1
|
Xi KW, Chen DD, Geng X, Bian Y, Wang MX, Bian H. Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens. Korean J Pain 2023; 36:163-172. [PMID: 36941088 PMCID: PMC10043793 DOI: 10.3344/kjp.22372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
Background Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.
Collapse
Affiliation(s)
- Kai Wen Xi
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Second Department of Neurosurgery, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
- Department of Cerebrovascular Surgery, Xinyu People’s Hospital, Xinyu, Jiangxi, China
| | - De Duo Chen
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xin Geng
- Second Department of Neurosurgery, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bian
- Department of Oncology, The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Min Xin Wang
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Hui Bian
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Chu WG, Wang FD, Sun ZC, Ma SB, Wang X, Han WJ, Wang F, Bai ZT, Wu SX, Freichel M, Xie RG, Luo C. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 2020; 34:8526-8543. [PMID: 32359120 DOI: 10.1096/fj.202000154rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/10/2024]
Abstract
Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: Impact on plasticity following brain injury. Brain Circ 2019; 5:169-178. [PMID: 31950092 PMCID: PMC6950515 DOI: 10.4103/bc.bc_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat. Here, we review the current experimental and clinical evidence to evaluate whether application of TH has any adverse or positive effects on postinjury plasticity. The limited available data suggest that mild TH does not appear to have any deleterious effect on neuroplasticity; however, we emphasize the need for additional high-quality preclinical and clinical work in this area.
Collapse
|
4
|
Guo N, Zhang X, Huang M, Li X, Li Y, Zhou X, Bai J. Geranylgeranylacetone blocks the reinstatement of morphine-conditioned place preference. Neuropharmacology 2018; 143:63-70. [PMID: 30240785 DOI: 10.1016/j.neuropharm.2018.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/24/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
Abstract
Morphine is widely used for clinical pain management and induces the dependence. Addiction to morphine is a major public health issue. Geranylgeranylacetone (GGA) is widely used in clinic for treating ulcer. GGA induces expression of thioredoxin-1 (Trx-1) extensively. Trx-1 is a redox regulating protein and plays protecting roles in nervous system. GGA prevents mice against morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. However, whether GGA blocks morphine-conditioned place preference (CPP) reinstatement is still unknown. In the present study, we found that GGA administration blocked the reinstatement of morphine-CPP. The expressions of Trx-1, N-methyl d-aspartate receptor 2B subunit (NR2B), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signaling regulated kinases (p-ERK), and phosphorylated cAMP-response element binding protein (p-CREB) were induced in nucleus accumbens (NAc) and hippocampus by morphine or GGA, whereas these proteins were not changed by morphine in GGA-treated mice. Our results indicate that GGA may prevent the reinstatement of morphine-CPP through strengthening the expression of Trx-1 and regulating NR2B/ERK pathway. Thus, we suggest that GGA may be a promising therapeutic candidate for morphine-induced relapse.
Collapse
Affiliation(s)
- Ningning Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xianwen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mengbing Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoshuang Zhou
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Luo F, Tian YK, Ye DW. Cellular and Molecular Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II in Chronic Pain. J Pharmacol Exp Ther 2017; 363:176-183. [PMID: 28855373 DOI: 10.1124/jpet.117.243048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 03/08/2025] Open
Abstract
Chronic pain, often defined as any pain lasting more than 3 months, is poorly managed because of its multifaceted and complex mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that plays a fundamental role in synaptic plasticity, learning, and memory. Recent emerging evidence demonstrates increased expression and activity of CaMKII in the spinal cord and dorsal root ganglia of various chronic pain models. Moreover, our previous studies also find that inhibiting CaMKII could attenuate inflammatory pain and neuropathic pain. In this review, we provide evidence for the involvement of CaMKII in the initiation and development of chronic pain, including neuropathic pain, bone cancer pain, and inflammatory pain. Novel CaMKII inhibitors with potent inhibitory effect and high specificity may be alternative therapeutic strategies for the management of chronic pain in the future.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Xue-Rong Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Fang Luo
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Da-Wei Ye
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| |
Collapse
|
6
|
Zhu W, Zhang Y, Huang Y, Lu L. Chinese Herbal Medicine for the Treatment of Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:279-295. [PMID: 28807162 DOI: 10.1016/bs.irn.2017.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter summarizes recent developments in preclinical and clinical research on Chinese herbal medicines and their neurochemical mechanism of action for the treatment of drug addiction. We searched Chinese and English scientific literature and selected several kinds of Chinese herbal medicines that have beneficial effects on drug addiction. Ginseng (Renshen) may be clinically useful for the prevention of opioid abuse and dependence. Rhizoma Corydalis (Yanhusuo) may be used to prevent relapse to chronic drug dependence. Alkaloids of Uncaria rhynchophylla (Gouteng) appear to have positive effects on methamphetamine and ketamine addiction. Both Salvia miltiorrhiza (Danshen) and Radix Pueraiae (Gegen) have beneficial inhibitory effects on alcohol intake. Sinomenine has been shown to have preventive and curative effects on opioid dependence. l-Stepholidine, an alkaloid extract of the Chinese herb Stephania intermedia (Rulan), attenuated the acquisition, maintenance, and reacquisition of morphine-induced conditioned place preference and antagonized the heroin-induced reinstatement of heroin seeking. Traditional Chinese herbal medicines may be used to complement current treatments for drug addiction, including withdrawal and relapse. As the molecular mechanisms of action of traditional Chinese herbal medicines are elucidated, further advances in their use for the treatment of drug addiction are promising.
Collapse
Affiliation(s)
- Weili Zhu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yinan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yingjie Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing, China.
| |
Collapse
|
7
|
Zhao Y, Hao J, Wang J, Wang J. Effect of Choline on the Composition and Degradation Enzyme of Extracellular Matrix of Mice Chondrocytes Exposed to Fluoride. Biol Trace Elem Res 2017; 175:414-420. [PMID: 27368532 DOI: 10.1007/s12011-016-0787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/15/2016] [Indexed: 01/03/2023]
Abstract
Choline has been shown to mediate damage of the chondrocyte matrix and degradation enzymes of mice exposed to fluoride (F). To test the action of choline, pregnant mice were treated with differing amounts of F and choline. Newborn mice were weaned at 21 days after birth and treated with the same doses of F and choline as they mothers for 12 weeks. Using hematoxylin-eosin (HE) staining, real-time PCR (RT-PCR), and western blotting, changes in the structure of the cartilage, the expression of mRNA and protein related to proteoglycans (PG), and degradation enzymes were detected. The RT-PCR results show that the expression of the Aggrecan (Acan), transforming growth factor beta (TGF-β1), and Aggrecanases-1 gene were abnormal in the high fluoride (HiF) group, and treatments with choline reversed this phenomenon. The western blotting results show that the protein expression of Aggrecanases-1 was significantly increased in the HiF group (p < 0.01). These findings suggest that F can change the morphology of cartilage tissue, the gene expression of the Acan, TGF-β1, Aggrecanases-1, and the protein expression of the Acan, and that choline can attenuate the effect of F. This may provide the basis for the treatment and prevention of fluorosis.
