1
|
Jovanovic MZ, Stanojevic J, Stevanovic I, Ninkovic M, Ilic TV, Nedeljkovic N, Dragic M. Prolonged intermittent theta burst stimulation restores the balance between A2AR- and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease. Neural Regen Res 2025; 20:2053-2067. [PMID: 39254566 PMCID: PMC11691459 DOI: 10.4103/nrr.nrr-d-23-01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Wang ML, Song YL, Wu DY, Li H, Li ZM, Xiong XX, Hu NY, Hu J, Li JT, Wang YX, Li XW, Yang JM, Chen YH, Gao TM. Astrocytic connexin43 in the medial prefrontal cortex regulates depressive- and anxiety-like behaviors via ATP release. Pharmacol Res 2025:107798. [PMID: 40449814 DOI: 10.1016/j.phrs.2025.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Major depressive disorder (MDD) affects 17% of the global population and is highly comorbid with anxiety disorders. Emerging evidence indicates that dysregulation of astrocytic ATP contributes to the pathophysiology of depression. However, the molecular substrates underlying the stress-induced reduction in ATP release remain poorly understood, and the basis for the comorbidity of depression and anxiety disorders is still unknown. Here, we showed that Cx43 expression and extracellular ATP levels were significantly reduced in the medial prefrontal cortex (mPFC) of chronic social defeat stress (CSDS)-susceptible mice. Astrocyte-specific knockout or knockdown of Cx43 in the mPFC induced depressive-like behaviors--including anhedonia and despair-like behavio--and anxiety-like behaviors, alongside a reduction in ATP release, whereas neuronal knockout of Cx43 showed no effects on these behaviors. Notably, exogenous ATPγS administration reversed these behavioral deficits. Furthermore, overexpression of astrocytic Cx43 in the mPFC rescued both ATP levels and emotion-related behaviors in CSDS-susceptible mice. Taken together, our study provided the first evidence that astrocytic Cx43 reduction was sufficient to induce depressive- and anxiety-like behaviors and identified a novel ATP-mediated mechanism linking astrocytic Cx43 to both depression and anxiety pathogenesis. These findings open up promising therapeutic targets for treating these comorbid disorders.
Collapse
Affiliation(s)
- Meng-Ling Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yun-Long Song
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing-Xing Xiong
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Ting Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue-Xin Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Lewandowska J, Majewski J, Roszek K. Extracellular Vesicles and Purinergic Signaling in Alzheimer's Disease-Joining Forces for Novel Therapeutic Approach. Brain Sci 2025; 15:570. [PMID: 40563742 PMCID: PMC12190853 DOI: 10.3390/brainsci15060570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/21/2025] [Accepted: 05/24/2025] [Indexed: 06/28/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are a global problem affecting millions of people. Thanks to years of research and huge efforts, it has been possible to discover the pathophysiological changes accompanying Alzheimer's disease at the cellular level. It turns out that the formation of amyloid-beta plaques and hyperphosphorylation of tau protein in the brain play a key role in disease development. Purinergic signaling (PS) is implicated in the pathophysiology of several disorders in the central nervous system, and recent findings link some disturbances in PS with Alzheimer's disease. The primary objective of our review is to comprehensively explore and identify key purinergic signaling targets that hold therapeutic potential in the treatment of patients suffering from the disease. In particular, we focus on the dual role of purinergic compounds and extracellular vesicles (EVs), which have emerged as critical components in cellular communication and disease modulation. The extracellular vesicles that are naturally released by various cells fulfill the role of communication tools, also by harnessing the purinergic compounds. In this context, our review presents a thorough and integrative analysis of how extracellular vesicles can influence purinergic signaling and how this interaction might be leveraged to develop novel, targeted treatment strategies. Ultimately, this line of research may lead to innovative therapeutic approaches that are not only effective in slowing or halting disease progression but also demonstrate a high degree of biocompatibility and safety for the human organism.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
4
|
