1
|
Kim M, Netser S, Wagner S, Harony-Nicolas H. Juvenile social isolation in Sprague Dawley rats does not have a lasting impact on social behavior in adulthood. Sci Rep 2025; 15:12981. [PMID: 40234569 PMCID: PMC12000401 DOI: 10.1038/s41598-025-95920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Adolescent social interactions are essential for shaping adult behavior in humans. While rodent studies have highlighted the impact of social isolation on behavior, many extend isolation into adulthood, making it challenging to pinpoint the long-term consequences of juvenile isolation. To address these challenges, we examined the effects of social isolation using two independent protocols with male and female Sprague Dawley rats. In both prfotocols, rats were isolated during the juvenile stage; however, in one protocol, rats were re-socialized following isolation and tested in adulthood, while in the other, rats were tested immediately after isolation. This approach allowed us to determine whether social deficits emerged following adolescent isolation and if they could be reversed by re-socialization before adulthood. We found that juvenile isolation had no lasting effects but increased motivation for social interaction immediately after isolation. These findings underscore the need to account for housing conditions and isolation protocols when assessing the effects of social isolation.
Collapse
Affiliation(s)
- Michelle Kim
- Seaver Autism Center for Research and Treatment, New York, NY, USA
- Department of Neuroscience, New York, NY, USA
- Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, New York, NY, USA.
- Department of Neuroscience, New York, NY, USA.
- Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, New York, NY, USA.
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Burke AR, Bernabe C, Dietrich A, Daugherty R, Lukkes JL, Truitt WA. Adolescent social isolation increases social behavior in Wistar rats: Role of post-weaning isolation housing on Social Familiarity-induced Anxiolysis (SoFiA) and social memory in adulthood. Behav Brain Res 2025; 483:115481. [PMID: 39938573 PMCID: PMC11917371 DOI: 10.1016/j.bbr.2025.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Social connectedness is a critical part of adolescent development. Social support provides a robust facilitator for managing anxiety disorders that afflict nearly 1⁄3 of the U.S. adult population at some point in life. Consequently, it is important to understand the neurobiological mechanisms underlying the impact of social affiliation, or lack thereof, on treating or causing maladaptive anxiety states. In the current experiment, we manipulated the housing conditions in Wistar rats beginning on postnatal day (P) 21, rearing them in pairs (RP), in isolation (RI), or purchased adults rats reared at the facility (RF). We tested adult rats in the open field test, the social interaction habituation test (SI-Hab), which is a social safety learning animal model, and in the social recognition test (SRT), which is an animal model of sociability and social memory. Rats RI showed generalized increases in SI time compared to rats RP. However, there was no effect of rearing on acquisition of social safety during SI-Hab. During the SRT, rats RI exhibited a preference for a novel rat indicating robust social memory, whereas rats RP did not. Rats RF exhibited higher thigmotaxis relative to RP and RI and lower movement compared to RP in the novel open field. Numerous social and non-social behaviors were correlated with each other, and some depended on rearing condition. Based on correlation differences between RI and RP rats, RI history may be more conducive to the anxiolytic aspects of the SI-Hab protocol, which may improve the ability to deal with a perceived threat.
Collapse
Affiliation(s)
- Andrew R Burke
- Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA.
| | - Cristian Bernabe
- Department of Psychiatry Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, USA
| | - Amy Dietrich
- Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Rebecca Daugherty
- Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Jodi L Lukkes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Psychiatry Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, USA
| | - William A Truitt
- Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Mikulovic S, Lenschow C. Neural control of sex differences in affiliative and prosocial behaviors. Neurosci Biobehav Rev 2025; 171:106039. [PMID: 39914700 DOI: 10.1016/j.neubiorev.2025.106039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Social interactions are vital for various taxa and species. Prosocial and affiliative dynamics within a group and between individuals are not only pleasurable and rewarding, but also appear to actively contribute to well-being, cognitive performance, and disease prevention. Moreover, disturbances in acting or being prosocial can represent a major burden for an individual and their affective partners. These disruptions are evident across a spectrum of neuropsychiatric conditions, including depression and autism spectrum disorders. Importantly, interactive patterns of prosocial and affiliative behavior can vary with sex. The fact that genders are differentially affected by neuropsychiatric disorders associated with social impairment underscores the high importance of this research in uncovering the underlying neural correlates and mechanisms. This review focuses on elucidating sex-related differences in prosocial and affiliative behaviors and their potential association with sexually different neural correlates. Specifically, we aim to shed light on the complex interplay between sex, behavior, and neurobiology in affiliative and prosocial interaction patterns.
Collapse
Affiliation(s)
- Sanja Mikulovic
- Leibniz Institute for Neurobiology, Brennecke Straße, Magdeburg, Germany.
| | - Constanze Lenschow
- Otto-von-Guericke University Magdeburg, Institute of Biology (House 91), Leipziger Straße 44, Magdeburg 39120, Germany.
| |
Collapse
|
4
|
Dobolyi A. Integrating the COM-B model into behavioral neuroscience: A framework for understanding animal behavior. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111346. [PMID: 40154911 DOI: 10.1016/j.pnpbp.2025.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
In light of the intricate nature of animal behavior regulation, a theoretical model is proposed, grounded in the COM-B (Capability, Opportunity, Motivation - Behavior) framework, which has gained considerable traction in the domain of human behavioral intervention. When extending the COM-B model to behavioral neuroscience, we first discuss the utility of the model in animal research, particularly its capacity to integrate environmental and social factors, and enhance cross-species comparisons, including animal-to-human translations and evolutionary considerations. The subsequent discussion then summarizes the advantages of utilizing the COM-B model in neuroscience are summarized, including the facilitation of a systems-level understanding of behavior and the establishment of a link between neural mechanisms and specific behavioral components. The experimental design for the application of the COM-B model in neuroscience is proposed to elucidate the brain regulatory processes that govern behavior. Finally, three specific examples are provided to illustrate the theoretical considerations, namely feeding and social behavior, and the role of neuromodulators in the control of behavior.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
5
|
Rea JJ, Liu CM, Hayes AMR, Bashaw AG, Schwartz GM, Ohan R, Décarie-Spain L, Kao AE, Klug ME, Phung KJ, Waldow AI, Wood RI, Kanoski SE. Hippocampus Oxytocin Signaling Promotes Prosocial Eating in Rats. Biol Psychiatry 2025; 97:540-549. [PMID: 39038641 PMCID: PMC11743826 DOI: 10.1016/j.biopsych.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Oxytocin (OT) is a hypothalamic neuropeptide involved in diverse physiological and behavioral functions, including social-based behavior and food intake control. The extent to which OT's role in regulating these 2 fundamental behaviors is interconnected is unknown, which is a critical gap in knowledge given that social factors have a strong influence on eating behavior in mammals. Here, we focus on OT signaling in the dorsal hippocampus (HPCd), a brain region recently linked to eating and social memory, as a candidate system where these functions overlap. METHODS HPCd OT signaling gain- and loss-of-function strategies were used in male Sprague Dawley rats that were trained in a novel social eating procedure to consume their first nocturnal meal under conditions that varied with regard to conspecific presence and familiarity. The endogenous role of HPCd OT signaling was also evaluated for olfactory-based social transmission of food preference learning, sociality, and social recognition memory. RESULTS HPCd OT administration had no effect on food intake under isolated conditions but significantly increased consumption in the presence of a familiar but not an unfamiliar conspecific. Supporting these results, chronic knockdown of HPCd OT receptor expression eliminated the food intake-promoting effects of a familiar conspecific. HPCd OT receptor knockdown also blocked social transmission of food preference learning and impaired social recognition memory without affecting sociality. CONCLUSIONS Collectively, the results of the current study identify endogenous HPCd OT signaling as a novel substrate in which OT synergistically influences eating and social behaviors, including the social facilitation of eating and the social transmission of food preference.