Collapse
Affiliation(s)
- Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jing Hao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jinming Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
8
|
Jin H, Sun YT, Guo GQ, Chen DL, Li YJ, Xiao GP, Li XN. Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats. Neurosci Lett 2017; 639:138-145. [DOI: 10.1016/j.neulet.2016.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022]
|
9
|
Ahmadi S, Rashidi A. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat Spinal Cord and Midbrain During Induction of Morphine Analgesic Tolerance. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/gct-38142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Donaldson R, Sun Y, Liang DY, Zheng M, Sahbaie P, Dill DL, Peltz G, Buck KJ, Clark JD. The multiple PDZ domain protein Mpdz/MUPP1 regulates opioid tolerance and opioid-induced hyperalgesia. BMC Genomics 2016; 17:313. [PMID: 27129385 PMCID: PMC4850636 DOI: 10.1186/s12864-016-2634-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Opioids are a mainstay for the treatment of chronic pain. Unfortunately, therapy-limiting maladaptations such as loss of treatment effect (tolerance), and paradoxical opioid-induced hyperalgesia (OIH) can occur. The objective of this study was to identify genes responsible for opioid tolerance and OIH. RESULTS These studies used a well-established model of ascending morphine administration to induce tolerance, OIH and other opioid maladaptations in 23 strains of inbred mice. Genome-wide computational genetic mapping was then applied to the data in combination with a false discovery rate filter. Transgenic mice, gene expression experiments and immunoprecipitation assays were used to confirm the functional roles of the most strongly linked gene. The behavioral data processed using computational genetic mapping and false discovery rate filtering provided several strongly linked biologically plausible gene associations. The strongest of these was the highly polymorphic Mpdz gene coding for the post-synaptic scaffolding protein Mpdz/MUPP1. Heterozygous Mpdz +/- mice displayed reduced opioid tolerance and OIH. Mpdz gene expression and Mpdz/MUPP1 protein levels were lower in the spinal cords of low-adapting 129S1/Svlm mice than in high-adapting C57BL/6 mice. Morphine did not alter Mpdz expression levels. In addition, association of Mpdz/MUPP1 with its known binding partner CaMKII did not differ between these high- and low-adapting strains. CONCLUSIONS The degrees of maladaptive changes in response to repeated administration of morphine vary greatly across inbred strains of mice. Variants of the multiple PDZ domain gene Mpdz may contribute to the observed inter-strain variability in tolerance and OIH by virtue of changes in the level of their expression.
Collapse
Affiliation(s)
- Robin Donaldson
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Yuan Sun
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - De-Yong Liang
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming Zheng
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Gary Peltz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari J Buck
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA. .,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Hepatic but Not CNS-Expressed Human C-Reactive Protein Inhibits Experimental Autoimmune Encephalomyelitis in Transgenic Mice. Autoimmune Dis 2015; 2015:640171. [PMID: 26421184 PMCID: PMC4573232 DOI: 10.1155/2015/640171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022] Open
Abstract
We recently demonstrated that human C-reactive protein (CRP), expressed hepatically in transgenic mice (CRPtg), improved the outcome of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The liver is the primary site of CRP synthesis in humans and in CRPtg mice but is also expressed by both at low levels in the CNS. To determine if CNS expression of human CRP is sufficient to impact EAE, we generated neuronal CRP transgenic mice (nCRPtg) wherein human CRP expression is driven by the neuron-specific Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) gene promoter. We found that hepatically expressed/blood-borne CRP, but not CNS expressed CRP, lessened EAE severity. These outcomes indicate that the protective actions of human CRP in EAE are manifested in the periphery and not in the CNS and reveal a previously unappreciated site specificity for the beneficial actions of CRP in CNS disease.
Collapse
|
12
|
Lutz BM, Nia S, Xiong M, Tao YX, Bekker A. mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Mol Pain 2015; 11:32. [PMID: 26024835 PMCID: PMC4455918 DOI: 10.1186/s12990-015-0030-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 01/25/2023] Open
Abstract
Chronic pain is a major public health problem with limited treatment options. Opioids remain a routine treatment for chronic pain, but extended exposure to opioid therapy can produce opioid tolerance and hyperalgesia. Although the mechanisms underlying chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia remain to be uncovered, mammalian target of rapamycin (mTOR) is involved in these disorders. The mTOR complex 1 and its triggered protein translation are required for the initiation and maintenance of chronic pain (including cancer pain) and opioid-induced tolerance/hyperalgesia. Given that mTOR inhibitors are FDA-approved drugs and an mTOR inhibitor is approved for the treatment of several cancers, these findings suggest that mTOR inhibitors will likely have multiple clinical benefits, including anticancer, antinociception/anti-cancer pain, and antitolerance/hyperalgesia. This paper compares the role of mTOR complex 1 in chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Brianna Marie Lutz
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Sam Nia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ming Xiong
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
13
|
Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ. Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 2015; 352:420-8. [PMID: 25515789 PMCID: PMC4352596 DOI: 10.1124/jpet.114.219303] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/25/2014] [Indexed: 01/28/2023] Open
Abstract
Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug's poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1-10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Fang Huang
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Magdalena Szymusiak
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Ying Liu
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences (X.H., F.H., Y.L., Z.J.W.), Cancer Center (Z.J.W.), and Department of Chemical Engineering (M.S., Y.L.), University of Illinois, Chicago, Illinois
| |
Collapse
|
14
|
Liang DY, Sun Y, Shi XY, Sahbaie P, Clark JD. Epigenetic regulation of spinal cord gene expression controls opioid-induced hyperalgesia. Mol Pain 2014; 10:59. [PMID: 25217253 PMCID: PMC4171542 DOI: 10.1186/1744-8069-10-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/04/2014] [Indexed: 12/14/2022] Open
Abstract
Background The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supporting the epigenetic effects responsible for OIH prolongation. Results Mice were treated with morphine according to an ascending dose protocol. Some mice also received the selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) additionally. Chronic morphine treatment with simultaneous HDAC inhibition enhanced OIH, and several spinal cord genes were up-regulated. The expression of Bdnf (Brain-derived neurotrophic factor) and Pdyn (Prodynorphin) were most closely related to the observed behavioral changes. ChIP (Chromatin immuoprecipation) assays demonstrated that promoter regions of Pdyn and Bdnf were strongly associated with aceH3K9 (Acetylated histone H3 Lysine9) after morphine and SAHA treatment. Furthermore, morphine treatment caused an increase in spinal BDNF and dynorphin levels, and these levels were further increased in SAHA treated mice. The selective TrkB (tropomyosin-receptor-kinase) antagonist ANA-12 reduced OIH when given one or seven days after cessation of morphine. Treatment with the selective kappa opioid receptor antagonist nor-BNI also reduced established OIH. The co-administration of either receptor antagonist agent daily with morphine resulted in attenuation of hyperalgesia present one day after cessation of treatment. Additionally, repeated morphine exposure induced a rise in BDNF expression that was associated with an increased number of BDNF+ cells in the spinal cord dorsal horn, showing strong co-localization with aceH3K9 in neuronal cells. Lastly, spinal application of low dose BDNF or Dynorphin A after resolution of OIH produced mechanical hypersensitivity, with no effect in controls. Conclusions The present study identified two genes whose expression is regulated by epigenetic mechanisms during morphine exposure. Treatments aimed at preventing the acetylation of histones or blocking BDNF and dynorphin signaling may reduce OIH and improve long-term pain using opioids.
