1
|
Guo CCG, Xu Y, Shan L, Foka K, Memoli S, Mulveen C, Gijsbrechts B, Verheij MM, Homberg JR. Quantifying multilabeled brain cells in the whole prefrontal cortex reveals reduced inhibitory and a subtype of excitatory neuronal marker expression in serotonin transporter knockout rats. Cereb Cortex 2025; 35:bhae486. [PMID: 39932853 DOI: 10.1093/cercor/bhae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 02/13/2025] Open
Abstract
The prefrontal cortex regulates emotions and is influenced by serotonin. Rodents lacking the serotonin transporter (5-HTT) show increased anxiety and changes in excitatory and inhibitory cell markers in the prefrontal cortex. However, these observations are constrained by limitations in brain representation and cell segmentation, as standard immunohistochemistry is inadequate to consider volume variations in regions of interest. We utilized the deep learning network of the StarDist method in combination with novel open-source methods for automated cell counts in a wide range of prefrontal cortex subregions. We found that 5-HTT knockout rats displayed increased anxiety and diminished relative numbers of subclass excitatory VGluT2+ and activated ΔFosB+ cells in the infralimbic and prelimbic cortices and of inhibitory GAD67+ cells in the prelimbic cortex. Anxiety levels and ΔFosB cell counts were positively correlated in wild-type, but not in knockout, rats. In conclusion, we present a novel method to quantify whole brain subregions of multilabeled cells in animal models and demonstrate reduced excitatory and inhibitory neuronal marker expression in prefrontal cortex subregions of 5-HTT knockout rats.
Collapse
Affiliation(s)
- Chao Ciu-Gwok Guo
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Yifan Xu
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Kyriaki Foka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Simone Memoli
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Calum Mulveen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Barend Gijsbrechts
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Michel M Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Stinson HE, Ninan I. GABA B receptor-mediated potentiation of ventral medial habenula glutamatergic transmission in GABAergic and glutamatergic interpeduncular nucleus neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631193. [PMID: 39803438 PMCID: PMC11722340 DOI: 10.1101/2025.01.03.631193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.e., an enhancement of synaptic transmission upon activation of GABAB receptors. This GABAB receptor-mediated potentiation of ventral MHb-IPN synaptic transmission has been implicated in regulating fear memory. Although IPN is known to contain parvalbumin (PV) and somatostatin (SST) GABAergic neurons and vesicular glutamate transporter 3 (VGLUT3)-expressing neurons, it is unknown how GABAB receptor activation affects ventral MHb-mediated glutamatergic transmission onto these three subtypes of IPN neurons. Our studies show robust glutamatergic connectivity from ventral MHb to PV and SST neurons in the IPN, while the ventral MHb-mediated glutamatergic transmission in IPN VGLUT3 neurons is weak. Although activation of GABAB receptors produces a robust potentiation of ventral MHb-mediated glutamatergic transmission in PV neurons, we observed a modest effect in IPN SST neurons. Despite the diminished basal synaptic transmission between ventral MHb and IPN VGLUT3 neurons, activation of GABAB receptors causes transient conversion of non-responding ventral MHb synapses into active synapses in some IPN VGLUT3 neurons. Thus, our results show strong ventral MHb connectivity to GABAergic IPN neurons compared to VGLUT3-expressing IPN neurons. Furthermore, GABAB receptor activation produces a differential effect on ventral MHb-mediated glutamatergic transmission onto PV, SST, and VGLUT3 neurons in the IPN.
Collapse
Affiliation(s)
- Hannah E. Stinson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ipe Ninan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
3
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
4
|
Kitchigina VF. Colocalization of Neurotransmitters in Hippocampus and Afferent Systems: Possible Functional Role. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:61-78. [PMID: 40058974 DOI: 10.1134/s0006297924603915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
In neurophysiology, the transmitter phenotype is considered as an indicator of neuronal identity. It has become known at the end of last century that a nerve cell can produce and use several different molecules to communicate with other neurons. These could be "classical" transmitters: glutamate or gamma-aminobutyric acid (or acetylcholine, serotonin, norepinephrine), as well as secondary messengers, mainly neuropeptides released from the same neurons. In the case, when classical neurotransmitters are released together from the same nerve cell, this event is called cotransmission or corelease (release from the same vesicles). In this review article, the term "cotransmission" is used in a broad sense, denoting neurons that can release more than one classical mediator. Since transmitters are often intermediate products of metabolism and are found in many cells, the neuron classification is currently based on the carrier proteins (transporters) that "pack" neurotransmitters synthesized in the cytoplasm into vesicles. Here, we limit the issue of colocalization of the main neurotransmitters in mammals to the neurons of hippocampus and those structures that send their pathways to it. The review considers problems concerning the mechanisms of multitransmitter signaling, as well as probable functional role of mediator colocalization in the work of hippocampus, which yet has been poorly understood. It has been suggested that co-expression of different mediator phenotypes is involved in maintaining the balance of excitation and inhibition in different regions of hippocampus, facilitates rapid selection of information processing mode, induction of long-term potentiation, maintenance of spatial coding by place cells, as well as ensuring flexibility of learning and formation of working memory. However, the functional role of mediator colocalization, as well as the mechanisms of release of "dual" transmitters, have not been fully elucidated. The solution of these problems will advance some areas of fundamental neuroscience and help in the treatment of those diseases, where disruption of the balance between excitation and inhibition is detected, such as, for example, in epilepsy, Alzheimer's disease, and many others.
Collapse
Affiliation(s)
- Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Asmerian H, Alberts J, Sanetra AM, Diaz AJ, Silm K. Role of adaptor protein complexes in generating functionally distinct synaptic vesicle pools. J Physiol 2024. [PMID: 39034608 DOI: 10.1113/jp286179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
The synaptic vesicle (SV) cycle ensures the release of neurotransmitters and the replenishment of SVs to sustain neuronal activity. Multiple endocytosis and sorting pathways contribute to the recapture of the SV membrane and proteins after fusion. Adaptor protein (AP) complexes are among the critical components of the SV retrieval machinery. The canonical clathrin adaptor AP2 ensures the replenishment of most SVs across many neuronal populations. An alternative AP1/AP3-dependent process mediates the formation of a subset of SVs that differ from AP2 vesicles in molecular composition and respond preferentially during higher frequency firing. Furthermore, recent studies show that vesicular transporters for different neurotransmitters depend to a different extent on the AP3 pathway and this affects the release properties of the respective neurotransmitters. This review focuses on the current understanding of the AP-dependent molecular and functional diversity among SVs. We also discuss the contribution of these pathways to the regulation of neurotransmitter release across neuronal populations.