Zhang H, Zhang X, Chai Y, Wang Y, Zhang J, Chen X. Astrocyte-mediated inflammatory responses in traumatic brain injury: mechanisms and potential interventions. Front Immunol 2025; 16:1584577. [PMID: 40406119 PMCID: PMC12094960 DOI: 10.3389/fimmu.2025.1584577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Astrocytes play a pivotal role in the inflammatory response triggered by traumatic brain injury (TBI). They are not only involved in the initial inflammatory response following injury but also significantly contribute to Astrocyte activation and inflammasome release are key processes in the pathophysiology of TBI, significantly affecting the progression of secondary injury and long-term outcomes. This comprehensive review explores the complex triggering mechanisms of astrocyte activation following TBI, the intricate pathways controlling the release of inflammasomes from activated astrocytes, and the subsequent neuroinflammatory cascade and its multifaceted roles after injury. The exploration of these processes not only deepens our understanding of the neuroinflammatory cascade but also highlights the potential of astrocytes as critical therapeutic targets for TBI interventions. We then evaluate cutting-edge research aimed at targeted therapeutic approaches to modulate pro-inflammatory astrocytes and discuss emerging pharmacological interventions and their efficacy in preclinical models. Given that there has yet to be a relevant review elucidating the specific intracellular mechanisms targeting astrocyte release of inflammatory substances, this review aims to provide a nuanced understanding of astrocyte-mediated neuroinflammation in TBI and elucidate promising avenues for therapeutic interventions that could fundamentally change TBI management and improve patient outcomes. The development of secondary brain injury and long-term neurological sequelae. By releasing a variety of cytokines and chemokines, astrocytes regulate neuroinflammation, thereby influencing the survival and function of surrounding cells. In recent years, researchers have concentrated their efforts on elucidating the signaling crosstalk between astrocytes and other cells under various conditions, while exploring potential therapeutic interventions targeting these cells. This paper highlights the specific mechanisms by which astrocytes produce inflammatory mediators during the acute phase post-TBI, including their roles in inflammatory signaling, blood-brain barrier integrity, and neuronal protection. Additionally, we discuss current preclinical and clinical intervention strategies targeting astrocytes and their potential to mitigate neurological damage and enhance recovery following TBI. Finally, we explore the feasibility of pharmacologically assessing astrocyte activity post-TBI as a biomarker for predicting acute-phase neuroinflammatory changes.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yuhua Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
5
|
Drozhdev AI, Gorbatenko VO, Goriainov SV, Chistyakov DV, Sergeeva MG. ATP Alters the Oxylipin Profiles in Astrocytes: Modulation by High Glucose and Metformin. Brain Sci 2025; 15:293. [PMID: 40149814 PMCID: PMC11940397 DOI: 10.3390/brainsci15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that has been actively investigated in the context of therapy for neuroinflammation, but its mechanisms of action are not fully elucidated. Therefore, we aimed to characterize the effects of ATP on inflammatory markers and oxylipin profiles; determine the dependence of these effects on the adaptation of astrocytes to high glucose levels; and evaluate the possibility of modulating ATP effects using metformin. Methods: We estimated the ATP-mediated response of primary rat astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation. Cell responses were assessed by monitoring changes in the expression of inflammatory markers (TNFα, IL-6, IL-10, IL-1β, iNOS, and COX-2) and the synthesis of oxylipins (41 compounds), assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Intracellular pathways were assessed by analyzing the phosphorylation of p38; ERK MAPK; transcription factors STAT3 and NF-κB; and the enzymes mediating oxylipin synthesis, COX-1 and cPLA2. Results: The stimulation of cells with ATP does not affect the expression of pro-inflammatory markers, increases the activities of p38 and ERK MAPKs, and activates oxylipin synthesis, shifting the profiles toward an increase in anti-inflammatory compounds (PGD2, PGA2, 12-HHT, and 18-HEPE). The ATP effects are reduced in HG astrocytes. Metformin potentiated ATP-induced oxylipin synthesis (11-HETE, PGD2, 12-HHT, 15-HETE, 13-HDoHE, and 15-HETrE), which was predominantly evident in NG cells. Conclusions: Our data provide new evidence showing that ATP induces the release of anti-inflammatory oxylipins, and metformin enhances these effects. These results should be considered in the development of anti-inflammatory therapeutic approaches aimed at modulating astrocyte function in various pathologies.