Collapse
Affiliation(s)
| | | | | | - Peyman Sahbaie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
15
|
Bian H, Yu LC. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor KN93 induced antinociception in rats with mononeuropathy. Neurosci Lett 2014; 583:6-10. [PMID: 25218714 DOI: 10.1016/j.neulet.2014.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022]
Abstract
The present study was conducted on rats with mononeuropathy induced by left common sciatic nerve ligation. Unilateral sciatic nerve loose ligation produced decreases of the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation. Intra-nucleus accumbens (NAc) injection of 1μg, 3μg and 6μg of KN93, the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor, dose-dependently increased the HWL in mononeuropathic rats. Furthermore, intra-NAc administration of morphine, the HWL to noxious thermal and mechanical stimulation increased markedly, and there were no significant differences between morphine group and KN93 group. The results demonstrated that intra-NAc injection of KN93 induced significant antinociceptive effects in rats with mononeuropathy, indicating CaMKII may play important roles in transmission of nociceptive information in the NAc of mononeuropathic rats.
Collapse
Affiliation(s)
- Hui Bian
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Long-Chuan Yu
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
16
|
Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, Lee CY, Liang L, Zang W, Njoku D, Raja SN, Yaster M, Tao YX. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest 2014; 124:592-603. [PMID: 24382350 DOI: 10.1172/jci70236] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/24/2013] [Indexed: 01/07/2023] Open
Abstract
The development of opioid-induced analgesic tolerance and hyperalgesia is a clinical challenge for managing chronic pain. Adaptive changes in protein translation in the nervous system are thought to promote opioid tolerance and hyperalgesia; however, how opioids drive such changes remains elusive. Here, we report that mammalian target of rapamycin (mTOR), which governs most protein translation, was activated in rat spinal dorsal horn neurons after repeated intrathecal morphine injections. Activation was triggered through μ opioid receptor and mediated by intracellular PI3K/Akt. Spinal mTOR inhibition blocked both induction and maintenance of morphine tolerance and hyperalgesia, without affecting basal pain perception or locomotor functions. These effects were attributed to the attenuation of morphine-induced increases in translation initiation activity, nascent protein synthesis, and expression of some known key tolerance-associated proteins, including neuronal NOS (nNOS), in dorsal horn. Moreover, elevating spinal mTOR activity by knocking down the mTOR-negative regulator TSC2 reduced morphine analgesia, produced pain hypersensitivity, and increased spinal nNOS expression. Our findings implicate the μ opioid receptor-triggered PI3K/Akt/mTOR pathway in promoting morphine-induced spinal protein translation changes and associated morphine tolerance and hyperalgesia. These data suggest that mTOR inhibitors could be explored for prevention and/or reduction of opioid tolerance in chronic pain management.
Collapse
|
17
|
Yang C, Chen Y, Tang L, Wang ZJ. Haloperidol disrupts opioid-antinociceptive tolerance and physical dependence. J Pharmacol Exp Ther 2011; 338:164-72. [PMID: 21436292 PMCID: PMC3126635 DOI: 10.1124/jpet.110.175539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/23/2011] [Indexed: 11/22/2022] Open
Abstract
Previous studies from our laboratory and others have implicated a critical role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2-1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06-0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
18
|
Liang DY, Li X, Clark JD. 5-hydroxytryptamine type 3 receptor modulates opioid-induced hyperalgesia and tolerance in mice. Anesthesiology 2011; 114:1180-9. [PMID: 21368652 PMCID: PMC3085696 DOI: 10.1097/aln.0b013e31820efb19] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Opioid-induced hyperalgesia (OIH) and tolerance are challenging maladaptations associated with opioids in managing pain. Recent genetic studies and the existing literature suggest the 5-hydroxytryptamine type 3 (5-HT3) receptor participates in these phenomena. The location of the relevant receptor populations and the interactions between the 5-HT3 system and other systems controlling OIH and tolerance have not been explored, however. We hypothesized that 5-HT3 receptors modulate OIH and tolerance, and that this modulation involves the control of expression of multiple neurotransmitter and receptor systems. METHODS C57BL/6 mice were exposed to a standardized 4-day morphine administration protocol. The 5-HT3 antagonist ondansetron was administered either during or after the conclusion of morphine administration. Mechanical testing was used to quantify OIH, and thermal tail-flick responses were used to measure morphine tolerance. In other experiments spinal cord and dorsal root ganglion tissues were harvested for analysis of messenger RNA concentrations by real-time polymerase chain reaction or immunochemistry analysis. RESULTS The results showed that (1) systemic or intrathecal injection of ondansetron significantly prevented and reversed OIH, but not local intraplantar injection; (2) systemic or intrathecal injection of ondansetron prevented and reversed tolerance; and (3) ondansetron blocked morphine-induced increases of multiple genes relevant to OIH and tolerance in dorsal root ganglion and spinal cord. CONCLUSIONS Morphine acts via a 5-HT3-dependent mechanism to support multiple maladaptations to the chronic administration of morphine. Furthermore, the use of 5-HT3 receptor antagonists may provide a new avenue to prevent or reverse OIH and tolerance associated with chronic opioid use.