Collapse
Affiliation(s)
- Hrach Asmerian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacob Alberts
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna M Sanetra
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexia J Diaz
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katlin Silm
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Tan H, Du C, Zhang L, Guo Y, Yang Y, Sun Q, Zhang Q, Li L. Lesions of the lateral habenula excite dopamine neurons in the ventral tegmental area and serotonin neurons in the dorsal raphe nuclei in hemiparkinsonian rats. Brain Res 2024; 1835:148918. [PMID: 38588847 DOI: 10.1016/j.brainres.2024.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.
Collapse
Affiliation(s)
- Huihui Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Chengxue Du
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingfeng Sun
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
7
|
Favier M, Martin Garcia E, Icick R, de Almeida C, Jehl J, Desplanque M, Zimmermann J, Henrion A, Mansouri-Guilani N, Mounier C, Ribeiro S, Henderson F, Geoffroy A, Mella S, Poirel O, Bernard V, Fabre V, Li Y, Rosenmund C, Jamain S, Vorspan F, Mourot A, Duriez P, Pinhas L, Maldonado R, Pietrancosta N, Daumas S, El Mestikawy S. The human VGLUT3-pT8I mutation elicits uneven striatal DA signaling, food or drug maladaptive consumption in male mice. Nat Commun 2024; 15:5691. [PMID: 38971801 PMCID: PMC11227582 DOI: 10.1038/s41467-024-49371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/07/2024] [Indexed: 07/08/2024] Open
Abstract
Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.
Collapse
Affiliation(s)
- Mathieu Favier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
| | - Elena Martin Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neurosciences, Institut Pasteur, Paris, F-75015, France
| | - Camille de Almeida
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Joachim Jehl
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Mazarine Desplanque
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Johannes Zimmermann
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Annabelle Henrion
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Nina Mansouri-Guilani
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Coline Mounier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Svethna Ribeiro
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Fiona Henderson
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Andrea Geoffroy
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Sebastien Mella
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Odile Poirel
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Bernard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Fabre
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Christian Rosenmund
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Stéphane Jamain
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
| | - Alexandre Mourot
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Philibert Duriez
- GHU Paris Psychiatrie et Neurosciences (CMME, Hospital Sainte-Anne), Institute of Psychiatry and Neuroscience of Paris (INSERM UMR1266), Paris, France
| | - Leora Pinhas
- PHLIP Mental Health and Painless Medicine clinic, Toronto, Canada
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France
| | - Stéphanie Daumas
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France.
| |
Collapse
|
8
|
Fazekas CL, Török B, Correia P, Chaves T, Bellardie M, Sipos E, Horváth HR, Gaszner B, Dóra F, Dobolyi Á, Zelena D. The Role of Vesicular Glutamate Transporter Type 3 in Social Behavior, with a Focus on the Median Raphe Region. eNeuro 2024; 11:ENEURO.0332-23.2024. [PMID: 38839305 PMCID: PMC11154661 DOI: 10.1523/eneuro.0332-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Manon Bellardie
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Eszter Sipos
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Hanga Réka Horváth
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | - Fanni Dóra
- Human Brain Bank and Microdissection Laboratory, Semmelweis University, Budapest 1085, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1085, Hungary
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1085, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| |
Collapse
|
9
|
Huang H, Liu X, Wang L, Wang F. Whole-brain connections of glutamatergic neurons in the mouse lateral habenula in both sexes. Biol Sex Differ 2024; 15:37. [PMID: 38654275 PMCID: PMC11036720 DOI: 10.1186/s13293-024-00611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The lateral habenula (LHb) is an epithalamus nucleus that is evolutionarily conserved and involved in various physiological functions, such as encoding value signals, integrating emotional information, and regulating related behaviors. The cells in the LHb are predominantly glutamatergic and have heterogeneous functions in response to different stimuli. The circuitry connections of the LHb glutamatergic neurons play a crucial role in integrating a wide range of events. However, the circuitry connections of LHb glutamatergic neurons in both sexes have not been thoroughly investigated. METHODS In this study, we injected Cre-dependent retrograde trace virus and anterograde synaptophysin-labeling virus into the LHb of adult male and female Vglut2-ires-Cre mice, respectively. We then quantitatively analyzed the input and output of the LHb glutamatergic connections in both the ipsilateral and contralateral whole brain. RESULTS Our findings showed that the inputs to LHbvGlut2 neurons come from more than 30 brain subregions, including the cortex, striatum, pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and cerebellum with no significant differences between males and females. The outputs of LHbvGlut2 neurons targeted eight large brain regions, primarily focusing on the midbrain and pons nuclei, with distinct features in presynaptic bouton across different brain subregions. While correlation and cluster analysis revealed differences in input and collateral projection features, the input-output connection pattern of LHbvGlut2 neurons in both sexes was highly similar. CONCLUSIONS This study provides a systematic and comprehensive analysis of the input and output connections of LHbvGlut2 neurons in male and female mice, shedding light on the anatomical architecture of these specific cell types in the mouse LHb. This structural understanding can help guide further investigations into the complex functions of the LHb.