Collapse
Affiliation(s)
- Alexey I. Drozhdev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Vladislav O. Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Sergey V. Goriainov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Dmitry V. Chistyakov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
6
|
Zhang X, Chen X, Bai T, Meng X, Wu Y, Yang A, Lin M, Chen H, Li X. Reducing Luminal Extracellular Adenosine Triphosphate Levels Alleviates Food Allergy Induced by an Egg White Diet in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5562-5572. [PMID: 40040493 DOI: 10.1021/acs.jafc.4c12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The development of food allergies is typically associated with extensive intestinal inflammation. As a key inflammatory signaling molecule, the precise roles of extracellular adenosine triphosphate in food allergies require further elucidation. Our previous research reported that continuous food allergen exposure led to increased accumulation of luminal extracellular adenosine triphosphate (eATP). In the present study, we demonstrate that the deficient expression of intestinal ENTPD1, an eATP ectoenzyme that can quickly hydrolyze ATP to AMP, likely contributes to the excessive accumulation of luminal eATP in allergic mice. Furthermore, we also illustrate that reducing luminal eATP levels can relieve food allergy manifestations and intestinal inflammation through the effects of lowering local and systemic pro-inflammatory cytokine secretion, diminishing intestinal T helper cell activities, decreasing crosstalk between Tfh cells and B cells in Peyer's patches, and improving gut dysbiosis. These findings may offer new perspectives for understanding the roles of eATP in food allergies and the mechanisms of food allergy development.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang 330006, Jiangxi, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| |
Collapse
|
7
|
Cassavaugh J, Longhi MS, Robson SC. Impact of Estrogen on Purinergic Signaling in Microvascular Disease. Int J Mol Sci 2025; 26:2105. [PMID: 40076726 PMCID: PMC11900469 DOI: 10.3390/ijms26052105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Microvascular ischemia, especially in the heart and kidneys, is associated with inflammation and metabolic perturbation, resulting in cellular dysfunction and end-organ failure. Heightened production of adenosine from extracellular nucleotides released in response to inflammation results in protective effects, inclusive of adaptations to hypoxia, endothelial cell nitric oxide release with the regulation of vascular tone, and inhibition of platelet aggregation. Purinergic signaling is modulated by ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39, which is the dominant factor dictating vascular metabolism of extracellular ATP to adenosine throughout the cardiovascular tissues. Excess levels of extracellular purine metabolites, however, have been associated with metabolic and cardiovascular diseases. Physiological estrogen signaling is anti-inflammatory with vascular protective effects, but pharmacological replacement use in transgender and postmenopausal individuals is associated with thrombosis and other side effects. Crucially, the loss of this important sex hormone following menopause or with gender reassignment is associated with worsened pro-inflammatory states linked to increased oxidative stress, myocardial fibrosis, and, ultimately, diastolic dysfunction, also known as Yentl syndrome. While there is a growing body of knowledge on distinctive purinergic or estrogen signaling and endothelial health, much less is known about the relationships between the two signaling pathways. Continued studies of the interactions between these pathways will allow further insight into future therapeutic targets to improve the cardiovascular health of aging women without imparting deleterious side effects.
Collapse
Affiliation(s)
- Jessica Cassavaugh
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (M.S.L.); (S.C.R.)
| | | | | |
Collapse
|
8
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2025; 21:23-38. [PMID: 37966629 PMCID: PMC11904000 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
9
|
Ho VR, Goss GG, Leys SP. ATP and glutamate coordinate contractions in the freshwater sponge Ephydatia muelleri. J Exp Biol 2025; 228:JEB248010. [PMID: 39936310 PMCID: PMC11883242 DOI: 10.1242/jeb.248010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025]
Abstract
Sponges (phylum Porifera) are an early diverging animal lineage without nervous and muscular systems, and yet they are able to produce coordinated whole-body contractions in response to disturbances. Little is known about the underlying signalling mechanisms in coordinating such responses. Previous studies demonstrated that sponges respond specifically to chemicals such as l-glutamate and γ-amino-butyric acid (GABA), which trigger and prevent contractions, respectively. Genes for purinergic P2X-like receptors are present in several sponge genomes, leading us to ask whether ATP works with glutamate to coordinate contractions in sponges as it does in other animal nervous systems. Using pharmacological approaches on the freshwater sponge Ephydatia muelleri, we show that ATP is involved in coordinating contractions. Bath application of ATP caused a rapid, sustained expansion of the excurrent canals in a dose-dependent manner. Complete contractions occurred when ATP was added in the presence of apyrase, an enzyme that hydrolyses ATP. Application of ADP, the first metabolic product of ATP hydrolysis, triggered complete contractions, whereas AMP, the subsequent metabolite, did not trigger a response. Blocking ATP from binding and activating P2X receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) prevented both glutamate- and ATP-triggered contractions, suggesting that ATP works downstream of glutamate. Bioinformatic analysis revealed two P2X receptor sequences, one of which groups with other vertebrate P2X receptors. Altogether, our results confirm that purinergic signalling by ATP is involved in coordinating contractions in the freshwater sponge.