Collapse
Affiliation(s)
- Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Grace M Schwartz
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Rita Ohan
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Kenneth J Phung
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alice I Waldow
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Ruth I Wood
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California; Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California.
| |
Collapse
|
6
|
Ngala ME, Hemmings SMJ, Womersley JS, Shabangu TW, Qulu-Appiah L. Social isolation induces sexually aggressive behaviour in male Wistar rats. BMC Neurosci 2025; 26:15. [PMID: 40011829 DOI: 10.1186/s12868-025-00932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Sexual violence, a pervasive global issue, significantly impacts individuals and societies, necessitating a deeper understanding of its underlying biological mechanisms. This study aimed to elucidate the role of stress-induced dysregulation of the hypothalamus-pituitary-adrenocortical axis in sexual aggression in male Wistar rats. Employing a sexual aggression paradigm, we investigated the effects of social isolation on aggression, anxiety-like behaviour, and neurochemistry in virgin adult male Wistar rats. RESULTS The results showed that social isolation significantly escalated aggressive behaviours and induced anxiety-like responses in male rats. The sexual aggression test revealed that socially isolated males exhibited heightened aggression towards non-receptive females. Neurochemical analyses indicated significant alterations in key markers, such as corticotrophin-releasing hormone, oxytocin, and arginine vasopressin, correlating with the observed behavioural changes. Gene expression analyses revealed significant findings, particularly in the expression of the oxytocin receptor (OXTR) and vasopressin receptor 1 A (AVPR1A) genes. Social isolation and the duration of aggressive behaviour prior to the sexual aggression test significantly influenced OXTR expression in the hippocampus and AVPR1A expression in both the prefrontal cortex and hippocampus, highlighting the complex interplay between environmental stressors, neurochemical responses, and gene expression in the manifestation of sexual aggression behaviour. CONCLUSIONS This study underscores the critical impact of stress and social isolation on sexual aggression, providing valuable insights into possible neurobiological underpinnings of sexual violence. Understanding these mechanisms is crucial for developing effective interventions to mitigate the consequences of sexual aggression.
Collapse
Affiliation(s)
- Mbiydzenyuy Elvis Ngala
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, Cape Town, 7602, South Africa.
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
- SAMRC/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, ZA, 7505, South Africa
| | - Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
- SAMRC/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, ZA, 7505, South Africa
| | - Thando W Shabangu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, Cape Town, 7602, South Africa
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, Cape Town, 7602, South Africa.
| |
Collapse
|
7
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2025; 211:75-84. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
9
|
Trachtenberg E, Ruzal K, Sandbank E, Bigelman E, Ricon-Becker I, Cole SW, Ben-Eliyahu S, Ben-Ami Bartal I. Deleterious effects of social isolation on neuroendocrine-immune status, and cancer progression in rats. Brain Behav Immun 2025; 123:524-539. [PMID: 39378972 DOI: 10.1016/j.bbi.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Accumulating evidence indicates that social isolation (SI) in humans and rodents is associated with increased cancer incidence and mortality, yet mediating mechanisms remain elusive. Here, we examine the neuroendocrine and immunological consequences of SI and its short- and long-term physiological impacts in naïve and cancer-bearing rats. Findings indicate that isolated animals experienced a significant decrease in weight compared to controls. Specifically, females showed a marked weight decrease during the first week of isolation. Isolated rats had significantly higher numbers of MADB106 experimental pulmonary metastases. Although mortality rates were higher in isolated tumor-bearing rats, unexpectedly, they exhibited a reduced growth rate of orthotopically implanted MADB106 tumors. Transcriptomic analyses of these excised tumors indicated a major downregulation in the expression of various genes, including those associated with pro-metastatic processes (e.g., EMT). In naïve rats (no cancer), levels of IL-6 increased, and total IgG levels decreased under SI conditions. A mixed effect was found for TNFα, which increased in females and decreased in males. In the central nervous system, isolated rats showed altered gene expression in key brain regions associated with stress responses and social behavior. The paraventricular nucleus of the thalamus emerged as a significantly affected region, along with the bed nucleus of the stria terminalis. Changes were observed in the expression of oxytocin, serotonin, and dopamine receptors. Isolated rats also exhibited greater alterations in hypothalamic-pituitary-adrenal (HPA) axis-related regulation and an increase in plasma CORT levels. Our study highlights the profound impact of SI on metastatic processes. Additionally, the potential detrimental effects of SI on thermoregulation were discussed, emphasizing the importance of social thermoregulation in maintaining physiological stability and highlighting the need to avoid single-caging practices in research. We report neuro-immune interactions and changes in brain gene expression, highlighting the need for further research into these underlying processes to improve outcomes in animal models and potential interventions for cancer patients through increased social support.
Collapse
Affiliation(s)
- Estherina Trachtenberg
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Keren Ruzal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Einat Bigelman
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Lee SW, Cullen KR, Rim SR, Toddes C. The jeong and haan of Vincent van Gogh: neuropeptides of bondedness and loss. Front Psychol 2024; 15:1432175. [PMID: 39776974 PMCID: PMC11706215 DOI: 10.3389/fpsyg.2024.1432175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
We introduce two Korean-named yet transcultural feelings, jeong and haan, to fill gaps in neuroscientific understanding of mammalian bondedness, loss, and aggression. Jeong is a visceral sense of connectedness to a person, place, or thing that may arise after proximity, yet does not require intimacy. The brain opioid theory of social attachment (BOTSA) supports the idea that jeong involves increased activity of enkephalins and beta-endorphins. We propose that withdrawal of jeong-related neuropeptides leads to original haan, a sense of "missingness" that is too subtle to be grossly dysphoric. Through narrative, cognitive appraisals, or moral assignments, however, original haan may transform into the feeling of constructed haan-resentment, bitterness, grievance, sorrow, or suppressed anger. In males, the transformation may be driven by arginine vasopressin, an ancient fight-or-flight neurohormone. Constructed haan may also be driven by vasopressin in females, though data is more sparse, and in both sexes it may depend on situational or societal context. Endogenous opioids inhibit vasopressin, so that when jeong diminishes, vasopressin release may become disinhibited. This relationship implies a companion to the BOTSA, which we articulate as the brain opioid and vasopressin theory of original and constructed haan (BOVTOCH). To illustrate, we reflect on borderline personality disorder, and Vincent van Gogh's self-severing of his ear while living and working with Paul Gauguin, and fearing abandonment by him; yet to understand Van Gogh more completely we also present the brain opioid theory of stable euphoric creativity (BOTSEC), to model the subjective "highs" associated with creative flow states. Together these brain opioid theories may help to explain how feelings related to social bondedness can influence a range of phenomena. For example, opioid drug dependence may be, at least partly, a maladaptive response to feelings of isolation or disconnectedness; the health protective effects of social bonds could be related to tonic exposure to endogenous opioids and their anti-inflammatory properties; endogenous opioid-based social relational enhancement may contribute to placebo responding. Finally we conclude by pointing out the possibility of virtuous cycles of social connectedness and creativity, when feelings of bondedness and euphoric flow reinforce one another through endogenous opioid elevation.