Collapse
Affiliation(s)
- Hongren Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xue Liu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
10
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Żakowski W, Zawistowski P. Neurochemistry of the mammillary body. Brain Struct Funct 2023; 228:1379-1398. [PMID: 37378855 PMCID: PMC10335970 DOI: 10.1007/s00429-023-02673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotransmitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), (2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex relations with other structures of the extended hippocampal system.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Piotr Zawistowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
12
|
Zhao C, Wang C, Zhang H, Yan W. A mini-review of the role of vesicular glutamate transporters in Parkinson's disease. Front Mol Neurosci 2023; 16:1118078. [PMID: 37251642 PMCID: PMC10211467 DOI: 10.3389/fnmol.2023.1118078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease implicated in multiple interacting neurotransmitter pathways. Glutamate is the central excitatory neurotransmitter in the brain and plays critical influence in the control of neuronal activity. Impaired Glutamate homeostasis has been shown to be closely associated with PD. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). Following its exocytotic release, Glutamate activates Glutamate receptors (GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly removed by excitatory amino acid transporters (EAATs) to maintain its relatively low extracellular concentration and prevent excitotoxicity. The involvement of GluRs and EAATs in the pathophysiology of PD has been widely studied, but little is known about the role of VGLUTs in the PD. In this review, we highlight the role of VGLUTs in neurotransmitter and synaptic communication, as well as the massive alterations in Glutamate transmission and VGLUTs levels in PD. Among them, adaptive changes in the expression level and function of VGLUTs may exert a crucial role in excitatory damage in PD, and VGLUTs are considered as novel potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Fortin-Houde J, Henderson F, Dumas S, Ducharme G, Amilhon B. Parallel streams of raphe VGLUT3-positive inputs target the dorsal and ventral hippocampus in each hemisphere. J Comp Neurol 2023; 531:702-719. [PMID: 36855269 DOI: 10.1002/cne.25452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 03/02/2023]
Abstract
The hippocampus (HP) receives neurochemically diverse inputs from the raphe nuclei, including glutamatergic axons characterized by the expression of the vesicular glutamate transporter type 3 (VGLUT3). These raphe-HP VGLUT3 projections have been suggested to play a critical role in HP functions, yet a complete anatomical overview of raphe VGLUT3 projections to the forebrain, and in particular to the HP, is lacking. Using anterograde viral tracing, we describe largely nonoverlapping VGLUT3-positive projections from the dorsal raphe (DR) and median raphe (MnR) to the forebrain, with the HP receiving inputs from the MnR. A limited subset of forebrain regions such as the amygdaloid complex, claustrum, and hypothalamus receives projections from both the DR and MnR that remain largely segregated. This highly complementary anatomical pattern suggests contrasting roles for DR and MnR VGLUT3 neurons. To further analyze the topography of VGLUT3 raphe projections to the HP, we used retrograde tracing and found that HP-projecting VGLUT3-positive neurons (VGLUT3HP ) distribute over several raphe subregions (including the MnR, paramedian raphe, and B9 cell group) and lack co-expression of serotonergic markers. Strikingly, double retrograde tracing experiments unraveled two parallel streams of VGLUT3-positive projections targeting the dorsal and ventral poles of the HP. These results demonstrate highly organized and segregated VGLUT3-positive projections to the HP, suggesting independent modulation of HP functions such as spatial memory and emotion-related behavior.
Collapse
Affiliation(s)
- Justine Fortin-Houde
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Fiona Henderson
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | | | | | - Bénédicte Amilhon
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
14
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
15
|
de Almeida C, Chabbah N, Eyraud C, Fasano C, Bernard V, Pietrancosta N, Fabre V, El Mestikawy S, Daumas S. Absence of VGLUT3 Expression Leads to Impaired Fear Memory in Mice. eNeuro 2023; 10:ENEURO.0304-22.2023. [PMID: 36720646 PMCID: PMC9953049 DOI: 10.1523/eneuro.0304-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Fear is an emotional mechanism that helps to cope with potential hazards. However, when fear is generalized, it becomes maladaptive and represents a core symptom of posttraumatic stress disorder (PTSD). Converging lines of research show that dysfunction of glutamatergic neurotransmission is a cardinal feature of trauma and stress related disorders such as PTSD. However, the involvement of glutamatergic co-transmission in fear is less well understood. Glutamate is accumulated into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The atypical subtype, VGLUT3, is responsible for the co-transmission of glutamate with acetylcholine, serotonin, or GABA. To understand the involvement of VGLUT3-dependent co-transmission in aversive memories, we used a Pavlovian fear conditioning paradigm in VGLUT3-/- mice. Our results revealed a higher contextual fear memory in these mice, despite a facilitation of extinction. In addition, the absence of VGLUT3 leads to fear generalization, probably because of a pattern separation deficit. Our study suggests that the VGLUT3 network plays a crucial role in regulating emotional memories. Hence, VGLUT3 is a key player in the processing of aversive memories and therefore a potential therapeutic target in stress-related disorders.
Collapse
Affiliation(s)
- Camille de Almeida
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nida Chabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Camille Eyraud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Véronique Bernard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nicolas Pietrancosta
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Véronique Fabre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Salah El Mestikawy
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Stephanie Daumas
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| |
Collapse
|
16
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
17
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
18
|
Cristofari P, Desplanque M, Poirel O, Hébert A, Dumas S, Herzog E, Danglot L, Geny D, Gilles JF, Geeverding A, Bolte S, Canette A, Trichet M, Fabre V, Daumas S, Pietrancosta N, El Mestikawy S, Bernard V. Nanoscopic distribution of VAChT and VGLUT3 in striatal cholinergic varicosities suggests colocalization and segregation of the two transporters in synaptic vesicles. Front Mol Neurosci 2022; 15:991732. [PMID: 36176961 PMCID: PMC9513193 DOI: 10.3389/fnmol.2022.991732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Striatal cholinergic interneurons (CINs) use acetylcholine (ACh) and glutamate (Glut) to regulate the striatal network since they express vesicular transporters for ACh (VAChT) and Glut (VGLUT3). However, whether ACh and Glut are released simultaneously and/or independently from cholinergic varicosities is an open question. The answer to that question requires the multichannel detection of vesicular transporters at the level of single synaptic vesicle (SV). Here, we used super-resolution STimulated Emission Depletion microscopy (STED) to characterize and quantify the distribution of VAChT and VGLUT3 in CINs SVs. Nearest-neighbor distances analysis between VAChT and VGLUT3-immunofluorescent spots revealed that 34% of CINs SVs contain both VAChT and VGLUT3. In addition, 40% of SVs expressed only VAChT while 26% of SVs contain only VGLUT3. These results suggest that SVs from CINs have the potential to store simultaneously or independently ACh and/or Glut. Overall, these morphological findings support the notion that CINs varicosities can signal with either ACh or Glut or both with an unexpected level of complexity.