Collapse
Affiliation(s)
- Vanessa R. Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| |
Collapse
|
10
|
Hollis A, Lukens JR. Role of inflammasomes and neuroinflammation in epilepsy. Immunol Rev 2025; 329:e13421. [PMID: 39523682 PMCID: PMC11744240 DOI: 10.1111/imr.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Epilepsy is a brain disorder characterized by recurrent seizures, which are brief episodes of abnormal electrical activity in the brain and involuntary movement that can lead to physical injury and loss of consciousness. Seizures are canonically accompanied by increased inflammatory cytokine production that promotes neuroinflammation, brain pathology, and seizure propagation. Understanding the source of pro-inflammatory cytokines which promote seizure pathogenesis could be a gateway to precision epilepsy drug design. This review discusses the inflammasome in epilepsy including its role in seizure propagation and negative impacts on brain health. The inflammasome is a multiprotein complex that coordinates IL-1β and IL-18 production in response to tissue damage, cellular stress, and infection. Clinical evidence for inflammasome signaling in epileptogenesis is reviewed followed by a discussion of emerging strategies to modulate inflammasome activity in epilepsy.
Collapse
Affiliation(s)
- Ava Hollis
- Center for Brain Immunology and Glia (BIG), Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
11
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
13
|
Zhao Y, Kong W, Zhu J, Qu F. Bimodal accurate H 2O 2 regulation to equalize tumor-associated macrophage repolarization and immunogenic tumor cell death elicitation. Chem Sci 2024; 15:20403-20412. [PMID: 39583561 PMCID: PMC11580027 DOI: 10.1039/d4sc06305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024] Open
Abstract
Simultaneous implementation of tumor-associated macrophage (TAM) repolarization and immunogenic tumor cell death (ICD) elicitation enables tumor immunotherapy with high efficacy. However, the inconsistency of stimulation tolerance restricts simultaneous implementation. To address this obstacle, we validate that an H2O2-mediated regulatory strategy could achieve coordinated occurrences. To accomplish this, a bimodal responsive modulator is constructed, namely ZnO2-ATM (ATM: 3-amino-1,2,4-triazole), as an immune adjuvant to coordinate the occurrence of TAM repolarization and ICD elicitation through the endo/exogenous synergistic responsive production of H2O2. H2O2 produced by ZnO2-ATM reverses the immune-suppressive TAM from an M2 to an M1 phenotype, but induces tumor cell necrosis and promotes damage-related molecular pattern release, thereby evoking ICD. This H2O2-mediation bimodal responsive therapeutic strategy to induce the synergistic occurrence of TAM repolarization and ICD elicitation promotes effective immune effects against tumors, demonstrating that the ZnO2-ATM nanoadjuvant could be expected to provide new tools and paradigms for antitumor immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Weiheng Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Jianqing Zhu
- Department of Gynecologic Oncology, University Cancer Hospital of Chinese Science Academy Hangzhou Zhejiang 310004 China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
14
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
15
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
16
|
Stekic A, Stevic D, Dokmanovic T, Anastasov M, Popovic D, Stanojevic J, Jovanovic MZ, Stevanovic I, Nedeljkovic N, Dragic M. Intrinsic ecto-5'-Nucleotidase/A 1R Coupling may Confer Neuroprotection to the Cerebellum in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2024; 61:9284-9301. [PMID: 38619745 DOI: 10.1007/s12035-024-04174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is widely used animal model of multiple sclerosis (MS). The disease is characterized by demyelination and neurodegeneration triggered by infiltrated autoimmune cells and their interaction with astrocytes and microglia. While neuroinflammation is most common in the spinal cord and brainstem, it is less prevalent in the cerebellum, where it predisposes to rapid disease progression. Because the induction and progression of EAE are tightly regulated by adenosinergic signaling, in the present study we compared the adenosine-producing and -degrading enzymes, ecto-5'-nucleotidase (eN/CD73) and adenosine deaminase (ADA), as well as the expression levels of adenosine receptors A1R and A2AR subtypes in nearby areas around the fourth cerebral ventricle-the pontine tegmentum, the choroid plexus (CP), and the cerebellum. Significant differences in histopathological