Collapse
Affiliation(s)
- Sung W. Lee
- Department of Bioethics and Medical Humanism, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Sung-ryun Rim
- College of Liberal Arts, Pyeongtaek University, Pyeongtaek, Republic of Korea
- Graduate School of Art Therapy, Pyeongtaek University, Pyeongtaek, Republic of Korea
| | - Carlee Toddes
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Oliveira VEDM, Evrard F, Faure MC, Bakker J. Social isolation and aggression training lead to escalated aggression and hypothalamus-pituitary-gonad axis hyperfunction in mice. Neuropsychopharmacology 2024; 49:1266-1275. [PMID: 38337026 PMCID: PMC11224373 DOI: 10.1038/s41386-024-01808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.
Collapse
Affiliation(s)
- Vinícius Elias de Moura Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Florence Evrard
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Melanie C Faure
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
12
|
Zhou H, Zhu R, Xia Y, Zhang X, Wang Z, Lorimer GH, Ghiladi RA, Bayram H, Wang J. Neuropeptides affecting social behavior in mammals: Oxytocin. Peptides 2024; 177:171223. [PMID: 38626843 DOI: 10.1016/j.peptides.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/30/2024]
Abstract
Oxytocin (OXT), a neuropeptide consisting of only nine amino acids, is synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Although OXT is best known for its role in lactation and parturition, recent research has shown that it also has a significant impact on social behaviors in mammals. However, a comprehensive review of this topic is still lacking. In this paper, we systematically reviewed the effects of OXT on social behavior in mammals. These effects of OXT from the perspective of five key behavioral dimensions were summarized: parental behavior, anxiety, aggression, attachment, and empathy. To date, researchers have agreed that OXT plays a positive regulatory role in a wide range of social behaviors, but there have been controversially reported results. In this review, we have provided a detailed panorama of the role of OXT in social behavior and, for the first time, delved into the underlying regulatory mechanisms, which may help better understand the multifaceted role of OXT. Levels of OXT in previous human studies were also summarized to provide insights for diagnosis of mental disorders.
Collapse
Affiliation(s)
- Hong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Rui Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuqing Xia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xinming Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zixu Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hasan Bayram
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
13
|
Tabaka O, Lawal S, Del Rio Triana R, Hou M, Fraser A, Gallagher A, San Agustin Ruiz K, Marmarcz M, Dickinson M, Oliveira MM, Klann E, Shrestha P. Aberrant TSC-Rheb axis in Oxytocin receptor+ cells mediate stress-induced anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600464. [PMID: 38979197 PMCID: PMC11230205 DOI: 10.1101/2024.06.25.600464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Stress is a major risk for the onset of several maladaptive processes including pathological anxiety, a diffuse state of heightened apprehension over anticipated threats1. Pathological anxiety is prevalent in up to 59% of patients with Tuberous Sclerosis complex (TSC)2, a neurodevelopmental disorder (NDD) caused by loss-of-function mutations in genes for Tuberin (Tsc2) and/or Hamartin (Tsc1) that together comprise the eponymous protein complex. Here, we generated cell type-specific heterozygous knockout of Tsc2 in cells expressing oxytocin receptor (OTRCs) to model pathological anxiety-like behaviors observed in TSC patient population. The stress of prolonged social isolation induces a sustained negative affective state that precipitates behavioral avoidance, often by aberrant oxytocin signaling in the limbic forebrain3,4. In response to social isolation, there were striking sex differences in stress susceptibility in conditional heterozygote mice when encountering situations of approach-avoidance conflict. Socially isolated male mutants exhibited behavioral avoidance in anxiogenic environments and sought more social interaction for buffering of stress. In contrast, female mutants developed resilience during social isolation and approached anxiogenic environments, while devaluing social interaction. Systemic and medial prefrontal cortex (mPFC)-specific inhibition of downstream effector of TSC, the integrated stress response (ISR), rescued behavioral approach toward anxiogenic environments and conspecifics in male and female mutant mice respectively. Further, we found that Tsc2 deletion in OTRCs leads to OTR-signaling elicited network suppression, i.e., hypofrontality, in male mPFC, which is relieved by inhibiting the ISR. Our findings present evidence in support of a sexually dimorphic role of prefrontal OTRCs in regulating emotional responses in anxiogenic environments, which goes awry in TSC. Our work has broader implications for developing effective treatments for subtypes of anxiety disorders that are characterized by cell-autonomous ISR and prefrontal network suppression.
Collapse
Affiliation(s)
- Olivia Tabaka
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Saheed Lawal
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Mian Hou
- Center for Neural Science, New York University, New York, NY 10003
| | - Alexandra Fraser
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Andrew Gallagher
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Maggie Marmarcz
- Center for Neural Science, New York University, New York, NY 10003
| | - Matthew Dickinson
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003
| | - Prerana Shrestha
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
14
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
15
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
16
|
Cum M, Santiago Pérez JA, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. A systematic review and meta-analysis of how social memory is studied. Sci Rep 2024; 14:2221. [PMID: 38278973 PMCID: PMC10817899 DOI: 10.1038/s41598-024-52277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli-a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Amelia R Chambers
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
17
|
Cum M, Pérez JS, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. Mind the gap: A systematic review and meta-analysis of how social memory is studied. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572606. [PMID: 38187659 PMCID: PMC10769336 DOI: 10.1101/2023.12.20.572606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli - a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
|
18
|
Takahashi J, Yamada D, Nagano W, Saitoh A. The Role of Oxytocin in Alzheimer's Disease and Its Relationship with Social Interaction. Cells 2023; 12:2426. [PMID: 37887270 PMCID: PMC10604997 DOI: 10.3390/cells12202426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Alzheimer's disease (AD)-the most common cause of dementia in the elderly-is characterized by progressive memory loss and β-amyloid protein (Aβ) accumulation in the brain. Recently, loneliness was found to be a high risk factor for AD, and social isolation has become a major cause of AD. AD. Oxytocin (OXT), the main hormone involved in social bonding, has been implicated in social interactions, notably in building trust and relationships. Moreover, social isolation or social enrichment modulates the activation of neurons related to OXT. Recently, we reported that OXT reverses learning and memory impairment in AD animal models. Based on the limited number of studies currently available, OXT might be a therapeutic target for AD. Further studies are necessary in order to better understand the role of oxytocin in AD. In this review, we described the relationships between OXT, AD, and social interaction.
