GLA on mitochondria and ER-dependent apoptosis pathways was analyzed by JC-1 probe, quantitative real-time PCR, and Western blot. Finally, public databases, clinical samples, and transfection cells were analyzed to explore the importance of GLA's indirect targeting molecule CHAC1 in OSCC. RESULTS GLA significantly inhibited cell proliferation and induced apoptosis in vitro and in vivo. GLA perturbed the redox homeostasis, and cell apoptosis was totally rescued by Z-VAD(OMe)-FMK and NAC. Furthermore, GLA activated the mitochondrial apoptosis pathway. Simultaneously, the overexpression and knockdown of CHAC1 dramatically affected GLA-mediated apoptosis. The endoplasmic reticulum stress-associated ATF4/CHOP signal was identified to participate in GLA-upregulated CHAC1 expression. Finally, we found that CHAC1 expression was lower in OSCC compared with normal tissues and positively correlated with 4-Hydroxynonenal (4-HNE) level. High CHAC1 expression also indicated better overall survival. Moreover, CHAC1 selectively regulated the viability of oral cancer cells. CONCLUSION GLA is a promising therapeutic agent that activates the ROS-mediated ATF4/CHOP/CHAC1 axis in OSCC patients.
Collapse
Affiliation(s)
- Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Ming-Jing He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
19
|
Cui Y, Fang J, Guo H, Cui H, Deng J, Yu S, Gou L, Wang F, Ma X, Ren Z, Xie Y, Geng Y, Wang Y, Zuo Z. Notch3-Mediated mTOR Signaling Pathway Is Involved in High Glucose-Induced Autophagy in Bovine Kidney Epithelial Cells. Molecules 2022; 27:molecules27103121. [PMID: 35630598 PMCID: PMC9143202 DOI: 10.3390/molecules27103121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
It is reported that Notch3 and mTOR signaling pathways are involved in autophagy, and both can be activated by high glucose (HG). However, the relationship between Notch3 and mTOR and how Notch3 affects mTOR to regulate HG-induced autophagy in bovine kidney epithelial cells is still unclear. The purpose of this study is to explore how Notch3 affects mTOR to modulate HG-induced autophagy in bovine kidney cells. Our results showed that HG treatment significantly decreased the cell viability of MDBK cells in a dose-dependent manner. HG treatment significantly increased the expression of LC3-II/I ratio and Beclin1 protein and significantly decreased the expression of p62 protein. Consistently, LC3 fluorescence signal formation was detected by immunofluorescence in both dose and time-dependent manners. In addition, HG treatment significantly increased the expression of Notch3 protein and decreased the expression of the p-mTOR protein in both dose and time-dependent manners. Inhibition of Notch3 upregulated the expression of p-mTOR and p62 protein, and downregulated the expression of LC3-II/I ratio and Beclin1 protein. Besides, the function of Notch3 was investigated. In this study, inhibition of Notch3 activity significantly increased the viability of HG-stimulated MDBK cells. In summary, our results revealed that the Notch3-mediated mTOR signaling pathway was involved in HG-induced autophagy in MDBK cells.
Collapse
Affiliation(s)
- Yaocheng Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (J.F.); (H.G.); (H.C.); (J.D.); (S.Y.); (L.G.); (X.M.); (Z.R.); (Y.X.); (Y.G.); (Y.W.)