findings were observed between pontine tegmentum and cerebellum on the same horizontal section level. Reactive astrogliosis and massive infiltration of CD4 + cells and macrophages in CP and pontine tegmentum resulted in local demyelination. In cerebellum, there was no evidence of infiltrates, microgliosis and neuroinflammation at the same sectional level. In addition, Bergman glia showed no signs of reactive gliosis. As for adenosinergic signaling, significant upregulation of eN/CD73 was observed in all areas studied, but in association with different adenosine receptor subtypes. In CP and pons, overexpression of eN/CD73 was coupled with induction of A2AR, whereas in cerebellum, a modest increase in eN/CD73 in resident Bergman glia was accompanied by a strong induction of A1R in the same type of astrocytes. Thus, the presence of specialized astroglia and intrinsic differences in adenosinergic signaling may play a critical role in the differential regional susceptibility to EAE inflammation.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dejan Stevic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tamara Dokmanovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Anastasov
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danica Popovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, 11 000, Belgrade, Serbia
| | | | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, 11 000, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Milorad Dragic
- Laboratory for Neurobiology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
17
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
18
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
19
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Stekic A, Dragic M, Stanojevic J, Zaric Kontic M, Stevanovic I, Zeljkovic Jovanovic M, Mihajlovic K, Nedeljkovic N. Impaired olfactory performance and anxiety-like behavior in a rat model of multiple sclerosis are associated with enhanced adenosine signaling in the olfactory bulb via A 1R, A 2BR, and A 3R. Front Cell Neurosci 2024; 18:1407975. [PMID: 39139401 PMCID: PMC11320153 DOI: 10.3389/fncel.2024.1407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The present study shows that animals with experimental autoimmune encephalomyelitis (EAE) exhibit olfactory dysfunction and impaired general cognitive abilities, as well as anxiety-like behavior. Olfactory dysfunction occurs on average at 2 dpi, well before the onset of the first motor signs of EAE (8-10 dpi). After the initial olfactory dysfunction, the EAE animals show a fluctuation in olfactory performance that resembles the relapsing-remitting course of human MS. The study also shows severe neuroinflammation in the olfactory bulb (OB), with numerous infiltrated CD4+ T cells and peripheral macrophages in the superficial OB layers, marked microgliosis, and massive induction of TNF-α, IL-1β, and IL-6. Reduced tyrosine hydroxylase activity in the glomerular layer, pronounced granule cell atrophy, and reduced numbers of type B neuroblasts in the rostral migratory stream also indicate altered plasticity of the neuronal network in the OB. Considering the exceptionally high purinome expression in the OB, the possible involvement of purinergic signaling was also investigated. The study shows that macrophages infiltrating the OB overexpress A3R, while highly reactive microglia overexpress the adenosine-producing enzyme eN/CD73 as well as A2BR, A3R, and P2X4R. Given the simultaneous induction of complement component C3, the results suggest that the microglial cells develop a functional phenotype of phagocytizing microglia. The study also demonstrates transcriptional and translational upregulation of A1R in mitral and tufted cells, which likely influence resting network activity in OB and likely contribute to olfactory dysfunction in EAE. Overall, our study shows that olfactory dysfunction and altered social and cognitive behavior in EAE are associated with increased adenosine signaling via A1R, A2BR, and A3R.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Vinca Institute of Nuclear Sciences, Institute of National Significance, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Falzoni S, Vultaggio-Poma V, Chiozzi P, Tarantini M, Adinolfi E, Boldrini P, Giuliani AL, Morciano G, Tang Y, Gorecki DC, Di Virgilio F. The P2X7 Receptor is a Master Regulator of Microparticle and Mitochondria Exchange in Mouse Microglia. FUNCTION 2024; 5:zqae019. [PMID: 38984997 PMCID: PMC11237899 DOI: 10.1093/function/zqae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024] Open
Abstract
Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.