Collapse
Affiliation(s)
- Paola Cristofari
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Mazarine Desplanque
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Odile Poirel
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Alison Hébert
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | | | - Etienne Herzog
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - David Geny
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
| | - Jean-François Gilles
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Audrey Geeverding
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Susanne Bolte
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Véronique Fabre
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Stéphanie Daumas
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Sorbonne Université—CNRS UMR 7203—Laboratoire des BioMolécules, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Véronique Bernard
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- *Correspondence: Véronique Bernard,
| |
Collapse
|
19
|
Hussan MT, Sakai A, Matsui H. Glutamatergic pathways in the brains of turtles: A comparative perspective among reptiles, birds, and mammals. Front Neuroanat 2022; 16:937504. [PMID: 36059432 PMCID: PMC9428285 DOI: 10.3389/fnana.2022.937504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamate acts as the main excitatory neurotransmitter in the brain and plays a vital role in physiological and pathological neuronal functions. In mammals, glutamate can cause detrimental excitotoxic effects under anoxic conditions. In contrast, Trachemys scripta, a freshwater turtle, is one of the most anoxia-tolerant animals, being able to survive up to months without oxygen. Therefore, turtles have been investigated to assess the molecular mechanisms of neuroprotective strategies used by them in anoxic conditions, such as maintaining low levels of glutamate, increasing adenosine and GABA, upregulating heat shock proteins, and downregulating KATP channels. These mechanisms of anoxia tolerance of the turtle brain may be applied to finding therapeutics for human glutamatergic neurological disorders such as brain injury or cerebral stroke due to ischemia. Despite the importance of glutamate as a neurotransmitter and of the turtle as an ideal research model, the glutamatergic circuits in the turtle brain remain less described whereas they have been well studied in mammalian and avian brains. In reptiles, particularly in the turtle brain, glutamatergic neurons have been identified by examining the expression of vesicular glutamate transporters (VGLUTs). In certain areas of the brain, some ionotropic glutamate receptors (GluRs) have been immunohistochemically studied, implying that there are glutamatergic target areas. Based on the expression patterns of these glutamate-related molecules and fiber connection data of the turtle brain that is available in the literature, many candidate glutamatergic circuits could be clarified, such as the olfactory circuit, hippocampal–septal pathway, corticostriatal pathway, visual pathway, auditory pathway, and granule cell–Purkinje cell pathway. This review summarizes the probable glutamatergic pathways and the distribution of glutamatergic neurons in the pallium of the turtle brain and compares them with those of avian and mammalian brains. The integrated knowledge of glutamatergic pathways serves as the fundamental basis for further functional studies in the turtle brain, which would provide insights on physiological and pathological mechanisms of glutamate regulation as well as neural circuits in different species.
Collapse
Affiliation(s)
- Mohammad Tufazzal Hussan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Anatomy and Histology, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Tufazzal Hussan,
| | - Akiko Sakai
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Hideaki Matsui,
| |
Collapse
|
20
|
Quintanilla J, Jia Y, Lauterborn JC, Pruess BS, Le AA, Cox CD, Gall CM, Lynch G, Gunn BG. Novel types of frequency filtering in the lateral perforant path projections to dentate gyrus. J Physiol 2022; 600:3865-3896. [PMID: 35852108 PMCID: PMC9513824 DOI: 10.1113/jp283012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022] Open
Abstract
Despite its evident importance to learning theory and models, the manner in which the lateral perforant path (LPP) transforms signals from entorhinal cortex to hippocampus is not well understood. The present studies measured synaptic responses in the dentate gyrus (DG) of adult mouse hippocampal slices during different patterns of LPP stimulation. Theta (5 Hz) stimulation produced a modest within-train facilitation that was markedly enhanced at the level of DG output. Gamma (50 Hz) activation resulted in a singular pattern with initial synaptic facilitation being followed by a progressively greater depression. DG output was absent after only two pulses. Reducing release probability with low extracellular calcium instated frequency facilitation to gamma stimulation while long-term potentiation, which increases release by LPP terminals, enhanced within-train depression. Relatedly, per terminal concentrations of VGLUT2, a vesicular glutamate transporter associated with high release probability, were much greater in the LPP than in CA3-CA1 connections. Attempts to circumvent the potent gamma filter using a series of short (three-pulse) 50 Hz trains spaced by 200 ms were only partially successful: composite responses were substantially reduced after the first burst, an effect opposite to that recorded in field CA1. The interaction between bursts was surprisingly persistent (>1.0 s). Low calcium improved throughput during theta/gamma activation but buffering of postsynaptic calcium did not. In all, presynaptic specializations relating to release probability produce an unusual but potent type of frequency filtering in the LPP. Patterned burst input engages a different type of filter with substrates that are also likely to be located presynaptically. KEY POINTS: The lateral perforant path (LPP)-dentate gyrus (DG) synapse operates as a low-pass filter, where responses to a train of 50 Hz, γ frequency activation are greatly suppressed. Activation with brief bursts of γ frequency information engages a secondary filter that persists for prolonged periods (lasting seconds). Both forms of LPP frequency filtering are influenced by presynaptic, as opposed to postsynaptic, processes; this contrasts with other hippocampal synapses. LPP frequency filtering is modified by the unique presynaptic long-term potentiation at this synapse. Computational simulations indicate that presynaptic factors associated with release probability and vesicle recycling may underlie the potent LPP-DG frequency filtering.