- Correspondence: ; Tel.: +86-180-3064-8320
| |
Collapse
|
20
|
Xu Y, Zhang N, Chen C, Xu X, Luo A, Yan Y, Lu Y, Liu J, Ou X, Tan Y, Liang Y, Chen L, Song X, Liu X. Sevoflurane Induces Ferroptosis of Glioma Cells Through Activating the ATF4-CHAC1 Pathway. Front Oncol 2022; 12:859621. [PMID: 35372041 PMCID: PMC8969566 DOI: 10.3389/fonc.2022.859621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
ObjectiveTo clarify the function and mechanisms of sevoflurane (Sev) on ferroptosis in glioma cells.MethodsDifferent concentrations of Sev were used to treat glioma cells U87 and U251. Ferroptosis inducer Erastin was used to incubate glioma cells combined with Sev and ATF4 siRNA transfection treatment. CCK-8 assay and colorimetric assay were performed to analyze cell viability and Fe+ concentration, respectively. The releases of reactive oxygen species (ROS) were determined by flow cytometry analysis. Transcriptional sequencing was used to screen the differential genes affected by Sev in U251 cells. The mRNA and protein expression of ferroptosis-associated genes was detected by qRT-PCR and Western blotting.ResultsSev could suppress cell viability, increase ROS levels and Fe+ concentration, downregulate the protein expression levels of GPX4, and upregulate transferrin, ferritin, and Beclin-1 in a dose-dependent manner in U87 and U251 cells. The expression of ferroptosis and mitophagy-related gene activating transcription factor 4 (ATF4) was identified to be enhanced by Sev analyzed by transcriptional sequencing. ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1), which is involved in ferroptosis, is a downstream gene of ATF4. Inhibition of ATF4 could interrupt the expression of CHAC1 induced by Sev in U87 and U251 cells. Ferroptosis inducer Erastin treatment obviously inhibited the cell viability, elevated the Fe2+ concentration, and promoted ROS generation in U87 and U251 cells. The protein level of ATF4 and CHAC1 was increased in Erastin-treated U87 and U251 cells. Moreover, the interruption of Sev-induced ferroptosis and CHAC1 activating induced by ATF4 suppression could be reversed by Erastin.ConclusionsIn summary, this study suggested that Sev exposure-induced ferroptosis by the ATF4-CHAC1 pathway in glioma cells.
Collapse
Affiliation(s)
- Yingyi Xu
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhang
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanhua Lu
- Operating Room, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianhua Liu
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxu Ou
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yonghong Tan
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufeng Liang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatrics, Linzhi People’s Hospital, Linzhi, China
| | - Lihe Chen
- Medical Library, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xingrong Song
- Department of Anaesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaoping Liu,
| |
Collapse
|
21
|
Lin J, Lai X, Liu X, Yan H, Wu C. Pyroptosis in glioblastoma: A crucial regulator of the tumour immune microenvironment and a predictor of prognosis. J Cell Mol Med 2022; 26:1579-1593. [PMID: 35083859 PMCID: PMC8899201 DOI: 10.1111/jcmm.17200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that pyroptosis, an inflammatory form of cell death, has a dual role in tumorigenesis and tumour progression and affects the prognosis of patients; however, the role of pyroptosis in glioblastoma (GBM) is still unclear. In this study, based on GBM patients' data from two independent cohorts, we performed a comprehensive analysis of the expression and prognostic value of 33 pyroptosis‐associated genes (PAGs) in GBM, as well as their role in the tumour immune microenvironment (TIME) of GBM. We identified 29 PAGs that were differentially expressed between GBM and normal brain tissue, 18 of which were upregulated in GBM tissue. Most of the 33 PAGs were strongly correlated with the levels of immune cell infiltration. Based on the 33 PAGs, the GBM samples can be divided into two clusters (C1‐C2), with C1 having a ‘hot’ but immunosuppressive TIME and C2 having a ‘cold’ TIME, suggesting different immunotherapeutic responses in the two clusters. In addition, we identified four PAGs that were strongly associated with GBM prognosis and constructed a risk model based on these four PAGs. This risk model is an independent prognostic factor for GBM patients, and there is a different immune status between high‐ and low‐risk groups. In conclusion, this study demonstrates that pyroptosis is closely associated with the prognosis and TIME of GBM and provides an important basis for further studies on the relationship between pyroptosis and GBM.