Collapse
Affiliation(s)
- De-Yong Liang
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System and Stanford University, Palo Alto, California 94304, USA.
| | | | | |
Collapse
|
19
|
Fan W, Huang F, Wu Z, Zhu X, Li D, He H. Carbon monoxide: A gas that modulates nociception. J Neurosci Res 2011; 89:802-7. [DOI: 10.1002/jnr.22613] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/25/2010] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
|
20
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling. PLoS One 2010; 5:e11278. [PMID: 20585660 PMCID: PMC2890584 DOI: 10.1371/journal.pone.0011278] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health (CIBERSAM) G09, ISCIII, Madrid, Spain
| | | | - Javier Garzón
- Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health (CIBERSAM) G09, ISCIII, Madrid, Spain
| |
Collapse
|
21
|
Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J Neurosci 2010; 30:7613-23. [PMID: 20519536 DOI: 10.1523/jneurosci.1358-10.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preventing and reversing opioid dependence continues to be a clinical challenge and underlying mechanisms of opioid actions remain elusive. We report that matrix metalloproteinase-9 (MMP-9) in the spinal cord contributes to development of physical dependence on morphine. Chronic morphine exposure and naloxone-precipitated withdrawal increase activity of spinal MMP-9. Spinal inhibition or targeted mutation of MMP-9 suppresses behavioral signs of morphine withdrawal and the associated neurochemical alterations. The increased MMP-9 activity is mainly distributed in the superficial dorsal horn and colocalized primarily with neurons and small numbers of astrocytes and microglia. Morphine exposure and withdrawal increase phosphorylation of NR1 and NR2B receptors, ERK1/2, calmodulin-dependent kinase II, and cAMP response element binding proteins; and such phosphorylation is suppressed by either spinal inhibition or targeted mutation of MMP-9. Further, spinal administration of exogenous MMP-9 induces morphine withdrawal-like behavioral signs and mechanical allodynia, activates NR1 and NR2 receptors, and downregulates integrin-beta1, while a function-neutralizing antibody against integrin-beta1 suppresses MMP-9-induced phosphorylation of NR1 and NR2B. Morphine withdrawal-induced MMP-9 activity is also reduced by an nNOS inhibitor. Thus, we hypothesize that spinal MMP-9 may contribute to the development of morphine dependence primarily through neuronal activation and interaction with NR1 and NR2B receptors via integrin-beta1 and NO pathways. The other gelatinase, MMP-2, is not involved in morphine dependence. Inhibiting spinal MMP-9 or MMP-2 reduces chronic and/or acute morphine tolerance. This study suggests a novel therapeutic approach for preventing, minimizing, or reversing opioid dependence and tolerance.
Collapse
|
22
|
Anand KJS, Willson DF, Berger J, Harrison R, Meert KL, Zimmerman J, Carcillo J, Newth CJL, Prodhan P, Dean JM, Nicholson C, Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics 2010; 125:e1208-25. [PMID: 20403936 PMCID: PMC3275643 DOI: 10.1542/peds.2009-0489] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE After prolonged opioid exposure, children develop opioid-induced hyperalgesia, tolerance, and withdrawal. Strategies for prevention and management should be based on the mechanisms of opioid tolerance and withdrawal. PATIENTS AND METHODS Relevant manuscripts published in the English language were searched in Medline by using search terms "opioid," "opiate," "sedation," "analgesia," "child," "infant-newborn," "tolerance," "dependency," "withdrawal," "analgesic," "receptor," and "individual opioid drugs." Clinical and preclinical studies were reviewed for data synthesis. RESULTS Mechanisms of opioid-induced hyperalgesia and tolerance suggest important drug- and patient-related risk factors that lead to tolerance and withdrawal. Opioid tolerance occurs earlier in the younger age groups, develops commonly during critical illness, and results more frequently from prolonged intravenous infusions of short-acting opioids. Treatment options include slowly tapering opioid doses, switching to longer-acting opioids, or specifically treating the symptoms of opioid withdrawal. Novel therapies may also include blocking the mechanisms of opioid tolerance, which would enhance the safety and effectiveness of opioid analgesia. CONCLUSIONS Opioid tolerance and withdrawal occur frequently in critically ill children. Novel insights into opioid receptor physiology and cellular biochemical changes will inform scientific approaches for the use of opioid analgesia and the prevention of opioid tolerance and withdrawal.
Collapse
Affiliation(s)
- Kanwaljeet J S Anand
- Department of Pediatrics, Le Bonheur Children's Hospital and University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Expression genetics identifies spinal mechanisms supporting formalin late phase behaviors. Mol Pain 2010; 6:11. [PMID: 20149257 PMCID: PMC2831877 DOI: 10.1186/1744-8069-6-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 02/11/2010] [Indexed: 12/30/2022] Open
Abstract
Background Formalin injection into rodent hind paws is one of the most commonly employed pain assays. The resulting nocifensive behaviors can be divided into two phases differing in timing, duration and underlying mechanisms. Spinal sensitization has long been felt to participate in the second phase of this response, although this sensitization is incompletely understood. By using correlative analysis between spinal gene expression and mouse strain-dependent intensity of late phase behavior, we hypothesized genes participating in variability of the response could be identified. Results Late phase formalin behavior scores among 10 inbred mouse strains were correlated with a spinal cord gene expression database constructed using expression arrays. Messenger RNA levels for several genes were highly correlated with the late phase behavioral responses. Most of these genes had already been implicated in mechanisms regulating pain and analgesia. One of the most strongly correlated genes, Mapk8 coding for c-Jun N-terminal kinase 1 (JNK1), was chosen for further analysis. Studies using additional strains of mice confirmed that spinal cord mRNA expression levels of Mapk8 followed the pattern predicted by strain-specific levels of formalin behavior. Interestingly, spinal cord JNK1 protein levels displayed an inverse relationship with mRNA measurements. Finally, intrathecal injections of the selective JNK inhibitor, SP600125, selectively reduced late phase licking behavior. Conclusions Wide differences in pain behaviors, including those resulting from the injection of formalin, can be observed in inbred strains of mice suggesting strong genetic influences. Correlating levels of gene expression in tissues established to be mechanistically implicated in the expression of specific behaviors can identify genes involved in the behaviors of interest. Comparing formalin late phase behavior levels with spinal cord gene expression yielded several plausible gene candidates, including the Mapk8 gene. Additional molecular and pharmacologic evidence confirmed a functional role for this gene in supporting formalin late phase responses.
Collapse
|
24
|
Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. J Neurosci 2010; 30:38-46. [PMID: 20053885 DOI: 10.1523/jneurosci.4346-09.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated administration of opioids not only leads to tolerance and dependence, but also results in nociceptive enhancement called opioid-induced hyperalgesia (OIH). Nociceptive mediators involved in OIH generation remain poorly understood. In the present study, we tested the hypothesis that Ca(2+)/calmodulin-depent protein kinase II (CaMKIIalpha) is critical for OIH. Opioid-induced hyperalgesia was produced by repeated morphine administration or pellet implantation in mice. Correlating with the development of tactile allodynia and thermal hyperalgesia, spinal CaMKIIalpha activity was significantly increased in OIH. KN93, a CaMKII inhibitor, dose- and time-dependently reversed OIH and CaMKII activation without impairing locomotor coordination. To elucidate the specific CaMKII isoform involved, we targeted CaMKIIalpha by using small interfering RNA and demonstrated that knockdown of spinal CaMKIIalpha attenuated OIH. Furthermore, morphine failed to induce OIH in CaMKIIalpha(T286A) point mutant mice, although wild-type littermate mice developed robust OIH after repeated treatments with morphine. These data implicate, for the first time, an essential role of CaMKIIalpha as a cellular mechanism leading to and maintaining opioid-induced hyperalgesia.