Collapse
Affiliation(s)
- Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Julie C Lauterborn
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Benedict S Pruess
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Conor D Cox
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
- Departments of Neurobiology & Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
- Departments of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Benjamin G Gunn
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| |
Collapse
|
21
|
VGLUT3 Ablation Differentially Modulates Glutamate Receptor Densities in Mouse Brain. eNeuro 2022; 9:ENEURO.0041-22.2022. [PMID: 35443989 PMCID: PMC9087739 DOI: 10.1523/eneuro.0041-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Type 3 vesicular glutamate transporter (VGLUT3) represents a unique modulator of glutamate release from both nonglutamatergic and glutamatergic varicosities within the brain. Despite its limited abundance, VGLUT3 is vital for the regulation of glutamate signaling and, therefore, modulates the activity of various brain microcircuits. However, little is known about how glutamate receptors are regulated by VGLUT3 across different brain regions. Here, we used VGLUT3 constitutive knock-out (VGLUT3-/-) mice and explored how VGLUT3 deletion influences total and cell surface expression of different ionotropic and metabotropic glutamate receptors. VGLUT3 deletion upregulated the overall expression of metabotropic glutamate receptors mGluR5 and mGluR2/3 in the cerebral cortex. In contrast, no change in the total expression of ionotropic NMDAR glutamate receptors were observed in the cerebral cortex of VGLUT3-/- mice. We noted significant reduction in cell surface levels of mGluR5, NMDAR2A, NMDAR2B, as well as reductions in dopaminergic D1 receptors and muscarinic M1 acetylcholine receptors in the hippocampus of VGLUT3-/- mice. Furthermore, mGluR2/3 total expression and mGluR5 cell surface levels were elevated in the striatum of VGLUT3-/- mice. Last, AMPAR subunit GluA1 was significantly upregulated throughout cortical, hippocampal, and striatal brain regions of VGLUT3-/- mice. Together, these findings complement and further support the evidence that VGLUT3 dynamically regulates glutamate receptor densities in several brain regions. These results suggest that VGLUT3 may play an intricate role in shaping glutamatergic signaling and plasticity in several brain areas.
Collapse
|
22
|
Yang SY, Taanman JW, Gegg M, Schapira AHV. Ambroxol reverses tau and α-synuclein accumulation in a cholinergic N370S GBA1 mutation model. Hum Mol Genet 2022; 31:2396-2405. [PMID: 35179198 PMCID: PMC9307316 DOI: 10.1093/hmg/ddac038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/05/2021] [Accepted: 01/27/2022] [Indexed: 01/19/2023] Open
Abstract
Cognitive impairment is a common non-motor complication of Parkinson's disease (PD). Glucocerebrosidase gene (GBA1) variants are found in 10-15% of PD cases and are numerically the most important risk factor for PD and dementia with Lewy bodies. Accumulation of α-synuclein and tau pathology is thought to underlie cognitive impairment in PD and likely involves cholinergic as well as dopaminergic neurons. Neural crest stem cells were isolated from both PD patients with the common heterozygous N370S GBA1 mutation and normal subjects without GBA1 mutations. The stem cells were used to generate a cholinergic neuronal cell model. The effects of the GBA1 variant on glucocerebrosidase (GCase) protein and activity, and cathepsin D, tau and α-synuclein protein levels in cholinergic neurons were examined. Ambroxol, a GCase chaperone, was used to investigate whether GCase enhancement was able to reverse the effects of the GBA1 variant on cholinergic neurons. Significant reductions in GCase protein and activity, as well as in cathepsin D levels, were found in GBA1 mutant (N370S/WT) cholinergic neurons. Both tau and α-synuclein levels were significantly increased in GBA1 mutant (N370S/WT) cholinergic neurons. Ambroxol significantly enhanced GCase activity and decreased both tau and α-synuclein levels in cholinergic neurons. GBA1 mutations interfere with the metabolism of α-synuclein and tau proteins and induce higher levels of α-synuclein and tau proteins in cholinergic neurons. The GCase pathway provides a potential therapeutic target for neurodegenerative disorders related to pathological α-synuclein or tau accumulation.
Collapse
Affiliation(s)
- Shi Yu Yang
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Matthew Gegg
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Anthony H V Schapira
- To whom correspondence should be addressed at: Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK. Tel: +44 02078302021 (Ex: 68166);
| |
Collapse
|
23
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
24
|
Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, Bartlett SE. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci 2021; 14:678267. [PMID: 34262435 PMCID: PMC8273284 DOI: 10.3389/fnmol.2021.678267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Neurochemically and Hodologically Distinct Ascending VGLUT3 versus Serotonin Subsystems Comprise the r2- Pet1 Median Raphe. J Neurosci 2021; 41:2581-2600. [PMID: 33547164 DOI: 10.1523/jneurosci.1667-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2 -high versus r2-Pet1Vglut3 -high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2- high and r2-Pet1Vglut3- high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3- high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1 + precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.
Collapse
|
26
|
Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci Rep 2021; 11:1422. [PMID: 33446840 PMCID: PMC7809342 DOI: 10.1038/s41598-020-80917-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.
Collapse
|
27
|
Kerloch T, Farrugia F, Bouit L, Maître M, Terral G, Koehl M, Mortessagne P, Heng JIT, Blanchard M, Doat H, Leste-Lasserre T, Goron A, Gonzales D, Perrais D, Guillemot F, Abrous DN, Pacary E. The atypical Rho GTPase Rnd2 is critical for dentate granule neuron development and anxiety-like behavior during adult but not neonatal neurogenesis. Mol Psychiatry 2021; 26:7280-7295. [PMID: 34561615 PMCID: PMC8872985 DOI: 10.1038/s41380-021-01301-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Despite the central role of Rho GTPases in neuronal development, their functions in adult hippocampal neurogenesis remain poorly explored. Here, by using a retrovirus-based loss-of-function approach in vivo, we show that the atypical Rho GTPase Rnd2 is crucial for survival, positioning, somatodendritic morphogenesis, and functional maturation of adult-born dentate granule neurons. Interestingly, most of these functions are specific to granule neurons generated during adulthood since the deletion of Rnd2 in neonatally-born granule neurons only affects dendritogenesis. In addition, suppression of Rnd2 in adult-born dentate granule neurons increases anxiety-like behavior whereas its deletion in pups has no such effect, a finding supporting the adult neurogenesis hypothesis of anxiety disorders. Thus, our results are in line with the view that adult neurogenesis is not a simple continuation of earlier processes from development, and establish a causal relationship between Rnd2 expression and anxiety.