Collapse
Affiliation(s)
- Jinhu Lin
- Department of Neurosurgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Xiang Lai
- Department of Neurosurgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Xiaoping Liu
- Department of Neurosurgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Hua Yan
- Department of Neurosurgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Tseng HH, Chen YZ, Chou NH, Chen YC, Wu CC, Liu LF, Yang YF, Yeh CY, Kung ML, Tu YT, Tsai KW. Metformin inhibits gastric cancer cell proliferation by regulation of a novel Loc100506691-CHAC1 axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:180-194. [PMID: 34514098 PMCID: PMC8416970 DOI: 10.1016/j.omto.2021.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of nonprotein coding transcripts that play a critical role in cancer progression. However, the role of lncRNA in metformin-induced inhibition of cell growth and its biological function in gastric cancer remain largely unknown. In this study, we identified an oncogenic lncRNA, Loc100506691, the expression of which was decreased in gastric cancer cells with metformin treatment. Moreover, Loc100506691 was significantly overexpressed in gastric cancer compared with adjacent normal tissues (p < 0.001), and high Loc100506691 expression was significantly correlated with poor survival of patients with gastric cancer. Additionally, Loc100506691 knockdown could significantly suppress gastric cancer cell growth in vitro, and ectopic Loc100506691 expression accelerated tumor growth in an in vivo mouse model. Analysis of the cell cycle revealed that Loc100506691 knockdown induced cell cycle arrest at the G2/M phase by impairing cell entry from the G2/M to G1 phase. Loc100506691 negatively regulated CHAC1 expression by modulating miR-26a-5p/miR-330-5p expression, and CHAC1 knockdown markedly attenuated Loc100506691 knockdown-induced gastric cancer cell growth and motility suppression. We concluded that anti-proliferative effects of metformin in gastric cancer may be partially caused by suppression of the Loc100506691-miR-26a-5p/miR-330-5p-CHAC1 axis.
Collapse
Affiliation(s)
- Hui-Hwa Tseng
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23124, Taiwan
| | - You-Zuo Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.,Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan
| | - Nan-Hua Chou
- Department of Surgery Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Yen-Chih Chen
- Division of Gastrointestinal Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical of Foundation, New Taipei City 23124, Taiwan
| | - Chao-Chuan Wu
- Division of Gastrointestinal Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical of Foundation, New Taipei City 23124, Taiwan
| | - Li-Feng Liu
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chung-Yu Yeh
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Ya-Ting Tu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23124, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23124, Taiwan
| |
Collapse
|
23
|
Wu J, Wang X, Wang N, Ma L, Xie X, Zhang H, Kang H, Zhou Z. Identification of novel antioxidant gene signature to predict the prognosis of patients with gastric cancer. World J Surg Oncol 2021; 19:219. [PMID: 34284774 PMCID: PMC8293592 DOI: 10.1186/s12957-021-02328-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background Gastric cancer (GC) commonly relates to dismal prognosis and lacks efficient biomarkers. This study aimed to establish an antioxidant-related gene signature and a comprehensive nomogram to explore novel biomarkers and predict GC prognosis. Methods Clinical and expression data of GC patients were extracted from The Cancer Genome Atlas database. Univariate and multivariate Cox analyses were utilized to construct a score-based gene signature and survival analyses were conducted between high- and low-risk groups. Furthermore, we established a prognostic nomogram integrating clinical variables and antioxidant-related gene signature. Its predictive ability was validated by Harrell' concordance index and calibration curves and an independent internal cohort verified the consistency of the antioxidant gene signature-based nomogram. Results Four antioxidant-related genes (CHAC1, GGT5, GPX8, and PXDN) were significantly associated with overall survival of GC patients but only two genes, CHAC1 (HR = 0.803, P < 0.05) and GPX8 (HR = 1.358, P < 0.05), were confirmed as independent factors. A score-based signature was constructed and could act as an independent prognosis predictor (P < 0.05). Patients with lower scores showed significantly better prognosis (P < 0.05). Comprehensive nomogram combining the antioxidant-related gene signature and clinical parameters (age, gender, grade, and stage) was established and effectively predicted overall survival of GC patients [3-year survival AUC = 0.680, C index = 0.665 (95% CI 0.614–0.716)]. The independent internal validation cohort verified the reliability and good consistency of the model [3-year survival AUC = 0.703, C index = 0.706 (95% CI 0.612–0.800)]. Conclusions Innovative antioxidant-related gene signature and nomogram performed well in assessing GC prognoses. This study enlightened further investigation of antioxidant system and provided novel tools for GC patient management. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02328-w.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Dymova MA, Kuligina EV, Richter VA. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int J Mol Sci 2021; 22:6385. [PMID: 34203727 PMCID: PMC8232134 DOI: 10.3390/ijms22126385] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB).