Collapse
Affiliation(s)
| | | | | | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (J.T.); (D.Y.); (W.N.)
| |
Collapse
|
19
|
EKİNALAN KAYHAN H, OKUDAN N, BELVİRANLI M. Comparison of the effect of postweaning social isolation, enriched environment, and exercise training on learning and memory functions in rats. Turk J Med Sci 2023; 53:1412-1420. [PMID: 38812994 PMCID: PMC10763796 DOI: 10.55730/1300-0144.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2023] [Accepted: 06/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim To assess the effects of postweaning social isolation, an enriched environment, and exercise training on learning and memory functions in rats, as well as their relation with the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) concentrations in the hippocampus. Materials and methods Randomly assigned into 4 groups were 35 female postweaning rats (25 day old), as the control (C), social isolation (SI), enriched environment (EE), and exercise training (E) groups. The SI and the EE groups were housed under their specific conditions and the E and the C groups were housed under standard conditions for 6 weeks. The rats in the E group swam for 60 min/day, 5 days a week, for 6 weeks. After 6 weeks, the rats were evaluated in the Morris water maze (MWM). Following MWM assessment, hippocampal tissue and blood samples were taken to measure the BDNF and NGF. Results According to the results of the MWM probe trial session, the thigmotaxis behavior was higher in the SI group compared to the C group (p < 0,05). Furthermore, the time spent in the target quadrant (quadrant with an escape platform) was lower in the SI group compared to the EE group (p < 0.05). The BDNF and NGF levels in the hippocampus and plasma were not different between the groups (p < 0.05). Conclusion Postweaning social isolation may increase thigmotaxis behaviors. Postweaning social isolation, enriched environment, and exercise training did not affect the spatial learning, memory function, hippocampal BDNF or NGF levels in female rats.
Collapse
Affiliation(s)
- Hatice EKİNALAN KAYHAN
- Department of Radiotherapy, Vocational School of Health Services, Ankara University, Ankara,
Turkiye
| | - Nilsel OKUDAN
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya,
Turkiye
| | - Muaz BELVİRANLI
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya,
Turkiye
| |
Collapse
|
20
|
Ren L, Tai F. Voluntary wheel running ameliorates abnormalities in social behavior induced by social isolation: involvement of neural and neurochemical responses. Neurosci Lett 2023; 806:137241. [PMID: 37031945 DOI: 10.1016/j.neulet.2023.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Social isolation (SI) can lead to devastating behavioral effects. Increasing evidence has demonstrated that physical activity can improve sociability and brain functions, but whether voluntary exercise can ameliorate SI-induced abnormalities in social behavior and its underlying neuronal mechanisms remains unknown. The present study found that SI during adulthood increased aggression in the resident-intruder test and motivation for social exploration in the three-chamber test. Voluntary wheel running (VWR) could reverse the alterations in social behavior induced by SI in male mice. In addition, SI reduced the number of c-Fos-immunoreactive neurons and increased c-Fos/AVP-labeled neurons in the PVN and c-Fos/TPH2-labeled neurons in the DRN. These alterations could be reversed by VWR. Together, our results reveal that voluntary exercise could ameliorate SI-induced negative effects on social behavior, possibly via alterations of neuronal activation in the brain. This finding provides a potential therapy and targets to prevent or treat the psychological diseases associated with abnormalities in social behaviors.
Collapse
Affiliation(s)
- Lu Ren
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
21
|
François M, Delgado IC, Lafond A, Lewis EM, Kuromaru M, Hassouna R, Deng S, Thaker VV, Dölen G, Zeltser LM. Amygdala AVPR1A mediates susceptibility to chronic social isolation in females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528679. [PMID: 36824966 PMCID: PMC9948989 DOI: 10.1101/2023.02.15.528679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.
Collapse
|
22
|
Johnston MP, Wanat MJ. Mitigating the impact of adolescence isolation on the development of social anxiety: A potential role for oxytocin. Front Behav Neurosci 2022; 16:1038236. [PMID: 36311867 PMCID: PMC9608628 DOI: 10.3389/fnbeh.2022.1038236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to isolation can lead to the development of social anxiety disorder (SAD), which affects 13% of Americans. There are sex differences in the prevalence of anxiety disorders, as women experience higher rates of SAD relative to men. Importantly, isolation experienced during adolescence increases the likelihood of developing SAD in adulthood. Unfortunately, the current treatments for SAD are only effective in 50–65% of patients. As such, it is critical to identify therapeutic targets for the treatment and prevention of SAD, particularly in women. Here, we discuss the links between childhood isolation and adulthood SAD. Next, we examine the preclinical models used to study the impact of isolation on social anxiety-like behaviors in rodents. Increasing evidence from both clinical and pre-clinical studies suggests oxytocin signaling is a potential target to modify social anxiety-like behaviors. We present the evidence that sex hormones influence the oxytocin system. Finally, we highlight future directions for both clinical and pre-clinical studies to further evaluate the efficacy of oxytocin as a treatment for isolation-induced SAD.
Collapse
Affiliation(s)
- Morgan P Johnston
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| | - Matthew J Wanat
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Haller J. Aggression, Aggression-Related Psychopathologies and Their Models. Front Behav Neurosci 2022; 16:936105. [PMID: 35860723 PMCID: PMC9289268 DOI: 10.3389/fnbeh.2022.936105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.
Collapse
|
24
|
Orikasa C. Social Network Plasticity of Mice Parental Behavior. Front Neurosci 2022; 16:882850. [PMID: 35747212 PMCID: PMC9209706 DOI: 10.3389/fnins.2022.882850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neural plasticity occurs during developmental stages and is essential for sexual differentiation of the brain and the ensuing sex-dependent behavioral changes in adults. Maternal behavior is primarily affected by sex-related differences in the brain; however, chronic social isolation even in mature male mice can induce maternal retrieving and crouching behavior when they are first exposed to pups. Social milieus influence the inherent behavior of adults and alter the molecular architecture in the brain, thereby allowing higher levels of associated gene expression and molecular activity. This review explores the possibility that although the development of neural circuits is closely associated with maternal behavior, the brain can still retain its neuroplasticity in adults from a neuromolecular perspective. In addition, neuronal machinery such as neurotransmitters and neuropeptides might influence sociobehavioral changes. This review also discusses that the neural circuits regulating behaviors such as parenting and infanticide (including neglect behavior), might be controlled by neural relay on melanin concentrating hormone (MCH)–oxytocin in the hypothalamus during the positive and negative mode of action in maternal behavior. Furthermore, MCH–oxytocin neural relay might contribute to the anxiolytic effect on maternal behavior, which is involved with reward circuits.