Collapse
Affiliation(s)
- Thomas Kerloch
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Fanny Farrugia
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Lou Bouit
- grid.462202.00000 0004 0382 7329Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Marlène Maître
- grid.412041.20000 0001 2106 639XLaser microdissection Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Geoffrey Terral
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Pierre Mortessagne
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Julian Ik-Tsen Heng
- grid.1032.00000 0004 0375 4078Curtin Health Innovation Research Institute, Curtin University, 6102 Bentley, WA Australia
| | - Mylène Blanchard
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Hélène Doat
- grid.412041.20000 0001 2106 639XLaser microdissection Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France ,grid.412041.20000 0001 2106 639XTranscriptome Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Thierry Leste-Lasserre
- grid.412041.20000 0001 2106 639XTranscriptome Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Adeline Goron
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Delphine Gonzales
- grid.412041.20000 0001 2106 639XGenotyping Facility, Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - David Perrais
- grid.462202.00000 0004 0382 7329Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - François Guillemot
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Djoher Nora Abrous
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Emilie Pacary
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France.
| |
Collapse
|
28
|
Ibrahim KS, Abd-Elrahman KS, El Mestikawy S, Ferguson SSG. Targeting Vesicular Glutamate Transporter Machinery: Implications on Metabotropic Glutamate Receptor 5 Signaling and Behavior. Mol Pharmacol 2020; 98:314-327. [PMID: 32873747 DOI: 10.1124/molpharm.120.000089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cross talk between both pre- and postsynaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions, including synaptic plasticity and motor planning. Metabotropic glutamate receptor (mGluR) 5 exhibits promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders as a consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival, and differentiation. Given these crucial roles, mGluR5 signaling is under the tight control of glutamate release machinery mediated through vesicular glutamate transporters (VGLUTs) that ultimately dictate glutamatergic output. A particular VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5, and the dynamic cross talk between mGluR5 and VGLUT3 is key for the function of specific neuronal networks involved in motor coordination, emotions, and cognition. Thus, aberrant signaling of the VGLUT3-mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson disease, anxiety disorders, and drug addiction. We argue that a comprehensive profiling of how coordinated VGLUT3-mGluR5 signaling influences overall glutamatergic neurotransmission is warranted. SIGNIFICANCE STATEMENT: Vesicular glutamate receptor (VGLUT) 3 machinery orchestrates glutamate release, and its distribution overlaps with metabotropic glutamate receptor (mGluR) 5 in regional brain circuitries, including striatum, hippocampus, and raphe nucleus. Therefore, VGLUT3-mGluR5 cross talk can significantly influence both physiologic and pathophysiologic glutamatergic neurotransmission. Pathological signaling of the VGLUT3-mGluR5 axis is linked to Parkinson disease, anxiety disorders, and drug addiction. However, it is also predicted to contribute to other motor and cognitive disorders.
Collapse
Affiliation(s)
- Karim S Ibrahim
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Salah El Mestikawy
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| |
Collapse
|
29
|
Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR. Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 2020; 11:2602-2614. [PMID: 32697906 DOI: 10.1021/acschemneuro.0c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies in mouse, and to a lesser extent in rat, have revealed the neuroanatomical distribution of vesicular glutamate transporters (VGLUTs) and begun exposing the critical role of VGLUT2 and VGLUT3 in pain transmission. In the present study in rat, we used specific riboprobes to characterize the transcript expression of all three VGLUTs in lumbar dorsal root ganglia (DRGs) and in the thoracolumbar, lumbar, and sacral spinal cord. We show for the first time in rat a very discrete VGLUT3 expression in DRGs and in deep layers of the dorsal horn. We confirm the abundant expression of VGLUT2, in both DRGs and the spinal cord, including presumable motorneurons in the latter. As expected, VGLUT1 was present in many DRG neuron profiles, and in the spinal cord it was mostly localized to neurons in the dorsal nucleus of Clarke. In rats with a 10 day long hindpaw inflammation, increased spinal expression of VGLUT2 transcript was detected by qRT-PCR, and intrathecal administration of the nonselective VGLUT inhibitor Chicago Sky Blue 6B resulted in reduced mechanical and thermal allodynia for up to 24 h. In conclusion, our results provide a collective characterization of VGLUTs in rat DRGs and the spinal cord, demonstrate increased spinal expression of VGLUT2 during chronic peripheral inflammation, and support the use of spinal VGLUT blockade as a strategy for attenuating inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Carly J. McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Harry Trigosso-Venario
- Hospital Universitario Austral, Austral University, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Rebecca P. Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| |
Collapse
|
30
|
Guan YF, Huang GB, Xu MD, Gao F, Lin S, Huang J, Wang J, Li YQ, Wu CH, Yao S, Wang Y, Zhang YL, Teoh JP, Xuan A, Sun XD. Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain Behav Immun 2020; 88:748-762. [PMID: 32413556 DOI: 10.1016/j.bbi.2020.05.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a severe neuropsychiatric disorder, of which the underlying pathological mechanisms remain unclear. The ketogenic diet (KD) has been reported to exhibit preventative effects on depressive-like behaviors in rodents. However, the therapeutic effects of KD on depressive-like behaviors have not been illustrated thus far. Here, we found that KD treatment dramatically ameliorated depressive-like behaviors in both repeated social defeat stress (R-SDS) and lipopolysaccharide (LPS) models, indicating the potential therapeutic effects of KD on depression. Our electrophysiological studies further showed that neuronal excitability was increased in the lateral habenula (LHb) of mice exposed to R-SDS or LPS, which can be reversed in the presence of KD treatment. Moreover, R-SDS and LPS were also found to induce robust microglial inflammatory activation in the LHb. Importantly, these phenotypes were rescued in mice fed with KD. In addition, we found that the protein level of innate immune receptor Trem2 in the LHb was significantly decreased in depression models. Specific knockdown of Trem2 in LHb microglia induced depressive-like behaviors, increased neuronal excitability as well as robust microglial inflammatory activation. Altogether, we demonstrated the therapeutic effects of KD on depressive-like behaviors, which are probably mediated via the restoration of microglial inflammatory activation and neuronal excitability. Besides, we also proposed an unrecognized function of Trem2 in the LHb for depression. Our study sheds light on the pathogenesis of depression and thereby offers a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yan-Fei Guan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Guo-Bin Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Min-Dong Xu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Feng Gao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jin Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Cui-Hong Wu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Shan Yao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Ying Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yun-Long Zhang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jian-Peng Teoh
- Department of Gynecology and Obstetrics, the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Aiguo Xuan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Okaty BW, Sturrock N, Escobedo Lozoya Y, Chang Y, Senft RA, Lyon KA, Alekseyenko OV, Dymecki SM. A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons. eLife 2020; 9:e55523. [PMID: 32568072 PMCID: PMC7308082 DOI: 10.7554/elife.55523] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.