Collapse
Affiliation(s)
- Maya A. Dymova
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.K.); (V.A.R.)
| | | | | |
Collapse
|
25
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
26
|
Wang X, Xu C, Wang S, Huang W, Liu Y, Zhang X, Li N, Gao Z, Wang F, Zhang N, Guan J, Yi H, Liu F. A novel tumor suppressor CECR2 down regulation links glutamine metabolism contributes tumor growth in laryngeal squamous cell carcinoma. Clin Transl Oncol 2021; 23:1942-1954. [PMID: 33826083 DOI: 10.1007/s12094-021-02603-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Glutamine plays an important role in tumor metabolism and progression. This research aimed to find out how Gln exert their effects on laryngeal squamous cell carcinoma (LSCC). METHODS Cell proliferation was measured by CCK8 and EdU assay, mitochondrial bioenergetic activity was measured by mitochondrial stress tests. Gene expression profiling was revealed by RNA sequencing and validated by RT-qPCR. In LSCC patients, protein expression in tumor and adjacent tissues was examined and scored by IHC staining. RNAi was performed by stably expressed shRNA in TU177 cells. In vivo tumor growth analysis was performed using a nude mouse tumorigenicity model. RESULTS Gln deprivation suppressed TU177 cell proliferation, which was restored by αKG supplementation. By transcriptomic analysis, we identified CECR2, which encodes a histone acetyl-lysine reader, as the downstream target gene for Gln and αKG. In LSCC patients, the expression of CECR2 in tumors was lower than adjacent tissues. Furthermore, deficiency of CECR2 promoted tumor cell growth both in vitro and in vivo, suggesting it has tumor suppressor effects. Besides, cell proliferation inhibited by Gln withdrawal could be restored by CECR2 depletion, and the proliferation boosted by αKG supplementation could be magnified either, suggested that CECR2 feedback suppressed Gln and αKG's effect on tumor growth. Transcriptomic profiling revealed CECR2 regulated the expression of a series of genes involved in tumor progression. CONCLUSION We confirmed the Gln-αKG-CECR2 axis contributes to tumor growth in LSCC. This finding provided a potential therapeutic opportunity for the use of associated metabolites as a potential treatment for LSCC.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Chong Xu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Shengming Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Weijun Huang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Jian Guan
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China. .,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China.
| | - Feng Liu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China. .,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China.
| |
Collapse
|
27
|
Gao XY, Zang J, Zheng MH, Zhang YF, Yue KY, Cao XL, Cao Y, Li XX, Han H, Jiang XF, Liang L. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma. Front Cell Dev Biol 2021; 9:620883. [PMID: 33614649 PMCID: PMC7891666 DOI: 10.3389/fcell.2021.620883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Formation of glioma stem cells (GSCs) is considered as one of the main reasons of temozolomide (TMZ) resistance in glioma patients. Recent studies have shown that tumor microenvironment-derived signals could promote GSCs formation. But the critical molecule and underlying mechanism for GSCs formation after TMZ treatment is not entirely identified. Our study showed that TMZ treatment promoted GSCs formation by glioma cells; TMZ treatment of biopsy-derived glioblastoma multiforme cells upregulated HMGB1; HMGB1 altered gene expression profile of glioma cells with respect to mRNA, lncRNA and miRNA. Furthermore, our results showed that TMZ-induced HMGB1 increased the formation of GSCs and when HMGB1 was downregulated, TMZ-mediated GSCs formation was attenuated. Finally, we showed that the effect of HMGB1 on glioma cells was mediated by TLR2, which activated Wnt/β-catenin signaling to promote GSCs. Mechanistically, we found that HMGB1 upregulated NEAT1, which was responsible for Wnt/β-catenin activation. In conclusion, TMZ treatment upregulates HMGB1, which promotes the formation of GSCs via the TLR2/NEAT1/Wnt pathway. Blocking HMGB1-mediated GSCs formation could serve as a potential therapeutic target for preventing TMZ resistance in GBM patients.