Collapse
|
25
|
Han Y, Song XS, Liu WT, Henkemeyer M, Song XJ. Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice. Mol Pain 2008; 4:60. [PMID: 19025592 PMCID: PMC2605438 DOI: 10.1186/1744-8069-4-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/21/2008] [Indexed: 01/03/2023] Open
Abstract
EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 microg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 microg) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence.
Collapse
Affiliation(s)
- Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou Medical College, Xuzhou, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
26
|
Liu WT, Li HC, Song XS, Huang ZJ, Song XJ. EphB receptor signaling in mouse spinal cord contributes to physical dependence on morphine. FASEB J 2008; 23:90-8. [PMID: 18772347 DOI: 10.1096/fj.08-114462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular and molecular mechanisms underlying opioid tolerance and dependence remain elusive. We investigated roles of EphB receptor tyrosine kinases--which play important roles in synaptic connection and plasticity during development and in the matured nervous system--in development and maintenance of physical dependence on morphine in the mouse spinal cord (SC). Spinal administration of an EphB receptor blocking reagent EphB2-Fc prevents and/or suppresses behavioral responses to morphine withdrawal and associated induction of c-Fos and depletion of calcitonin gene-related peptide. Western blotting and immunohistochemical fluorescence staining demonstrates that EphB1 receptor protein is significantly up-regulated in the spinal dorsal horn following escalating morphine treatment. Chronic morphine exposure and withdrawal significantly increased phosphorylation of N-methyl-D-aspartate receptor subunit NR2B as well as the activated forms of extracellular signal-regulated kinase and the cAMP response element binding protein in SC. The increased levels of phosphorylation of these molecules, however, are significantly inhibited by the EphB receptor blocker. These findings indicate that EphB receptor signaling, probably by interacting with NR2B in SC, contributes to the development of opioid physical dependence and withdrawal effects. This novel role for EphB receptor signaling suggests that these molecules may be useful therapeutic targets for preventing, minimizing, or reversing the development of opiate dependence.
Collapse
Affiliation(s)
- Wen-Tao Liu
- Department of Neurobiology, Parker University Research Institute, 2500 Walnut Hill Lane, Dallas, TX 75229, USA
| | | | | | | | | |
Collapse
|
27
|
Chen Y, Jiang Y, Yue W, Zhou Y, Lu L, Ma L. Chronic, but Not Acute Morphine Treatment, Up-regulates α-Ca2+/calmodulin Dependent Protein Kinase II Gene Expression in Rat Brain. Neurochem Res 2008; 33:2092-8. [DOI: 10.1007/s11064-008-9690-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
28
|
Wen ZH, Wu GJ, Hsu LC, Chen WF, Chen JY, Shui HA, Chou AK, Wong CS. N-Methyl-D-aspartate receptor antagonist MK-801 attenuates morphine tolerance and associated glial fibrillary acid protein up-regulation: a proteomic approach. Acta Anaesthesiol Scand 2008; 52:499-508. [PMID: 18339156 DOI: 10.1111/j.1399-6576.2008.01605.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well known that long-term morphine administration results in tolerance, which limits the clinical use of this drug in pain management. METHODS Male Wistar rats were randomly assigned to receive one of four different infusions: morphine [15 microg/h, intrathecal (i.t.)], saline, MK-801 (5 microg/h, i.t.) plus morphine (15 microg/h, i.t.), or MK-801 (5 microg/h, i.t.) alone. RESULTS Morphine infusion induced a maximal antinociceptive effect on day 1 and tolerance on day 3, and the maximal anti-receptive tolerance was observed on day 5. Co-infusing MK-801 with morphine attenuated morphine's anti-receptive tolerance. Two-dimensional gel electrophoretic analysis of spinal proteins revealed that eight protein spots were up-regulated in morphine-tolerant rats, and that they were significantly inhibited by MK-801 co-infusion. Among the up-regulated proteins, glial fibrillary acid protein (GFAP), a glial-specific maker, was identified by mass spectrometry. This finding was also confirmed by Western blot analysis. CONCLUSION Using proteomic analysis, we identified eight GFAP protein spots that were up-regulated in the dorsal horn of morphine-tolerant rat spinal cords. This up-regulation was partly inhibited by N-methyl-D-aspartate receptor antagonist MK-801 co-infusion, which suggests that GFAP protein can be considered to be a pathogenesis marker of morphine tolerance.
Collapse
Affiliation(s)
- Z-H Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Satarian L, Javan M, Fathollahi Y. Epinephrine inhibits analgesic tolerance to intrathecal administrated morphine and increases the expression of calcium–calmodulin-dependent protein kinase IIα. Neurosci Lett 2008; 430:213-7. [DOI: 10.1016/j.neulet.2007.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/13/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
30
|
Liang DY, Shi X, Li X, Li J, Clark JD. The beta2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav Brain Res 2007; 181:118-26. [PMID: 17498818 PMCID: PMC1989675 DOI: 10.1016/j.bbr.2007.03.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/15/2006] [Accepted: 03/30/2007] [Indexed: 12/29/2022]
Abstract
Adaptations to the chronic administration of opioids reduce the utility of these drugs in treating pain and support addiction. Recent genetics-based approaches have implicated the beta2 adrenergic receptor (beta2-AR) in controlling some of these responses. We do not know, however, whether this receptor can modulate tolerance, dependence or changes in gene expression caused by chronic opioid administration. For our studies we used C57BL/6 mice and beta2-AR knockout mice in the FVB background. Morphine dose-response relationships were established both prior to and after chronic morphine treatment. In some cases, the selective beta2-AR antagonist butoxamine was administered along with or after morphine. Physical dependence was assessed using naloxone-precipitated withdrawal. The expression of calcitonin gene related peptide (CGRP) and substance P (SP) were measured in spinal cord and dorsal root ganglion (DRG) tissues using both real-time PCR and enzyme-linked immunoassay (ELISA). Both the co-administration of butoxamine with morphine and the administration of butoxamine after chronic morphine reversed morphine tolerance. Morphine failed to cause tolerance in beta2-AR knockout mice. Physical dependence was reduced under the same circumstances. The chronic administration of butoxamine with morphine reduced or eliminated the normally observed up-regulation of CGRP and SP in spinal cord and DRG tissues. Our results suggest that the beta2-AR modulates both opioid tolerance and physical dependence. Activation of beta2-ARs appears to be required for some of the key neurochemical changes which characterize chronic opioid administration. Therefore, beta2-AR antagonists show some promise as agents to enhance chronic opioid analgesic therapy.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Analgesics, Opioid/administration & dosage
- Animals
- Behavior, Animal
- Butoxamine/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Drug Tolerance/physiology
- Enzyme-Linked Immunosorbent Assay/methods
- Ganglia, Spinal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Morphine Dependence/metabolism
- Morphine Dependence/pathology
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- De-Yong Liang
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Xiaoyou Shi
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Xiangqi Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Jun Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - J. David Clark
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| |
Collapse
|
31
|
Gómez-Sintes R, Hernández F, Bortolozzi A, Artigas F, Avila J, Zaratin P, Gotteland JP, Lucas JJ. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 2007; 26:2743-54. [PMID: 17510631 PMCID: PMC1888681 DOI: 10.1038/sj.emboj.7601725] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/24/2007] [Indexed: 12/22/2022] Open
Abstract
Increased glycogen synthase kinase-3 (GSK-3) activity is believed to contribute to the etiology of chronic disorders like Alzheimer's disease and diabetes, thus supporting therapeutic potential of GSK-3 inhibitors. However, sustained GSK-3 inhibition might induce tumorigenesis through beta-catenin-APC dysregulation. Besides, sustained in vivo inhibition by genetic means (constitutive knock-out mice) revealed unexpected embryonic lethality due to massive hepatocyte apoptosis. Here, we have generated transgenic mice with conditional (tetracycline system) expression of dominant-negative-GSK-3 as an alternative genetic approach to predict the outcome of chronic GSK-3 inhibition, either per se, or in combination with mouse models of disease. By choosing a postnatal neuron-specific promoter, here we specifically address the neurological consequences. Tet/DN-GSK-3 mice showed increased neuronal apoptosis and impaired motor coordination. Interestingly, DN-GSK-3 expression shut-down restored normal GSK-3 activity and re-established normal incidence of apoptosis and motor coordination. These results reveal the importance of intact GSK-3 activity for adult neuron viability and physiology and warn of potential neurological toxicity of GSK-3 pharmacological inhibition beyond physiological levels. Interestingly, the reversibility data also suggest that unwanted side effects are likely to revert if excessive GSK-3 inhibition is halted.