Collapse
Affiliation(s)
- Benjamin W Okaty
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Nikita Sturrock
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - YoonJeung Chang
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Rebecca A Senft
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Krissy A Lyon
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Susan M Dymecki
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
32
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
33
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
34
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Zhang W, Peng Z, Yu S, Song QL, Qu TF, Liu K, Gong SS. Exposure to sodium salicylate disrupts VGLUT3 expression in cochlear inner hair cells and contributes to tinnitus. Physiol Res 2019; 69:181-190. [PMID: 31852197 DOI: 10.33549/physiolres.934180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To examine whether exposure to sodium salicylate disrupts expression of vesicular glutamate transporter 3 (VGLUT3) and whether the alteration in expression corresponds to increased risk for tinnitus. Rats were treated with saline (control) or sodium salicylate (treated) Rats were examined for tinnitus by monitoring gap-pre-pulse inhibition of the acoustic startle reflex (GPIAS). Auditory brainstem response (ABR) was applied to evaluate hearing function after treatment. Rats were sacrificed after injection to obtain the cochlea, cochlear nucleus (CN), and inferior colliculus (IC) for examination of VGLUT3 expression. No significant differences in hearing thresholds between groups were identified (p>0.05). Tinnitus in sodium salicylate-treated rats was confirmed by GPIAS. VGLUT3 encoded by solute carrier family 17 members 8 (SLC17a8) expression was significantly increased in inner hair cells (IHCs) of the cochlea in treated animals, compared with controls (p<0.01). No significant differences in VGLUT3 expression between groups were found for the cochlear nucleus (CN) or IC (p>0.05). Exposure to sodium salicylate may disrupt SLC17a8 expression in IHCs, leading to alterations that correspond to tinnitus in rats. However, the CN and IC are unaffected by exposure to sodium salicylate, suggesting that enhancement of VGLUT3 expression in IHCs may contribute to the pathogenesis of tinnitus.
Collapse
Affiliation(s)
- W Zhang
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China, Z. Peng or K. Liu or S.-S. Gong
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang W, Zeng F, Hu Y, Li X. A Mini-Review of the Role of Glutamate Transporter in Drug Addiction. Front Neurol 2019; 10:1123. [PMID: 31695674 PMCID: PMC6817614 DOI: 10.3389/fneur.2019.01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022] Open
Abstract
Goals: The development of new treatment for drug abuse requires identification of targetable molecular mechanisms. The pathology of glutamate neurotransmission system in the brain reward circuit is related to the relapse of multiple drugs. Glutamate transporter regulates glutamate signaling by removing excess glutamate from the synapse. And the mechanisms between glutamate transporter and drug addiction are still unclear. Methods: A systematic review of the literature searched in Pubmed and reporting drug addiction in relation to glutamate transporter. Studies were screened by title, abstract, and full text. Results: This review is to highlight the effects of drug addiction on glutamate transporter and glutamate uptake, and targeting glutamate transporter as an addictive drug addiction treatment. We focus on the roles of glutamate transporter in different brain regions in drug addiction. More importantly, we suggest the functional roles of glutamate transporter may prove beneficial in the treatment of drug addiction. Conclusion: Overall, understanding how glutamate transporter impacts central nervous system may provide a new insight for treatment of drug addiction.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Consequences of VGluT3 deficiency on learning and memory in mice. Physiol Behav 2019; 212:112688. [PMID: 31622610 DOI: 10.1016/j.physbeh.2019.112688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to test the hypothesis that vesicular glutamate transporter 3 (VGluT3) deficiency is associated with cognitive impairments. Male VGluT3 knockout (KO) and wild type (WT) mice were exposed to a behavioral test battery covering paradigms based on spontaneous exploratory behavior and reinforcement-based learning tests. Reversal learning was examined to test the cognitive flexibility. The VGluT3 KO mice clearly exhibited the ability to learn. The social recognition memory of KO mice was intact. The y-maze test revealed weaker working memory of VGluT3 KO mice. No significant learning impairments were noticed in operant conditioning or holeboard discrimination paradigm. In avoidance-based learning tests (Morris water maze and active avoidance), KO mice exhibited slightly slower learning process compared to WT mice, but not a complete learning impairment. In tests based on simple associations (operant conditioning, avoidance learning) an attenuation of cognitive flexibility was observed in KO mice. In conclusion, knocking out VGluT3 results in mild disturbances in working memory and learning flexibility. Apparently, this glutamate transporter is not a major player in learning and memory formation in general. Based on previous characteristics of VGluT3 KO mice we would have expected a stronger deficit. The observed hypolocomotion did not contribute to the mild cognitive disturbances herein reported, either.