Collapse
|
25
|
Moscovice LR, Gimsa U, Otten W, Eggert A. Salivary Cortisol, but Not Oxytocin, Varies With Social Challenges in Domestic Pigs: Implications for Measuring Emotions. Front Behav Neurosci 2022; 16:899397. [PMID: 35677575 PMCID: PMC9169876 DOI: 10.3389/fnbeh.2022.899397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
Animals respond to inherently rewarding or punishing stimuli with changes in core affective states, which can be investigated with the aid of appropriate biomarkers. In this study we evaluate salivary cortisol (sCORT) and salivary oxytocin (sOXT) concentrations under baseline conditions and in response to two negatively- and two positively-valenced social challenges in 75 young pigs (Sus scrofa domesticus), housed and tested in eight social groups. We predicted that: (1) Relative to baseline, weaning and brief social isolation would be associated with increases in sCORT, due to psychosocial stress, and reductions in sOXT, due to a lack of opportunities for social support; and (2) Opportunities for social play, and reunions with group members after a separation would be associated with weaker sCORT responses, and increases in sOXT concentrations compared to baseline and to negative social challenges. Testing and sample collection occurred between 28 and 65 days of age and involved a within-subject design, in which every subject was sampled multiple times in neutral (baseline), negative and positive social contexts. We also recorded behavioral data and measured rates of agonism, play and affiliative interactions in the different contexts, prior to saliva sampling. As expected, negative social challenges were associated with robust cortisol responses. Relative to baseline, pigs also had higher sCORT responses to positive social challenges, although these differences were only significant during reunions. Salivary oxytocin concentrations did not differ between the different social conditions, although sOXT was lowest during the brief social isolation. Behavioral analyses confirmed predictions about the expected changes in social interactions in different social contexts, with increases in agonism following weaning, increases in coordinated locomotor play in the play context and high rates of affiliative interactions during reunions. Relative sCORT reactivity to different contexts may reflect the intensity of emotional responses, with greater increases occurring in response to challenges that involve more psychosocial stress. Our results suggest that sOXT is not a reliable indicator of emotional valence in pigs, although more research is needed to characterize sOXT responses to various challenges with and without access to social support.
Collapse
Affiliation(s)
- Liza R. Moscovice
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Liza R. Moscovice
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Anja Eggert
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
26
|
Modelling sexual violence in male rats: the sexual aggression test (SxAT). Transl Psychiatry 2022; 12:207. [PMID: 35585046 PMCID: PMC9117203 DOI: 10.1038/s41398-022-01973-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Sexual assault and rape are crimes that impact victims worldwide. Although the psychosocial and eco-evolutionary factors associated with this antisocial behavior have repeatedly been studied, the underlying neurobiological mechanisms are still largely unknown. Here, we established a novel paradigm to provoke and subsequently assess sexual aggression (SxA) in adult male Wistar rats: the sexual aggression test (SxAT). Briefly, male Wistar rats are sexually aroused by a receptive female, which is exchanged by a non-receptive female immediately after the first intromission. This protocol elicits forced mounting and aggressive behavior toward the non-receptive female to different degrees, which can be scored. In a series of experiments we have shown that SxA behavior is a relatively stable trait in rats and correlates positively with sexual motivation. Rats with innate abnormal anxiety and aggressive behavior also show abnormal SxA behavior. In addition, central infusion of oxytocin moderately inhibits aggressive behavior, but increases forced mounting. Finally, we identified the agranular insular cortex to be specifically activated by SxA, however, inhibition of this region did not significantly alter behavior in the SxAT. Altogether, the SxAT is a paradigm that can be readily implemented in behavioral laboratories as a valuable tool to find answers regarding the biological mechanisms underlying SxA in humans, as well as social decision-making in general.
Collapse
|
27
|
Oliveira VEDM, de Jong TR, Neumann ID. Synthetic Oxytocin and Vasopressin Act Within the Central Amygdala to Exacerbate Aggression in Female Wistar Rats. Front Neurosci 2022; 16:906617. [PMID: 35663559 PMCID: PMC9158429 DOI: 10.3389/fnins.2022.906617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Exacerbated aggression is a high-impact, but poorly understood core symptom of several psychiatric disorders, which can also affect women. Animal models have successfully been employed to unravel the neurobiology of aggression. However, despite increasing evidence for sex-specificity, little is known about aggression in females. Here, we studied the role of the oxytocin (OXT) and arginine vasopressin (AVP) systems within the central amygdala (CeA) on aggressive behavior displayed by virgin female Wistar rats using immunohistochemistry, receptor autoradiography, and neuropharmacology. Our data show that CeA GABAergic neurons are activated after an aggressive encounter in the female intruder test. Additionally, neuronal activity (pERK) negatively correlated with the display of aggression in low-aggressive group-housed females. Binding of OXT receptors, but not AVP-V1a receptors, was increased in the CeA of high-aggressive isolated and trained (IST) females. Finally, local infusion of either synthetic OXT or AVP enhanced aggression in IST females, whereas blockade of either of these receptors did not affect aggressive behavior. Altogether, our data support a moderate role of the CeA in female aggression. Regarding neuropeptide signaling, our findings suggest that synthetic, but not endogenous OXT and AVP modulate aggressive behavior in female Wistar rats.
Collapse
Affiliation(s)
- Vinícius E. de M. Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, Liege, Belgium
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Trynke R. de Jong
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- Medische Biobank Noord-Nederland B.V., Groningen, Netherlands
| | - Inga D. Neumann
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Inga D. Neumann,
| |
Collapse
|
28
|
Involvement of DR→mPFC 5-HTergic neural projections in changes of social exploration behaviors caused by adult chronic social isolation in mice. Brain Res Bull 2022; 186:16-26. [DOI: 10.1016/j.brainresbull.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
29
|
Vitale EM, Smith AS. Neurobiology of Loneliness, Isolation, and Loss: Integrating Human and Animal Perspectives. Front Behav Neurosci 2022; 16:846315. [PMID: 35464141 PMCID: PMC9029604 DOI: 10.3389/fnbeh.2022.846315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In social species such as humans, non-human primates, and even many rodent species, social interaction and the maintenance of social bonds are necessary for mental and physical health and wellbeing. In humans, perceived isolation, or loneliness, is not only characterized by physical isolation from peers or loved ones, but also involves negative perceptions about social interactions and connectedness that reinforce the feelings of isolation and anxiety. As a complex behavioral state, it is no surprise that loneliness and isolation are associated with dysfunction within the ventral striatum and the limbic system - brain regions that regulate motivation and stress responsiveness, respectively. Accompanying these neural changes are physiological symptoms such as increased plasma and urinary cortisol levels and an increase in stress responsivity. Although studies using animal models are not perfectly analogous to the uniquely human state of loneliness, studies on the effects of social isolation in animals have observed similar physiological symptoms such as increased corticosterone, the rodent analog to human cortisol, and also display altered motivation, increased stress responsiveness, and dysregulation of the mesocortical dopamine and limbic systems. This review will discuss behavioral and neuropsychological components of loneliness in humans, social isolation in rodent models, and the neurochemical regulators of these behavioral phenotypes with a neuroanatomical focus on the corticostriatal and limbic systems. We will also discuss social loss as a unique form of social isolation, and the consequences of bond disruption on stress-related behavior and neurophysiology.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
30
|
Svirin E, Veniaminova E, Costa-Nunes JP, Gorlova A, Umriukhin A, Kalueff AV, Proshin A, Anthony DC, Nedorubov A, Tse ACK, Walitza S, Lim LW, Lesch KP, Strekalova T. Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells 2022; 11:1036. [PMID: 35326487 PMCID: PMC8947002 DOI: 10.3390/cells11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Collapse
Affiliation(s)
- Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - João Pedro Costa-Nunes
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Institute of Molecular Medicine, New University of Lisbon, 1649-028 Lisbon, Portugal
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University, 354340 Sochi, Russia;
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Institute of Natural Sciences, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Andrey Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia;
| | - Anna Chung Kwan Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| |
Collapse
|
31
|
Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio). Sci Rep 2022; 12:4322. [PMID: 35279678 PMCID: PMC8918347 DOI: 10.1038/s41598-022-07990-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Zebrafish are highly social teleost fish and an excellent model to study social behavior. The neuropeptide Oxytocin is associated different social behaviors as well as disorders resulting in social impairment like autism spectrum disorder. However, how Oxytocin receptor signaling affects the development and expression kinetics of social behavior is not known. In this study we investigated the role of the two oxytocin receptors, Oxtr and Oxtrl, in the development and maintenance of social preference and shoaling behavior in 2- to 8-week-old zebrafish. Using CRISPR/Cas9 mediated oxtr and oxtrl knock-out fish, we found that the development of social preference is accelerated if one of the Oxytocin receptors is knocked-out and that the knock-out fish reach significantly higher levels of social preference. Moreover, oxtr−/− fish showed impairments in the maintenance of social preference. Social isolation prior to testing led to impaired maintenance of social preference in both wild-type and oxtr and oxtrl knock-out fish. Knocking-out either of the Oxytocin receptors also led to increased group spacing and reduced polarization in a 20-fish shoal at 8 weeks post fertilization, but not at 4. These results show that the development and maintenance of social behavior is influenced by the Oxytocin receptors and that the effects are not just pro- or antisocial, but dependent on both the age and social context of the fish.