Collapse
Affiliation(s)
| | - Félix Hernández
- Centro de Biología Molecular ‘Severo Ochoa', CSIC/UAM, Madrid, Spain
| | - Analía Bortolozzi
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC), IDIBAPS, Barcelona, Spain
| | - Francesc Artigas
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC), IDIBAPS, Barcelona, Spain
| | - Jesús Avila
- Centro de Biología Molecular ‘Severo Ochoa', CSIC/UAM, Madrid, Spain
| | - Paola Zaratin
- Istituto di Ricerche Biomediche ‘A. Marxer', LCG-RBM/Serono Discovery, Colleretto Giacosa, Italy
| | | | - José J Lucas
- Centro de Biología Molecular ‘Severo Ochoa', CSIC/UAM, Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa', CSIC/UAM, Campus UAM de Cantoblanco, Madrid 28049, Spain. Tel.: +34 91 497 3595/8073; Fax: +34 91 497 8087; E-mail:
| |
Collapse
|
32
|
Liang DY, Liao G, Lighthall GK, Peltz G, Clark DJ. Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genomics 2006; 16:825-35. [PMID: 17047491 DOI: 10.1097/01.fpc.0000236321.94271.f8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Opioid-induced hyperalgesia (OIH) is a state of paradoxically increased nociceptive sensitivity seen in both humans and rodents following the resolution of the acute opioid antinociceptive effects or during periods of chronic opioid administration. Using the power of genetic analysis, we hoped to discover novel mechanisms modulating this trait. BASIC METHODS The degree of opioid-induced hyperalgesia displayed in response to a thermal stimulus applied to the hind paw was measured in 16 strains of inbred mice after 4 days of morphine administration. The degree of thermal sensitization was then used in a recently developed in silico haplotypic mapping algorithm along with a haplotypic map constructed from a database containing 209,000 single nucleotide polymorphisms. MAIN RESULTS Analysis of the data resulted in the identification of several haplotype blocks strongly associated with the thermal opioid-induced hyperalgesia trait. The most strongly associated block was located within the Abcb1b P-glycoprotein drug transporter gene. Experiments using the P-glycoprotein inhibitor cyclosporine A and P-glycoprotein null mutant mice supported the hypothesis that a functional association exists between P-glycoprotein transporters and opioid-induced hyperalgesia. The observation of a correlation between morphine brain concentrations and the development of opioid-induced hyperalgesia was consistent with this hypothesis as well. In addition, P-glycoprotein gene deletion and pharmacological inhibition altered morphine ED50, tolerance and physical dependence. CONCLUSIONS We conclude that the use of haplotypic mapping to identify novel mechanisms controlling complex traits is a viable approach. Variants of the Abcb1b gene may explain some portion of the interstrain differences in OIH and perhaps other consequences of chronic opioid administration.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Analgesics, Opioid/adverse effects
- Animals
- Brain Chemistry
- Chromosome Mapping
- Drug Tolerance/genetics
- Gene Deletion
- Genetic Variation
- Haplotypes
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Mice
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred MRL lpr
- Mice, Inbred NZB
- Mice, Transgenic
- Morphine/administration & dosage
- Morphine/pharmacokinetics
- Pain Measurement
- Substance-Related Disorders/genetics
Collapse
Affiliation(s)
- De-Yong Liang
- Department of Anesthesiology, Stanford University, California, USA
| | | | | | | | | |
Collapse
|
33
|
Wang ZJ, Wang LX. Phosphorylation: A molecular switch in opioid tolerance. Life Sci 2006; 79:1681-91. [PMID: 16831450 DOI: 10.1016/j.lfs.2006.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/26/2006] [Accepted: 05/24/2006] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is a key posttranslational modification mechanism controlling the conformation and activity of many proteins. Increasing evidence has implicated an essential role of phosphorylation by several major protein kinases in promoting and maintaining opioid tolerance. We review some of the most recent studies on protein kinase C (PKC), cyclic AMP dependent protein kinase A (PKA), calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase G (PKG), and G protein receptor kinase (GRK). These kinases act as the molecular switches to modulate opioid tolerance. Pharmacological interventions at one or more of the protein kinases and phosphatases may provide valuable strategies to improve opioid analgesia by attenuating tolerance to these drugs.