Collapse
Affiliation(s)
- Xiang-Yu Gao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Kang-Yi Yue
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yuan Cao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Xin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
29
|
Ho KH, Chen PH, Chou CM, Shih CM, Lee YT, Cheng CH, Chen KC. A Key Role of DNA Damage-Inducible Transcript 4 (DDIT4) Connects Autophagy and GLUT3-Mediated Stemness To Desensitize Temozolomide Efficacy in Glioblastomas. Neurotherapeutics 2020; 17:1212-1227. [PMID: 31916238 PMCID: PMC7609792 DOI: 10.1007/s13311-019-00826-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is known to participate in various cancers, including glioblastoma multiforme (GBM). However, contradictory roles of DDIT4 exist in inducing cell death and possessing anti-apoptotic functions against cancer progression. Herein, we investigated DDIT4 signaling in GBM and temozolomide (TMZ) drug resistance. We identified that TMZ induced DDIT4 upregulation, leading to desensitization against TMZ cytotoxicity in GBM cells. Higher DDIT4 levels were found in glioma cells and mesenchymal-type GBM patients, and these higher levels were positively correlated with mesenchymal markers. Furthermore, patients with lower DDIT4 levels, especially O-6-methylguanine-DNA methyltransferase (MGMT)-methylated patients, exhibited better TMZ therapeutic efficacy. We determined that higher levels of 5 DDIT4-associated downstream genes, including SLC2A3 (also known as glucose transporter 3 (GLUT3)), can be used to predict a poor prognosis. Among these 5 genes, only GLUT3 was upregulated in both TMZ-treated and DDIT4-overexpressing cells. DDIT4-mediated GLUT3 expression was also identified, and its expression decreased TMZ's cytotoxicity. A significant correlation existed between DDIT4 and GLUT3. DDIT4 signaling was found to be involved in both glycolytic and autophagic pathways. However, GLUT3 only participated in the exhibition of DDIT4-mediated stemness, resulting from glycolytic regulation, but not in DDIT4-mediated autophagic signaling. Finally, we identified TMZ-upregulated activating transcription factor 4 (ATF4) as an upstream regulator of DDIT4-mediated GLUT3/stemness signaling and autophagy. Consequently, ATF4/DDIT4 signaling was connected to both autophagy and GLUT3-regulated stemness, which are involved in TMZ drug resistance and the poor prognoses of GBM patients. Targeting DDIT4/GLUT3 signaling might be a new direction for glioma therapy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chih-Ming Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
30
|
Wang Y, Zhao W, Xiao Z, Guan G, Liu X, Zhuang M. A risk signature with four autophagy-related genes for predicting survival of glioblastoma multiforme. J Cell Mol Med 2020; 24:3807-3821. [PMID: 32065482 PMCID: PMC7171404 DOI: 10.1111/jcmm.14938] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.
Collapse
Affiliation(s)
- Yulin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Zhe Xiao
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Gefei Guan
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xin Liu
- Department of StomatologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Minghua Zhuang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
31
|
Source of Dietary Fat in Pig Diet Affects Adipose Expression of Genes Related to Cancer, Cardiovascular, and Neurodegenerative Diseases. Genes (Basel) 2019; 10:genes10120948. [PMID: 31756991 PMCID: PMC6947373 DOI: 10.3390/genes10120948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
It has been known for many years that excessive consumption of saturated fats has proatherogenic properties, contrary to unsaturated fats. However, the molecular mechanism covering these effects is not fully understood. In this paper, we aimed to identify differentially expressed genes (DEGs) using RNA-sequencing, following feeding pigs with different sources of fat. After comparison of adipose samples from three dietary groups (rapeseed oil (n = 6), beef tallow (n = 5), coconut oil (n = 5)), we identified 29 DEGs (adjusted p-value < 0.05, fold change > 1.3) between beef tallow and rapeseed oil and 2 genes between coconut oil and rapeseed oil groups. No differentially expressed genes were observed between coconut oil and beef tallow groups. Almost all 29 DEGs between rapeseed oil and beef tallow groups are connected to neurodegenerative, cardiovascular diseases, or cancer (e.g., PLAU, CYBB, NCF2, ZNF217, CHAC1, CTCFL). Functional analysis of these genes revealed that they are associated with fluid shear stress response, complement and coagulation cascade, ROS signaling, neurogenesis, and regulation of protein binding and protein catabolic processes. Furthermore, gene set enrichment analysis (GSEA) of the whole datasets from all three comparisons suggests that both beef tallow and coconut oil may trigger changes in the expression level of genes crucial in the pathogenesis of civilization diseases.