Collapse
Affiliation(s)
- Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | | | - Paola Chiozzi
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Paola Boldrini
- Center for Electron Microscopy, University of Ferrara, 44100 Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling & Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, P01 2DT Portsmouth, UK
| | | |
Collapse
|
22
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
23
|
Togre NS, Melaka N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom SS, Sriram U, Persidsky Y. Neuroinflammatory Responses and Blood-Brain Barrier Injury in Chronic Alcohol Exposure: Role of Purinergic P2X7 Receptor Signaling. RESEARCH SQUARE 2024:rs.3.rs-4350949. [PMID: 38766082 PMCID: PMC11100971 DOI: 10.21203/rs.3.rs-4350949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alcohol consumption leads to neuroinflammation and blood-brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2X7R activation. Therefore, we aimed to evaluate the effect of P2X7r blockade on peripheral and neuro-inflammation in EtOH-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2X7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), plasma P2X7R and P-gp, number of extra-cellular vesicles (EV), serum ATP and EV-ATP levels. Brain microvessel gene expression and EV mtDNA copy numbers were measured by RT2 PCR array and digital PCR, respectively. A RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed animals, which were decreased 15-50-fold in BBG-treated CIE-exposed animals. Plasma P-gp levels and serum P2X7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2X7R decreased P2X7R shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2X7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2X7R inhibition or receptor knockout. These observations suggested that P2X7R signaling plays a critical role in ethanol-induced brain injury. Increased eATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2X7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2X7R signaling in CIE-induced brain injury.
Collapse
|
24
|
Illes P, Di Virgilio F, Tang Y. Editorial - Purinergic signalling: 50 years. Neuropharmacology 2024; 245:109826. [PMID: 38135034 DOI: 10.1016/j.neuropharm.2023.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The function of almost all cells of the human and animal body is synchronized by purinergic/pyrimidinergic extracellular signalling molecules. This network activity is especially efficient in the central and peripheral nervous systems, driven by secretion of the (co)transmitter ATP (including its enzymatic degradation products ADP, AMP, and adenosine), as well as ATP/UTP (including UDP) released from the cytoplasm by either Ca2+-dependent vesicular exocytosis or by non-exocytotic pathways via a family of diverse channels. It must be pointed out that neural cells (neurons, astrocytes, and oligodendrocytes) are equal sources of nucleotides/nucleosides, as non-neural cells (e.g. the endothelium of small blood vessels). A whole plethora of purinergic receptors responding to the endogenously released purine and pyrimidine nucleotides as well as to adenosine, are instrumental in providing the structural basis for cell stimulation. The present collection of papers summarizes current knowledge and recent findings in the medicinal chemistry, electrophysiology, neuropharmacology and neurobiology of purinergic transmission. Accruing evidence supports the key role of extracellular nucleotides and nucleosides in neuroinflammation, neurodegeneration, and in neuropsychiatric diseases, thus paving the way for pharmacological intervention thanks to the development of novel brain-permeant, drug-like, purinergic ligands. We are confident that these therapies will open a new avenue for the treatment of so far uncurable diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu, China; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
26
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
27
|
Antuña E, Potes Y, Baena-Huerta FJ, Cachán-Vega C, Menéndez-Coto N, Álvarez Darriba E, Fernández-Fernández M, Burgos Bencosme N, Bermúdez M, López Álvarez EM, Gutiérrez-Rodríguez J, Boga JA, Caballero B, Vega-Naredo I, Coto-Montes A, Garcia-Gonzalez C. NLRP3 Contributes to Sarcopenia Associated to Dependency Recapitulating Inflammatory-Associated Muscle Degeneration. Int J Mol Sci 2024; 25:1439. [PMID: 38338718 PMCID: PMC10855188 DOI: 10.3390/ijms25031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1β and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.