Collapse
Affiliation(s)
- Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
34
|
Shukla PK, Tang L, Wang ZJ. Phosphorylation of neurogranin, protein kinase C, and Ca2+/calmodulin dependent protein kinase II in opioid tolerance and dependence. Neurosci Lett 2006; 404:266-9. [PMID: 16824682 DOI: 10.1016/j.neulet.2006.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/24/2006] [Accepted: 06/05/2006] [Indexed: 11/24/2022]
Abstract
Activation of Ca2+/calmodulin dependent protein kinase II (CaMKII) and protein kinase C (PKC) are hallmarks of opioid tolerance and dependence. It is not known if the actions of these two kinases are synchronized by a common mechanism in opioid tolerance and dependence. Neurogranin (Ng), through mechanisms such as phosphorylation, has been previously proposed to regulate the activities of these protein kinases. We examined the phosphorylation status of neurogranin in mice that were made tolerant to opioids by morphine (100 mg/kg, s.c.). Increase in phosphorylation of neurogranin was found both in brains and spinal cords of morphine-treated mice, as compared to the untreated baseline or saline-treated mice. The effect appeared to correlate with the changes in the activities of PKC and CaMKII, and with the development of opioid tolerance and dependence. We have found that neurogranin activity is regulated in opioid tolerance and dependence. Neurogranin may, therefore, provide a potential mechanism interacting with both CaMKII and PKC in opioid tolerance and dependence.
Collapse
Affiliation(s)
- Pradeep K Shukla
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
35
|
Xiang XH, Wang HL, Wu WR, Guo Y, Cao DY, Wang HS, Zhao Y. Ethological analysis of scopolamine treatment or pretreatment in morphine dependent rats. Physiol Behav 2006; 88:183-90. [PMID: 16690091 DOI: 10.1016/j.physbeh.2006.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
Although scopolamine is currently used to treat morphine addiction in humans, its extensive actions on behaviors have not been systematically analyzed yet, and the underlying mechanisms of its effects still remain ambiguous. The present study was carried out to clarify the possible mechanisms by evaluating the effects of scopolamine pretreatment and treatment on naloxone-precipitated withdrawal signs and some of other general behaviors in morphine dependent rats. Our results showed that scopolamine pretreatment and treatment attenuated naloxone-precipitated withdrawal signs including jumping, writhing posture, weight loss, genital grooming, teeth-chattering, ptosis, diarrhea and irritability, except for wet dog shakes, while general behaviors such as water intake, urine volume and morphine excretion in urine were increased. Our findings suggest that scopolamine has significant actions in the treatment of opiate addiction, which might result from increasing morphine excretion from urine.
Collapse
Affiliation(s)
- Xiao-Hui Xiang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tang L, Shukla PK, Wang LX, Wang ZJ. Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II. J Pharmacol Exp Ther 2006; 317:901-9. [PMID: 16505162 DOI: 10.1124/jpet.105.097733] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have suggested that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) can modulate opioid tolerance and dependence via its action on learning and memory. In this study, we examined whether CaMKII could directly regulate opioid tolerance and dependence. CaMKII activity was increased after the treatment with morphine (100 mg/kg s.c. or 75 mg s.c. of morphine/pellet/mouse); the effect exhibited a temporal correction with the development of opioid tolerance and dependence. In mice treated with morphine (100 mg/kg s.c.), morphine tolerance and dependence developed in 2 to 6 h. An acute supraspinal administration of KN93 [2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine)], a CaMKII inhibitor, was able to dose-dependently reverse the already-established antinociceptive tolerance to morphine (p < 0.001 for 15-30 nmol; not significant for 5 nmol). KN92 [2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine] (30 nmol i.c.v.), a kinase-inactive analog of KN93, did not affect opioid tolerance. Neither KN92 nor KN93 affected basal nociception or acute morphine antinociception (1-10 nmol i.c.v.). Likewise, dependence on morphine was abolished by the acute administration of KN93, but not KN92, in a dose-dependent manner. Pretreatment of mice with KN93 also prevented the development of morphine tolerance and dependence. The effect of acute CaMKII inhibition was not limited to the particular experimental model, because KN93 also acutely reversed the established opioid tolerance and dependence in mice treated with morphine (75 mg/pellet/mouse s.c.) for 6 days. Taken together, these data strongly support the hypothesis that CaMKII can act as a key and direct factor in promoting opioid tolerance and dependence. Identifying such a direct mechanism may be useful for designing pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Lei Tang
- Department of Biopharmaceutical Sciences, University of Illinois, 833 South Woods Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
37
|
Zhong W, Dong Z, Tian M, Cao J, Xu T, Xu L, Luo J. Opiate withdrawal induces dynamic expressions of AMPA receptors and its regulatory molecule CaMKIIalpha in hippocampal synapses. Life Sci 2006; 79:861-9. [PMID: 16616767 DOI: 10.1016/j.lfs.2006.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 01/22/2023]
Abstract
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
39
|
Shi X, Li X, Clark JD. Formalin injection causes a coordinated spinal cord CO/NO-cGMP signaling system response. Mol Pain 2005; 1:33. [PMID: 16297238 PMCID: PMC1310513 DOI: 10.1186/1744-8069-1-33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/18/2005] [Indexed: 12/02/2022] Open
Abstract
Background The CO/NO-cGMP signalling system participates in the regulation of many physiological processes. The roles this system plays in spinal cord nociceptive signalling are particularly important. While individual components have been examined in isolation, little study has been dedicated to understanding the regulation and functioning of the system as a whole. Results In these studies we examined the time course of expression of 13 genes coding for components of this system including isoforms of the heme oxygenase (HO), nitric oxide synthase (NOS), soluble guanylate cyclase (sGC), cGMP dependent protein kinase (PKG) and phosphodiesterase (PDE) enzyme systems. Of the 13 genes studied, 11 had spinal cord mRNA levels elevated at one or more time points up to 48 hours after hindpaw formalin injection. Of the 11 with elevated mRNA, 8 had elevated protein levels 48 hours after formalin injection when mechanical allodynia was maximal. No component had an increased protein level which did not have an increased mRNA level at one or more time points. Injection of morphine 10 mg/kg prior to formalin completely abolished the acute nociceptive behaviours, but did not alter the degree of sensitivity which developed in the formalin treated hind paws during the subsequent 48 hours. Morphine treatment did, however, eliminate formalin induced increases in enzyme protein levels. Conclusion Our results indicate that the expression of the components of the CO/NO-cGMP signalling system seems to be coordinated in such a way that a generalized multi-level enhancement rather than a tightly limited step specific response occurs with noxious stimulation. Furthermore, the analgesic morphine administered prior to noxious stimulation can prevent long-term changes in gene expression though not necessarily nociceptive sensitisation.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Stanford University Department of Anesthesiology, Stanford, CA, USA
| | - Xiangqi Li
- Stanford University Department of Anesthesiology, Stanford, CA, USA
| | - J David Clark
- Stanford University Department of Anesthesiology, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
40
|
Li X, Shi X, Liang DY, Clark JD. Spinal CK2 regulates nociceptive signaling in models of inflammatory pain. Pain 2005; 115:182-90. [PMID: 15836981 DOI: 10.1016/j.pain.2005.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/15/2005] [Accepted: 02/22/2005] [Indexed: 11/21/2022]
Abstract
Casein kinase 2 (CK2) is a widely expressed protein kinase. Over the last several years a long list of protein substrates has evolved, many of which have proven or hypothesized roles in nociceptive signal transmission. However, CK2 has not itself been demonstrated to participate in nociception prior to this time. We set out to test the hypothesis that spinal CK2 regulates nociception using several pain models. Our first studies focused on the ability of the selective CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBBT) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) to reduce formalin-stimulated pain behaviors in mice. Both phases of the response to subcutaneous formalin were strongly inhibited by intrathecal administration of TBBT or DRB in dose-dependent fashion. Likewise, using the complete Freund's adjuvant (CFA) model of chronic inflammatory pain, TBBT was observed to strongly reduce mechanical allodynia. The inhibition of spinal CK2 with either inhibitor did not, however, alter withdrawal latencies in the hotplate thermal pain model while intrathecal morphine was very effective. Immunohistochemical studies demonstrated all three known CK2 subunits, alpha, alpha' and beta to be expressed in spinal cord tissue as did real-time PCR experiments. While mRNA levels for each of the subunits was transiently enhanced after formalin or CFA hindpaw injection, overall spinal cord protein levels were not elevated in a sustained fashion. Our results indicate that CK2 participates in inflammatory nociception both in the acute and chronic phases. Simple changes in the abundance of spinal CK2 subunits do not likely underlie these phenomena, however.