Collapse
|
32
|
Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci Rep 2019; 9:13657. [PMID: 31541175 PMCID: PMC6754505 DOI: 10.1038/s41598-019-50136-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Non-thermal atmospheric pressure plasma has been widely used for preclinical studies in areas such as wound healing, blood coagulation, and cancer therapy. We previously developed plasma-activated medium (PAM) and plasma-activated Ringer's lactate solutions (PAL) for cancer treatments. Many in vitro and in vivo experiments demonstrated that both PAM and PAL exhibit anti-tumor effects in several types of cancer cells such as ovarian, gastric, and pancreatic cancer cells as well as glioblastoma cells. However, interestingly, PAM induces more intracellular reactive oxygen species in glioblastoma cells than PAL. To investigate the differences in intracellular molecular mechanisms of the effects of PAM and PAL in glioblastoma cells, we measured gene expression levels of antioxidant genes such as CAT, SOD2, and GPX1. Microarray and quantitative real-time PCR analyses revealed that PAM elevated stress-inducible genes that induce apoptosis such as GADD45α signaling molecules. PAL suppressed genes downstream of the survival and proliferation signaling network such as YAP/TEAD signaling molecules. These data reveal that PAM and PAL induce apoptosis in glioblastoma cells by different intracellular molecular mechanisms.
Collapse
|
33
|
Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, Masoumi-Ardakani Y, Mohammadipoor-Ghasemabad L, Eskandary H. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during Temozolomide administration. Electromagn Biol Med 2019; 38:198-209. [PMID: 31179753 DOI: 10.1080/15368378.2019.1625784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an extremely dismal prognosis, a median survival is12 months. Temozolomide (TMZ) is an alkylating agent widely used to treat cancer, resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. Therefore, the present study was carried out to evaluate the potential synergistic effect of 100 µM TMZ and EMF (100 Hz, 100 G) on human glioma cell line U87 U87 cells with four experimental groups (I-IV) were exposed to ELF-EMF and TMZ for 120 and 144 h, as follows: (I) control; (II) ELF-EMF; (III) TMZ; (IV) ELF-PEMFs / TMZ. mRNA expression of genes such as (Nestin,CD133, Notch4 and GFAP) were investigated by Real-time PCR and western blot. We also evaluated, SOD activity, MDA and calcium concentration by ELISA assay. Co-treatment synergistically decreased the expression of Nestin,CD133, and Notch4 and increased the GFAP genes. We also observed an increase in Superoxide dismutase (SOD) activity, Malondialdehyde (MDA) and Ca2+concentration in comparison to controls.TMZ prevents cancer progression not only through the induction of cell death, but also by inducing differentiation in cancer cells. In addition, our data demonstrate ELF-EMF (100 Hz, 100 G) can significantly enhance the effects of TMZ on human glioblastoma U87 cell. These findings may open new window for future studies.