Collapse
Affiliation(s)
- Eduardo Antuña
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Yaiza Potes
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | | | - Cristina Cachán-Vega
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
| | | | | | | | - Manuel Bermúdez
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Eva María López Álvarez
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - José Antonio Boga
- Grupo de Investigación Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Beatriz Caballero
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Claudia Garcia-Gonzalez
- Research Group OSKAR, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
28
|
Cao H, Li L, Liu S, Wang Y, Liu X, Yang F, Dong W. The multifaceted role of extracellular ATP in sperm function: From spermatogenesis to fertilization. Theriogenology 2024; 214:98-106. [PMID: 37865020 DOI: 10.1016/j.theriogenology.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is a vital signaling molecule involved in various physiological processes within the body. In recent years, studies have revealed its significant role in male reproduction, particularly in sperm function. This review explores the multifaceted role of extracellular ATP in sperm function, from spermatogenesis to fertilization. We discuss the impact of extracellular ATP on spermatogenesis, sperm maturation and sperm-egg fusion, highlighting the complex regulatory mechanisms and potential clinical applications in the context of male infertility. By examining the latest research, we emphasize the crucial role of extracellular ATP in sperm function and propose future research directions to further.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Adzic Bukvic M, Laketa D, Dragic M, Lavrnja I, Nedeljkovic N. Expression of functionally distinct ecto-5'-nucleotidase/CD73 glycovariants in reactive astrocytes in experimental autoimmune encephalomyelitis and neuroinflammatory conditions in vitro. Glia 2024; 72:19-33. [PMID: 37646205 DOI: 10.1002/glia.24459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Ecto-5'-nucleotidase/CD73 (eN/CD73) is a membrane-bound enzyme involved in extracellular production of adenosine and a cell adhesion molecule involved in cell-cell interactions. In neuroinflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), reactive astrocytes occupying active demyelination areas significantly upregulate eN/CD73 and express additional eN/CD73 variants. The present study investigated whether the different eN/CD73 variants represent distinct glycoforms and the functional consequences of their expression in neuroinflammatory states. The study was performed in animals at different stages of EAE and in primary astrocyte cultures treated with a range of inflammatory cytokines. Upregulation at the mRNA, protein, and functional levels, as well as the appearance of multiple eN/CD73 glycovariants were detected in the inflamed spinal cord tissue. At the peak of the disease, eN/CD73 exhibited higher AMP turnover and lower enzyme-substrate affinity than the control group, which was attributed to altered glycosylation under neuroinflammatory conditions. A subsequent in vitro study showed that primary astrocytes upregulated eN/CD73 and expressed the multiple glycovariants upon stimulation with TNFα, IL-1β, IL-6, and ATP, with the effect occurring at least in part via induction of JAK/STAT3 signaling. Experimental removal of glycan moieties from membrane glycoproteins by PNGaseF decreased eN/CD73 activity but had no effect on the enzyme's involvement in astrocyte migration. Our results suggest that neuroinflammatory states are associated with the appearance of functionally distinct eN/CD73 glycovariants, which may play a role in the development of the reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Nestor L, De Bundel D, Vander Heyden Y, Smolders I, Van Eeckhaut A. Unravelling the brain metabolome: A review of liquid chromatography - mass spectrometry strategies for extracellular brain metabolomics. J Chromatogr A 2023; 1712:464479. [PMID: 37952387 DOI: 10.1016/j.chroma.2023.464479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals. In vivo samples are obtained through microdialysis, cerebral open-flow microperfusion or solid-phase microextraction. The analytes of potential interest are typically low in concentration and can have a wide range of physicochemical properties. Liquid chromatography coupled to mass spectrometry has proven its usefulness in brain metabolomics. It allows sensitive and specific analysis of low sample volumes, obtained through different approaches. Several strategies for the analysis of the extracellular fluid have been proposed. The most widely used approaches apply sample derivatization, specific stationary phases and/or hydrophilic interaction liquid chromatography. Miniaturization of these methods allows an even higher sensitivity. The development of chiral metabolomics is indispensable, as it allows to compare the enantiomeric ratio of compounds and provides even more challenges. Some limitations continue to exist for the previously developed methods and the development of new, more sensitive methods remains needed. This review provides an overview of the methods developed for sampling and liquid chromatography-mass spectrometry analysis of the extracellular metabolome.
Collapse
Affiliation(s)
- Liam Nestor
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
31
|
Fernandez M, Nigro M, Travagli A, Pasquini S, Vincenzi F, Varani K, Borea PA, Merighi S, Gessi S. Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy. Pharmaceutics 2023; 15:2441. [PMID: 37896201 PMCID: PMC10610137 DOI: 10.3390/pharmaceutics15102441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | | | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| |
Collapse
|
32
|
Polk FD, Hakim MA, Silva JF, Behringer EJ, Pires PW. Endothelial K IR2 channel dysfunction in aged cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 2023; 325:H1360-H1372. [PMID: 37801044 PMCID: PMC10907073 DOI: 10.1152/ajpheart.00279.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Aging is associated with cognitive decline via incompletely understood mechanisms. Cerebral microvascular dysfunction occurs in aging, particularly impaired endothelium-mediated dilation. Parenchymal arterioles are bottlenecks of the cerebral microcirculation, and dysfunction causes a mismatch in nutrient demand and delivery, leaving neurons at risk. Extracellular nucleotides elicit parenchymal arteriole dilation by activating endothelial purinergic receptors (P2Y), leading to opening of K+ channels, including inwardly-rectifying K+ channels (KIR2). These channels amplify hyperpolarizing signals, resulting in dilation. However, it remains unknown if endothelial P2Y and KIR2 signaling are altered in brain parenchymal arterioles during aging. We hypothesized that aging impairs endothelial P2Y and KIR2 function in parenchymal arterioles. We observed reduced dilation to the purinergic agonist 2-methyl-S-ADP (1 µM) in arterioles from Aged (>24-month-old) mice when compared to Young (4-6 months of age) despite similar hyperpolarization in endothelial cells tubes. No differences were observed in vasodilation or endothelial cell hyperpolarization to activation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.3 / KCa3.1) by NS309. Hyperpolarization to 15 mM [K+]E was smaller in Aged than Young mice, despite a paradoxical increased dilation in Aged arterioles to 15 mM [K+]E that was unchanged by endothelium removal. KIR2 Inhibition attenuated vasodilatory responses to 15 mM [K+]E and 1 µM 2-me-S-ADP in both Young and Aged arterioles. Further, we observed a significant increase in myogenic tone in Aged parenchymal arterioles, which was not enhanced by endothelium removal. We conclude that aging impairs endothelial KIR2 channel function in the cerebral microcirculation with possible compensation by smooth muscle cells.