Collapse
Affiliation(s)
- Xiangqi Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, Anesthesiology, 112A, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
41
|
Noda Y, Nabeshima T. Opiate physical dependence and N-methyl-D-aspartate receptors. Eur J Pharmacol 2005; 500:121-8. [PMID: 15464026 DOI: 10.1016/j.ejphar.2004.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/23/2022]
Abstract
The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.
Collapse
Affiliation(s)
- Yukihiro Noda
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa, Nagoya 466-8560, Japan
| | | |
Collapse
|
42
|
Brown CH, Stern JE, Jackson KLM, Bull PM, Leng G, Russell JA. Morphine withdrawal increases intrinsic excitability of oxytocin neurons in morphine-dependent rats. Eur J Neurosci 2005; 21:501-12. [PMID: 15673449 DOI: 10.1111/j.1460-9568.2005.03885.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To determine whether intrinsic mechanisms drive supraoptic nucleus oxytocin neuron excitation during morphine withdrawal, we calculated the probability of action potential (spike) firing with time after each spike for oxytocin neurons in morphine-naive and morphine-dependent rats in vivo and measured changes in intrinsic membrane properties in vitro. The opioid receptor antagonist, naloxone, increased oxytocin neuron post-spike excitability in morphine-dependent rats; this increase was greater for short interspike intervals (<0.1 s). Naloxone had similar, but smaller (P=0.04), effects in oxytocin neurons in morphine-naive rats. The increased post-spike excitability for short interspike intervals was specific to naloxone, because osmotic stimulation increased excitability without potentiating excitability at short interspike intervals. By contrast to oxytocin neurons, neither morphine dependence nor morphine withdrawal increased post-spike excitability in neighbouring vasopressin neurons. To determine whether increased post-spike excitability in oxytocin neurons during morphine withdrawal reflected altered intrinsic membrane properties, we measured the in vitro effects of naloxone on transient outward rectification (TOR) and after-hyperpolarization (AHP), properties mediated by K+ channels and that affect supraoptic nucleus neuron post-spike excitability. Naloxone reduced the TOR and AHP (by 20% and 60%, respectively) in supraoptic nucleus neurons from morphine-dependent, but not morphine-naive, rats. In vivo, spike frequency adaptation (caused by activity-dependent AHP activation) was reduced by naloxone (from 27% to 3%) in vasopressin neurons in morphine-dependent, but not morphine-naive, rats. Thus, multiple K+ channel inhibition increases post-spike excitability for short interspike intervals, contributing to the increased firing of oxytocin neurons during morphine withdrawal.
Collapse
Affiliation(s)
- Colin H Brown
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Li X, Lighthall G, Liang DY, Clark JD. Alterations in spinal cord gene expression after hindpaw formalin injection. J Neurosci Res 2004; 78:533-41. [PMID: 15389827 DOI: 10.1002/jnr.20274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heme oxygenase type 2 (HO-2) is an enzyme that uses heme as a substrate to produce iron, biliverdin, and carbon monoxide (CO). This enzyme participates in regulation of nociceptive signal transmission in spinal cord tissue. We set out to identify genes undergoing alterations in expression in a model of inflammatory pain and to determine whether HO-2 participates in that regulation. After the hindpaw injection of formalin in mice, we measured changes in expression of immediate early genes including c-fos, c-jun, jun B, nerve growth factor induced genes (NGFI-A and NGFI-B) and activity-related cytoskeletal protein (ARC) using real-time PCR. The mRNA corresponding to these genes increased in abundance in the first hour after formalin injection and then slowly declined. Changes in the abundance of prodynorphin, extracellular signal related kinases (ERK1 and ERK2) and N-methyl-D-aspartate (NMDA) receptor R1 subunit mRNA generally peaked between 8 and 12 hr after formalin injection. In HO-2 null mutant mice, the enhancement of expression was less for all genes studied. We went on to quantify gene expression in superficial dorsal horn tissue using laser capture microdissection followed by RNA amplification and real-time PCR. The results confirmed that the changes in gene expression were occurring in regions of the spinal cord involved in nociceptive processing. We conclude that the hindpaw injection of formalin leads to enhanced early and late expression of many genes in spinal cord dorsal horn tissue, and that this enhancement of expression relies to a degree on the presence of HO-2.
Collapse
Affiliation(s)
- Xiangqi Li
- Department of Anesthesiology, Stanford University, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|
44
|
Liang DY, Clark JD. Modulation of the NO/CO-cGMP signaling cascade during chronic morphine exposure in mice. Neurosci Lett 2004; 365:73-7. [PMID: 15234476 DOI: 10.1016/j.neulet.2004.04.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/20/2022]
Abstract
The chronic administration of morphine and related opioid drugs results in tolerance and dependence which reduces the clinical utility of these agents. The CO/NO-cGMP signal transduction cascade plays an important role in morphine tolerance. Principal components of this pathway include heme oxygenase (HO), nitric oxide synthase (NOS), soluble guanylate cyclase (sGC) and cyclic GMP-dependent protein kinase (cGK). We measured and compared the spinal gene expression patterns of these key components using real-time PCR and Western blot analysis after chronic morphine treatment in mice. Our findings indicate that the CO/NO-cGMP signaling pathway is upregulated at multiple points after morphine exposure demonstrating a coordinated molecular and biochemical response. These findings underscore the importance of this signaling pathway in the neuroplastic events occurring during chronic opioid exposure and the value of analyzing the participation of multiple components of a signaling pathway simultaneously rather than individual members in isolation.
Collapse
Affiliation(s)
- De-Yong Liang
- Department of Anesthesiology, Stanford University and Veterans Affairs Palo Alto Health Care System, 112A, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | |
Collapse
|