Collapse
Affiliation(s)
- Meysam Ahmadi-Zeidabadi
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Zeinab Akbarnejad
- b ENT and Head & Neck Research center and department, Hazrat Rasoul Hospital , The five senses Institute, Iran University of medical sciences , Tehran , Iran
| | - Marzie Esmaeeli
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Yaser Masoumi-Ardakani
- c Physiology Research Center, Institute of Basic and Clinical Physiology Science , Kerman University of Medical Sciences , Kerman , Iran
| | | | - Hossein Eskandary
- a Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran.,e Afzal Research Institute (NGO) , Kerman , Iran
| |
Collapse
|
34
|
Liu Y, Li M, Shi D, Zhu Y. Higher expression of cation transport regulator-like protein 1 (CHAC1) predicts of poor outcomes in uveal melanoma (UM) patients. Int Ophthalmol 2019; 39:2825-2832. [PMID: 31161335 DOI: 10.1007/s10792-019-01129-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The purpose of our present study was to investigate the expression of cation transport regulator-like protein 1 (CHAC1) in uveal melanoma (UM) tissues and its function in UM progression. METHODS The mRNA expression of CHAC1 in UM tissues and its prognostic value were investigated based on Gene Expression Omnibus database and The Cancer Genome Atlas database. SP6.5 and M23 UM cell lines with depleted CHAC1 were constructed using small interfering RNA. The viability and migration ability of SP6.5 and M23 UM cells were determined by MTT and wound healing assays, respectively. Western blot was conducted to test the influences of CHAC1 depletion on PI3K signaling pathway. RESULTS Higher expression of CHAC1 was observed in the UM tissues from patients with liver metastases compared to that from patients without metastases. High CHAC1 expression was correlated with poor prognostic and was an independent predictor for UM patients. Depletion of CHAC1 remarkably inhibited the proliferation and motility of SP6.5 and M23 UM cells. Moreover, the ratios of p-AKT/AKT and p-mTOR/mTOR were reduced notably after silencing CHAC1. CONCLUSIONS Our results suggested that CHAC1 functioned as a facilitator in UM cell proliferation and migration and possessed the potential to be a predictor as well as a therapeutic target for UM patients.
Collapse
Affiliation(s)
- Yanchen Liu
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, 262500, People's Republic of China
| | - Mengyun Li
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, 262500, People's Republic of China
| | - Danping Shi
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, 262500, People's Republic of China
| | - Yuguang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, 261031, People's Republic of China.
| |
Collapse
|
35
|
Towner RA, Smith N, Saunders D, Brown CA, Cai X, Ziegler J, Mallory S, Dozmorov MG, Coutinho De Souza P, Wiley G, Kim K, Kang S, Kong DS, Kim YT, Fung KM, Wren JD, Battiste J. OKN-007 Increases temozolomide (TMZ) Sensitivity and Suppresses TMZ-Resistant Glioblastoma (GBM) Tumor Growth. Transl Oncol 2019; 12:320-335. [PMID: 30468988 PMCID: PMC6251232 DOI: 10.1016/j.tranon.2018.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Treatment of glioblastoma (GBM) remains a challenge using conventional chemotherapy, such as temozolomide (TMZ), and is often ineffective as a result of drug resistance. We have assessed a novel nitrone-based agent, OKN-007, and found it to be effective in decreasing tumor volumes and increasing survival in orthotopic GBM xenografts by decreasing cell proliferation and angiogenesis and increasing apoptosis. In this study, we assessed combining OKN-007 with TMZ in vivo in a human G55 GBM orthotopic xenograft model and in vitro in TMZ-resistant and TMZ-sensitive human GBM cell lines. For the in vivo studies, magnetic resonance imaging was used to assess tumor growth and vascular alterations. Percent animal survival was also determined. For the in vitro studies, cell growth, IC50 values, RNA-seq, RT-PCR, and ELISA were used to assess growth inhibition, possible mechanism-of actions (MOAs) associated with combined OKN-007 + TMZ versus TMZ alone, and gene and protein expression levels, respectively. Microarray analysis of OKN-007-treated rat F98 glioma tumors was also carried out to determine possible MOAs of OKN-007 in glioma-bearing animals either treated or not treated with OKN-007. OKN-007 seems to elicit its effect on GBM tumors via inhibition of tumorigenic TGF-β1, which affects the extracellular matrix. When combined with TMZ, OKN-007 significantly increases percent survival, decreases tumor volumes, and normalizes tumor blood vasculature in vivo compared to untreated tumors and seems to affect TMZ-resistant GBM cells possibly via IDO-1, SUMO2, and PFN1 in vitro. Combined OKN-007 + TMZ may be a potentially potent treatment strategy for GBM patients.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chase A Brown
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongsangnam-do, Republic of Korea; Oblato, Inc., Princeton, NJ, USA
| | | | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Kar-Ming Fung
- Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - James Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of NeurologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Hwang TW, Kim DH, Kim DB, Jang TW, Kim GH, Moon M, Yoon KA, Choi DE, Park JH, Kim JJ. Synergistic anticancer effect of acteoside and temozolomide-based glioblastoma chemotherapy. Int J Mol Med 2019; 43:1478-1486. [PMID: 30664150 DOI: 10.3892/ijmm.2019.4061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent commonly used as a first‑line treatment for high‑grade glioblastoma. However, TMZ has short half‑life and frequently induces tumor resistance, which can limit its therapeutic efficiency. In the present study, it was hypothesized that combined treatment with TMZ and acteoside has synergistic effects in glioblastoma therapy. Using cell viability and wound‑healing assays, it was determined that this treatment regimen reduced cell viability and migration to a greater extent than either TMZ or acteoside alone. Following previous reports that TMZ affected autophagy in glioma cells, the present study examined the effects of TMZ + acteoside combination treatment on apoptosis and autophagy. The TMZ + acteoside combination treatment increased the cleavage of caspase‑3 and levels of B‑cell lymphoma 2 (Bcl‑2)‑associated X protein and phosphorylated p53, and decreased the level of Bcl‑2. The combination treatment increased microtubule‑associated protein 1 light chain 3 and apoptosis‑related gene expression. It was also determined that TMZ + acteoside induced apoptosis and autophagy through the mitogen‑activated protein kinase signaling pathway. These findings suggest that acteoside has beneficial effects on TMZ‑based glioblastoma therapy.
Collapse
Affiliation(s)
- Tae Woong Hwang
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Dong Hun Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Da Bi Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Tae Won Jang
- Department of Medicinal Plant Resources, Andong National University, Andong, Gyeongsangbuk 36729, Republic of Korea
| | - Gun-Hwa Kim
- Drug and Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungcheong 28119, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Kyung Ah Yoon
- Department of Clinical Laboratory Science, Daejeon Health Sciences College, Daejeon 34504, Republic of Korea
| | - Dae Eun Choi
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jae Ho Park
- Department of Pharmaceutical Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| | - Jwa-Jin Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
37
|
Dali R, Verginelli F, Pramatarova A, Sladek R, Stifani S. Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells. Mol Oncol 2018; 12:775-787. [PMID: 29316219 PMCID: PMC5983107 DOI: 10.1002/1878-0261.12168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain cancer of glial cell origin, with a median patient survival of less than 20 months. Transcription factors FOXG1 and TLE1 promote GBM propagation by supporting maintenance of brain tumour-initiating cells (BTICs) with stem-like properties. Here, we characterize FOXG1 and TLE1 target genes in GBM patient-derived BTICs using ChIP-Seq and RNA-Seq approaches. These studies identify 150 direct FOXG1 targets, several of which are also TLE1 targets, involved in cell proliferation, differentiation, survival, chemotaxis and angiogenesis. Negative regulators of NOTCH signalling, including CHAC1, are among the transcriptional repression targets of FOXG1:TLE1 complexes, suggesting a crosstalk between FOXG1:TLE1 and NOTCH-mediated pathways in GBM. These results provide previously unavailable insight into the transcriptional programs underlying the tumour-promoting functions of FOXG1:TLE1 in GBM.
Collapse
Affiliation(s)
- Rola Dali
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
- McGill Center for BioinformaticsMcGill UniversityMontrealCanada
| | - Federica Verginelli
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
- Present address:
Laboratory of Cancer Stem Cell ResearchCandiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Albena Pramatarova
- Departments of Human Genetics and MedicineMcGill UniversityMontrealCanada
| | - Robert Sladek
- Departments of Human Genetics and MedicineMcGill UniversityMontrealCanada
| | - Stefano Stifani
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
38
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
39
|
Affiliation(s)
- Shenglong Qiu
- a Department of General Surgery, Shanghai General Hospital , Shanghai Jiao Tong University , Shanghai , China
| | - Pei Y Liu
- b Children's Cancer Institute Australia for Medical Research , Randwick , Sydney , Australia.,c Centre for Childhood Cancer Research , UNSW Medicine, UNSW Australia , Sydney , Australia
| | - Tao Liu
- b Children's Cancer Institute Australia for Medical Research , Randwick , Sydney , Australia.,c Centre for Childhood Cancer Research , UNSW Medicine, UNSW Australia , Sydney , Australia
| |
Collapse
|