Collapse
Affiliation(s)
- Felipe D Polk
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Md A Hakim
- Loma Linda University, Loma Linda, CA, United States
| | - Josiane F Silva
- Physiology, University of Arizona, Tucson, Arizona, United States
| | - Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | - Paulo W Pires
- Physiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
33
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
34
|
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration. Front Neurosci 2023; 17:1216489. [PMID: 37496736 PMCID: PMC10366617 DOI: 10.3389/fnins.2023.1216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
Collapse
Affiliation(s)
- Haydn Molcak
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | - Kailun Jiang
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | | | - Joanne A. Matsubara
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| |
Collapse
|
35
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
36
|
Rybalka E, Kourakis S, Bonsett CA, Moghadaszadeh B, Beggs AH, Timpani CA. Adenylosuccinic Acid: An Orphan Drug with Untapped Potential. Pharmaceuticals (Basel) 2023; 16:822. [PMID: 37375769 PMCID: PMC10304260 DOI: 10.3390/ph16060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Adenylosuccinic acid (ASA) is an orphan drug that was once investigated for clinical application in Duchenne muscular dystrophy (DMD). Endogenous ASA participates in purine recycling and energy homeostasis but might also be crucial for averting inflammation and other forms of cellular stress during intense energy demand and maintaining tissue biomass and glucose disposal. This article documents the known biological functions of ASA and explores its potential application for the treatment of neuromuscular and other chronic diseases.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC 8001, Australia; (S.K.); (C.A.T.)
- Inherited and Acquired Myopathy Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children’s Hospital of Basel (UKBB), 4056 Basel, Switzerland
| | - Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC 8001, Australia; (S.K.); (C.A.T.)
- Inherited and Acquired Myopathy Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| | - Charles A. Bonsett
- Dystrophy Concepts Incorporated, Indianapolis, IN 46226, USA;
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Behzad Moghadaszadeh
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.M.); (A.H.B.)
| | - Alan H. Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.M.); (A.H.B.)
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC 8001, Australia; (S.K.); (C.A.T.)
- Inherited and Acquired Myopathy Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| |
Collapse
|
37
|
Dias L, Pochmann D, Lemos C, Silva HB, Real JI, Gonçalves FQ, Rial D, Gonçalves N, Simões AP, Ferreira SG, Agostinho P, Cunha RA, Tomé AR. Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress. ACS Chem Neurosci 2023; 14:1299-1309. [PMID: 36881648 PMCID: PMC10080657 DOI: 10.1021/acschemneuro.2c00810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,β-methylene ADP (AOPCP, 100 μM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.
Collapse
Affiliation(s)
- Liliana Dias
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Pochmann
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana I Real
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G Ferreira
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Agostinho
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
38
|
Alves VS, da Silva JP, Rodrigues FC, Araújo SMB, Gouvêa AL, Leite-Aguiar R, Santos SACS, da Silva MSP, Ferreira FS, Marques EP, dos Passos BABR, Maron-Gutierrez T, Kurtenbach E, da Costa R, Figueiredo CP, Wyse ATS, Coutinho-Silva R, Savio LEB. P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 2023; 14:1179723. [PMID: 37153798 PMCID: PMC10160626 DOI: 10.3389/fphar.2023.1179723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Fernanda Silva Ferreira
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Peil Marques
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|