Collapse
|
32
|
Post-weaning social isolation causes sex-specific alterations to dendritic spine density in subregions of the prefrontal cortex and nucleus accumbens of adult mice. Brain Res 2022; 1777:147755. [PMID: 34932973 PMCID: PMC8802216 DOI: 10.1016/j.brainres.2021.147755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Post-weaning social isolation stress has been shown to increase addiction-like behavior in adulthood. These long-term behavioral alterations may be due to long lasting isolation-induced structural changes to neurons in brain regions involved in reward processing. Previous studies have shown that various stressors alter dendritic spine density in the prefrontal cortex (PFC) and the nucleus accumbens, though many of these studies examine the short-term effects of stress, and are primarily conducted in males. There is mounting evidence that males and females exhibit differences in their stress responses, with some studies showing sex differences in stress-induced plasticity. To determine the long-lasting, sex-specific alterations in spine density following post-weaning social isolation, male and female mice were either isolated or group housed at weaning and spine density was measured once they reached adulthood. Post-weaning isolation increased spine density in the PFC of both the males and females, although the effects in the infralimbic cortex were more pronounced in the females. In the nucleus accumbens, adolescent isolation increased spine density in males only in the core and shell. Females also had higher baseline spine density than males in the nucleus accumbens core. Together these data suggest that adolescent social isolation causes long-term, sex-specific alterations to the prefrontal cortex and the nucleus accumbens.
Collapse
|
33
|
Peris J, Totten K, Montgomery D, Lester H, Weatherington A, Piotrowski B, Sowell S, Doyle K, Scott K, Tan Y, MacFadyen KA, Engle H, de Kloet AD, Krause EG. Conditioned social preference and reward value of activating oxytocin-receptor-expressing ventral tegmental area neurons following repeated daily binge ethanol intake. Alcohol Clin Exp Res 2022; 46:194-206. [PMID: 34964139 PMCID: PMC8858886 DOI: 10.1111/acer.14769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) exhibit a disruption of social behavior and dysregulation of oxytocin signaling in the brain, possibly reflecting decreased activation of oxytocin receptors (OxTRs) in reward pathways in response to social stimuli. We hypothesize that daily binge ethanol intake causes a deficit in social reward and oxytocin signaling in the ventral tegmental area (VTA). METHODS After 9 weeks of daily binge ethanol intake (blood ethanol concentration >80 mg%), OxTR-cre mice underwent conditioned place preference for social reward. Separate groups of mice were tested for the effects of binge ethanol on voluntary social interactions, food reward, locomotion, and anxiety-like behaviors. A subset of mice underwent transfection of OxTR-expressing VTA neurons (VTAOxtr ) with a light-sensitive opsin, followed by operant training to respond to light delivered to VTA. RESULTS Ethanol-naïve male mice increased the time spent on the side previously paired with novel mice while ethanol-treated mice did not. Binge ethanol did not affect conditioned place preference for food reward in males, but this response was weakened in ethanol-treated females. Ethanol treatment also caused a sex-specific impairment of voluntary social interactions with novel mice. There were minimal differences between groups in measures of anxiety and locomotion. Ethanol-naïve mice had significantly greater operant responding for activation of VTAOxtr than sham-transfected mice but ethanol-treated mice did not. There was no difference in the number of VTAOxtr after binge ethanol. CONCLUSIONS Daily binge ethanol causes social reward deficits that cannot be explained by nonspecific effects on other behaviors, at least in males. Only ethanol-naïve mice exhibited positive reinforcement caused by activation of VTAOxtr while daily binge ethanol did not alter the number of VTAOxtr in either males or females. Thus, subtle dysregulation of VTAOxtr function may be related to the social reward deficits caused by daily binge ethanol.
Collapse
Affiliation(s)
- Joanna Peris
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Katye Totten
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Darrice Montgomery
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Hannah Lester
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | | | - Brian Piotrowski
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Sam Sowell
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Kristen Doyle
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Karen Scott
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Yalun Tan
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Kaley A. MacFadyen
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | - Hannah Engle
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| | | | - Eric G. Krause
- University of Florida, Department of Pharmacodynamics, Gainesville FL 32610 USA
| |
Collapse
|
34
|
Donovan ML, Chun EK, Liu Y, Wang Z. Post-weaning Social Isolation in Male and Female Prairie Voles: Impacts on Central and Peripheral Immune System. Front Behav Neurosci 2022; 15:802569. [PMID: 35111003 PMCID: PMC8801571 DOI: 10.3389/fnbeh.2021.802569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) offers a unique opportunity to examine the impacts of adolescent social isolation on the brain, immune system, and behavior. In the current study, male and female prairie voles were randomly assigned to be housed alone or with a same-sex cagemate after weaning (i.e., on postnatal day 21-22) for a 6-week period. Thereafter, subjects were tested for anxiety-like and depressive-like behaviors using the elevated plus maze (EPM) and Forced Swim Test (FST), respectively. Blood was collected to measure peripheral cytokine levels, and brain tissue was processed for microglial density in various brain regions, including the Nucleus Accumbens (NAcc), Medial Amygdala (MeA), Central Amygdala (CeA), Bed Nucleus of the Stria Terminalis (BNST), and Paraventricular Nucleus of the Hypothalamus (PVN). Sex differences were found in EPM and FST behaviors, where male voles had significantly lower total arm entries in the EPM as well as lower latency to immobility in the FST compared to females. A sex by treatment effect was found in peripheral IL-1β levels, where isolated males had a lower level of IL-1β compared to cohoused females. Post-weaning social isolation also altered microglial density in a brain region-specific manner. Isolated voles had higher microglial density in the NAcc, MeA, and CeA, but lower microglial density in the dorsal BNST. Cohoused male voles also had higher microglial density in the PVN compared to cohoused females. Taken together, these data suggest that post-weaning social housing environments can alter peripheral and central immune systems in prairie voles, highlighting a potential role for the immune system in shaping isolation-induced alterations to the brain and behavior.
Collapse
Affiliation(s)
- Meghan L. Donovan
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eileen K. Chun
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Yan Liu
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Zuoxin Wang
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
35
|
Oliveira VEDM, Bakker J. Neuroendocrine regulation of female aggression. Front Endocrinol (Lausanne) 2022; 13:957114. [PMID: 36034455 PMCID: PMC9399833 DOI: 10.3389/fendo.2022.957114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Classically the neurobiology of aggression has been studied exclusively in males. Thus, females have been considered mildly aggressive except during lactation. Interestingly, recent studies in rodents and humans have revealed that non-lactating females can show exacerbated and pathological aggression similarly to males. This review provides an overview of recent findings on the neuroendocrine mechanisms regulating aggressive behavior in females. In particular, the focus will be on novel rodent models of exaggerated aggression established in non-lactating females. Among the neuromodulatory systems influencing female aggression, special attention has been given to sex-steroids and sex-steroid-sensitive neuronal populations (i.e., the core nuclei of the neural pathway of aggression) as well as to the neuropeptides oxytocin and vasopressin which are major players in the regulation of social behaviors.
Collapse
|
36
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
37
|
Social Instability Stress in Adolescence and Social Interaction in Female Rats. Neuroscience 2021; 477:1-13. [PMID: 34619317 DOI: 10.1016/j.neuroscience.2021.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023]
Abstract
Adolescence is a critical time of brain development for regions governing social behaviour and social learning. Social experiences influence the ongoing maturation of the neural structures and ultimately modify the social behaviour of adults in response to social cues. Social instability stress in adolescence (SS; daily 1-hour isolation + change of cage partner in postnatal days [PND] 30-45) leads to a long-lasting reduction in social interaction in SS rats compared with non-stressed (CTL) rats in males; here we investigate females. In a first experiment, we found that female rats exposed to adolescent SS also showed the decrement in social interaction irrespective of age at which tested, and replicated the effects previously found in males. In experiment 2, which involved females only, SS and CTL rats did not differ in anxiety-like behaviour in the elevated plus maze (EPM) and the reduction in social interaction was not significant. Nevertheless, when tested in adolescence at P47 (and not at P71), SS female rats had higher corticosterone release during the social interaction test than did CTL rats, and they exhibited a different pattern of neural activation as measured by immunoreactivity to the protein products of zif268 and c-fos (SS < CTL in medial prefrontal cortex and SS > CTL in hippocampus), and reduced oxytocin immunoreactivity in the paraventricular nucleus of the hypothalamus than did CTL rats. These results extend our previous findings of effects of SS in adolescent female rats on behavioural responses to psychostimulants to social behaviour, and point to directions for investigations of the neural mechanisms involved.
Collapse
|
38
|
Kinley BL, Kyne RF, Lawton-Stone TS, Walker DM, Paul MJ. Long-term consequences of peri-adolescent social isolation on social preference, anxiety-like behaviour, and vasopressin neural circuitry of male and female rats. Eur J Neurosci 2021; 54:7790-7804. [PMID: 34750934 DOI: 10.1111/ejn.15520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/02/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Social isolation during the juvenile and adolescent stages (peri-adolescent social isolation) can have long-term consequences for behavioural and neural development. Most of this research, however, has relied on data from males, and very few studies have included both sexes. The present study investigated the impact of peri-adolescent social isolation on social preference, anxiety-like behaviour, and vasopressin neural circuitry of male and female Long Evans rats. Rats were either housed alone for 3 weeks beginning at weaning (Isolated) or in groups (Group-housed). In adulthood, rats were tested in social preference, open field, marble burying, and light/dark box tests, and brains were processed for vasopressin immunohistochemistry. Isolated males exhibited a lower social preference score and spent more time in the light zone of the light/dark box than their group-housed counterparts. Isolated and Group-housed females did not differ in these measures. Peri-adolescent social isolation did not alter vasopressin fibre density in target areas known to influence social and anxiety-like behaviours (the lateral septum or lateral habenula), but increased fibre density in an output pathway of the circadian pacemaker (projections to the paraventricular nucleus of the thalamus); an effect detected across both sexes. A previously unreported sex difference was also detected for vasopressin fibre density in the paraventricular nucleus of the thalamus (females > males). These findings demonstrate long-term consequences of peri-adolescent social isolation on social preference, anxiety-like behaviour, and the circadian vasopressin pathway and suggest that socio-affective development of males is more vulnerable to social stressors during the juvenile and adolescent stages.
Collapse
Affiliation(s)
- Brianna L Kinley
- Department of Biological Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Robert F Kyne
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, USA.,Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| | | | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, USA.,Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
39
|
Onaka T, Takayanagi Y. The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol 2021; 33:e13049. [PMID: 34713517 PMCID: PMC9286573 DOI: 10.1111/jne.13049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Early-life experience influences social and emotional behaviour in adulthood. Affiliative tactile stimuli in early life facilitate the development of social and emotional behaviour, whereas early-life adverse stimuli have been shown to increase the risk of various diseases in later life. On the other hand, oxytocin has been shown to have organizational actions during early-life stages. However, the detailed mechanisms of the effects of early-life experience and oxytocin remain unclear. Here, we review the effects of affiliative tactile stimuli during the neonatal period and neonatal oxytocin treatment on the activity of the oxytocin-oxytocin receptor system and social or emotional behaviour in adulthood. Both affiliative tactile stimuli and early-life adverse stimuli in the neonatal period acutely activate the oxytocin-oxytocin receptor system in the brain but modulate social behaviour and anxiety-related behaviour apparently in an opposite direction in adulthood. Accumulating evidence suggests that affiliative tactile stimuli and exogenous application of oxytocin in early-life stages induce higher activity of the oxytocin-oxytocin receptor system in adulthood, although the effects are dependent on experimental procedures, sex, dosages and brain regions examined. On the other hand, early-life stressful stimuli appear to induce reduced activity of the oxytocin-oxytocin receptor system, possibly leading to adverse actions in adulthood. It is possible that activation of a specific oxytocin system can induce beneficial actions against early-life maltreatments and thus could be used for the treatment of developmental psychiatric disorders.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| |
Collapse
|
40
|
Verification of a multi-function closed maze for the detection of affective disorder and spatial cognitive impairment in post-weaning socially isolated rats. Neurosci Lett 2021; 763:136192. [PMID: 34419504 DOI: 10.1016/j.neulet.2021.136192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To verify a behavioral device for the detection of learning, memory, and affective disorders in post-weaning socially isolated rats. METHODS We tested the behavioral changes in post-weaning socially isolated rats using a multi-function closed maze, a self-developed behavioral device, against the classical mood disorder detection method, the IntelliCage system and Morris water maze. RESULTS In the multifunctional closed maze experiment, the spatial learning and memory ability of post-weaning socially isolated rats decreased, which was consistent with the results of the water maze and IntelliCage system. Furthermore, the behavioral changes in the post-weaning socially isolated rats in the multi-function closed maze test were the same as those of the forced swimming and open field tests, indicating that the rats had depression- and anxiety-like behaviors. CONCLUSION A multi-function closed maze can detect emotional changes, spatial learning ability, and memory ability.
Collapse
|
41
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
42
|
Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 2021; 148:105111. [PMID: 34171414 DOI: 10.1016/j.neuint.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Abstract
Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.
Collapse
|
43
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
44
|
Oliveira VEDM, Lukas M, Wolf HN, Durante E, Lorenz A, Mayer AL, Bludau A, Bosch OJ, Grinevich V, Egger V, de Jong TR, Neumann ID. Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. Nat Commun 2021; 12:2900. [PMID: 34006875 PMCID: PMC8131389 DOI: 10.1038/s41467-021-23064-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/09/2021] [Indexed: 02/03/2023] Open
Abstract
In contrast to male rats, aggression in virgin female rats has been rarely studied. Here, we established a rat model of enhanced aggression in females using a combination of social isolation and aggression-training to specifically investigate the involvement of the oxytocin (OXT) and arginine vasopressin (AVP) systems within the lateral septum (LS). Using neuropharmacological, optogenetic, chemogenetic as well as microdialysis approaches, we revealed that enhanced OXT release within the ventral LS (vLS), combined with reduced AVP release within the dorsal LS (dLS), is required for aggression in female rats. Accordingly, increased activity of putative OXT receptor-positive neurons in the vLS, and decreased activity of putative AVP receptor-positive neurons in the dLS, are likely to underly aggression in female rats. Finally, in vitro activation of OXT receptors in the vLS increased tonic GABAergic inhibition of dLS neurons. Overall, our data suggest a model showing that septal release of OXT and AVP differentially affects aggression in females by modulating the inhibitory tone within LS sub-networks.
Collapse
Affiliation(s)
- Vinícius Elias de Moura Oliveira
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Michael Lukas
- Department of Neurobiology and Animal Physiology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Hannah Nora Wolf
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Elisa Durante
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Alexandra Lorenz
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Anna-Lena Mayer
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Anna Bludau
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Oliver J Bosch
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Veronica Egger
- Department of Neurobiology and Animal Physiology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Trynke R de Jong
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany
- Medische Biobank Noord-Nederland B.V., Groningen, Netherlands
| | - Inga D Neumann
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Universitaetstraße, Regensburg, Bavaria, Germany.
| |
Collapse
|
45
|
Hou W, Ma H, Xun Y, Zhang X, Cai W, Huang S, He Z, Tai F, Jia R. Sex-Dependent Effects of Chronic Social Defeat on Emotional and Social Behaviors, and Parameters of Oxytocin and Vasopressin Systems in Mandarin Voles ( Microtus mandarinus). Front Neurosci 2021; 15:625116. [PMID: 34045941 PMCID: PMC8144301 DOI: 10.3389/fnins.2021.625116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In the regulation of emotional and social behaviors, both oxytocin (OT) and vasopressin (AVP) are sex specific. Although significant sex differences have been reported in the context of behavioral and hormonal responses to social stress, such differences in response to chronic social defeat stress (CSDS) and the underlying neural mechanisms remain largely unknown. By investigating monogamous mandarin voles (Microtus mandarinus), CSDS was found to decrease the percentages of time spent in the central area of the open field, in the open arms of the elevated plus maze, as well as in the light area of the light and dark boxes in both male and female voles. CSDS also increased the observed level of social withdrawal in both sex groups. However, CSDS exposure increased the percentages of immobile time in both the tail suspension test and the forced swim test and reduced the locomotor activity in the open field (in females only). Along with these behavioral changes, the oxytocin receptor (OTR) levels in the nucleus accumbens (NAc) were significantly lower in CSDS-exposed voles of both sexes; however, in males, the levels of OTR in the paraventricular nucleus (PVN) were reduced. CSDS-exposed males showed lower levels of V1aR in the NAc than CSDS-exposed females. Furthermore, induced by a single social defeat event, CSDS reduced c-Fos and OT double labeling in the PVN of females but increased c-Fos and AVP double-labeled neurons in the PVN of males exposed to a single social defeat event. Collectively, the present study indicates that OT and AVP systems may play important regulatory roles in the sex differences of behavioral performances in response to CSDS. These findings suggest mandarin voles as a useful animal model for studying sex-specific behavioral performance and the underlying neurobiological mechanisms of stress-related mental disorders in preclinical studies.
Collapse
Affiliation(s)
- Wenjuan Hou
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Yufeng Xun
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Xin Zhang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Shuying Huang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
46
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
47
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
48
|
Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 2021; 26:265-279. [PMID: 32514104 PMCID: PMC7278240 DOI: 10.1038/s41380-020-0802-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide oxytocin has attracted great attention of the general public, basic neuroscience researchers, psychologists, and psychiatrists due to its profound pro-social, anxiolytic, and "anti-stress" behavioral and physiological effects, and its potential application for treatment of mental diseases associated with altered socio-emotional competence. During the last decade, substantial progress has been achieved in understanding the complex neurobiology of the oxytocin system, including oxytocinergic pathways, local release patterns, and oxytocin receptor distribution in the brain, as well as intraneuronal oxytocin receptor signaling. However, the picture of oxytocin actions remains far from being complete, and the central question remains: "How does a single neuropeptide exert such pleotropic actions?" Although this phenomenon, typical for many of about 100 identified neuropeptides, may emerge from the anatomical divergence of oxytocin neurons, their multiple central projections, distinct oxytocin-sensitive cell types in different brain regions, and multiple intraneuronal signaling pathways determining the specific cellular response, further basic studies are required. In conjunction, numerous reports on positive effects of intranasal application of oxytocin on human brain networks controlling socio-emotional behavior in health and disease require harmonic tandems of basic researchers and clinicians. During the COVID-19 crisis in 2020, oxytocin research seems central as question of social isolation-induced inactivation of the oxytocin system, and buffering effects of either activation of the endogenous system or intranasal application of synthetic oxytocin need to be thoroughly investigated.
Collapse
|
49
|
Donovan M, Mackey CS, Platt GN, Rounds J, Brown AN, Trickey DJ, Liu Y, Jones KM, Wang Z. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol Stress 2020; 13:100278. [PMID: 33344730 PMCID: PMC7739176 DOI: 10.1016/j.ynstr.2020.100278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The absence of social support, or social isolation, can be stressful, leading to a suite of physical and psychological health issues. Growing evidence suggests that disruption of the gut-immune-brain axis plays a crucial role in the negative outcomes seen from social isolation stress. However, the mechanisms remain largely unknown. The socially monogamous prairie vole (Microtus ochrogaster) has been validated as a useful model for studying negative effects of social isolation on the brain and behaviors, yet how the gut microbiome and central immune system are altered in isolated prairie voles are still unknown. Here, we utilized this social rodent to examine how social isolation stress alters the gut-immune-brain axis and relevant behaviors. Adult male and female prairie voles (n = 48 per sex) experienced social isolation or were cohoused with a same-sex cagemate (control) for six weeks. Thereafter, their social and anxiety-like behaviors, neuronal circuit activation, neurochemical expression, and microgliosis in key brain regions, as well as gut microbiome alterations from the isolation treatment were examined. Social isolation increased anxiety-like behaviors and impaired social affiliation. Isolation also resulted in sex- and brain region-specific alterations in neuronal activation, neurochemical expression, and microgliosis. Further, social isolation resulted in alterations to the gut microbiome that were correlated with key brain and behavioral measures. Our data suggest that social isolation alters the gut-immune-brain axis in a sex-dependent manner and that gut microbes, central glial cells, and neurochemical systems may play a critical, integrative role in mediating negative outcomes from social isolation.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N. Wheeling St., Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Jacob Rounds
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| |
Collapse
|
50
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|