Collapse
|
38
|
Michalski N, Petit C. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annu Rev Neurosci 2019; 42:67-86. [DOI: 10.1146/annurev-neuro-070918-050428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
- Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
39
|
Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA. Embryonic and postnatal development of mouse olfactory tubercle. Mol Cell Neurosci 2019; 98:82-96. [PMID: 31200100 PMCID: PMC11993912 DOI: 10.1016/j.mcn.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christine Xu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Llorente-Ovejero A, Manuel I, Lombardero L, Giralt MT, Ledent C, Giménez-Llort L, Rodríguez-Puertas R. Endocannabinoid and Muscarinic Signaling Crosstalk in the 3xTg-AD Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 64:117-136. [PMID: 29865071 DOI: 10.3233/jad-180137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system, which modulates emotional learning and memory through CB1 receptors, has been found to be deregulated in Alzheimer's disease (AD). AD is characterized by a progressive decline in memory associated with selective impairment of cholinergic neurotransmission. The functional interplay of endocannabinoid and muscarinic signaling was analyzed in seven-month-old 3xTg-AD mice following the evaluation of learning and memory of an aversive stimulus. Neurochemical correlates were simultaneously studied with both receptor and functional autoradiography for CB1 and muscarinic receptors, and regulations at the cellular level were depicted by immunofluorescence. 3xTg-AD mice exhibited increased acquisition latencies and impaired memory retention compared to age-matched non-transgenic mice. Neurochemical analyses showed changes in CB1 receptor density and functional coupling of CB1 and muscarinic receptors to Gi/o proteins in several brain areas, highlighting that observed in the basolateral amygdala. The subchronic (seven days) stimulation of the endocannabinoid system following repeated WIN55,212-2 (1 mg/kg) or JZL184 (8 mg/kg) administration induced a CB1 receptor downregulation and CB1-mediated signaling desensitization, normalizing acquisition latencies to control levels. However, the observed modulation of cholinergic neurotransmission in limbic areas did not modify learning and memory outcomes. A CB1 receptor-mediated decrease of GABAergic tone in the basolateral amygdala may be controlling the limbic component of learning and memory in 3xTg-AD mice. CB1 receptor desensitization may be a plausible strategy to improve behavior alterations associated with genetic risk factors for developing AD.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, Leioa, Spain
| | - Maria Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, Leioa, Spain
| | - Catherine Ledent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, Leioa, Spain
| |
Collapse
|
41
|
Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 2019; 101:876-893.e4. [PMID: 30799021 DOI: 10.1016/j.neuron.2019.01.045] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
We define the chemoconnectome (CCT) as the entire set of neurotransmitters, neuromodulators, neuropeptides, and their receptors underlying chemotransmission in an animal. We have generated knockout lines of Drosophila CCT genes for functional investigations and knockin lines containing Gal4 and other tools for examining gene expression and manipulating neuronal activities, with a versatile platform allowing genetic intersections and logic gates. CCT reveals the coexistence of specific transmitters but mutual exclusion of the major inhibitory and excitatory transmitters in the same neurons. One neuropeptide and five receptors were detected in glia, with octopamine β2 receptor functioning in glia. A pilot screen implicated 41 genes in sleep regulation, with the dopamine receptor Dop2R functioning in neurons expressing the peptides Dilp2 and SIFa. Thus, CCT is a novel concept, chemoconnectomics a new approach, and CCT tool lines a powerful resource for systematic investigations of chemical-transmission-mediated neural signaling circuits underlying behavior and cognition.
Collapse
Affiliation(s)
- Bowen Deng
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Qi Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Xinxing Liu
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Bingfeng Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Renbo Mao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Enxing Zhou
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Wenxia Zhang
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China.
| |
Collapse
|
42
|
Mansouri-Guilani N, Bernard V, Vigneault E, Vialou V, Daumas S, El Mestikawy S, Gangarossa G. VGLUT3 gates psychomotor effects induced by amphetamine. J Neurochem 2019; 148:779-795. [PMID: 30556914 DOI: 10.1111/jnc.14644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Several subtypes of modulatory neurons co-express vesicular glutamate transporters (VGLUTs) in addition to their cognate vesicular transporters. These neurons are believed to establish new forms of neuronal communication. The atypical VGLUT3 is of particular interest since in the striatum this subtype is found in tonically active cholinergic interneurons (TANs) and in a subset of 5-HT fibers. The striatum plays a major role in psychomotor effects induced by amphetamine. Whether and how VGLUT3-operated glutamate/ACh or glutamate/5HT co-transmissions modulates psychostimulants-induced maladaptive behaviors is still unknown. Here, we investigate the involvement of VGLUT3 and glutamate co-transmission in amphetamine-induced psychomotor effects and stereotypies. Taking advantage of constitutive and cell-type specific VGLUT3-deficient mouse lines, we tackled the hypothesis that VGLUT3 could gate psychomotor effects (locomotor activity and stereotypies) induced by acute or chronic administration of amphetamine. Interestingly, VGLUT3-null mice demonstrated blunted amphetamine-induced stereotypies as well as reduced striatal ∆FosB expression. VGLUT3-positive varicosities within the striatum arise in part from 5HT neurons. We tested the involvement of VGLUT3 deletion in serotoninergic neurons in amphetamine-induced stereotypies. Mice lacking VGLUT3 specifically in 5HT fibers showed no alteration to amphetamine sensitivity. In contrast, specific deletion of VGLUT3 in cholinergic neurons partially phenocopied the effects observed in the constitutive knock-out mice. Our results show that constitutive deletion of VGLUT3 modulates acute and chronic locomotor effects induced by amphetamine. They point to the fact that the expression of VGLUT3 in multiple brain areas is pivotal in gating amphetamine-induced psychomotor adaptations. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Nina Mansouri-Guilani
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Véronique Bernard
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Erika Vigneault
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Vincent Vialou
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Stéphanie Daumas
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience ParisSeine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France.,Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada
| | - Giuseppe Gangarossa
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada.,Unité de Biologie Fonctionnelle et Adaptative (BFA) CNRS UMR8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
43
|
Zhang H, Zou Y, Lei H. Regional metabolic differences in rat prefrontal cortex measured with in vivo 1 H-MRS correlate with regional histochemical differences. NMR IN BIOMEDICINE 2019; 32:e4024. [PMID: 30376204 DOI: 10.1002/nbm.4024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Many neurological/psychiatric disorders are associated with metabolic abnormalities in the brain observable with in vivo proton MRS (1 H-MRS). The underlying molecular/cellular mechanisms and functional correlations of such metabolic alterations, however, are yet to be understood fully. The rodent prefrontal cortex (PFC) is comprised of multiple sub-regions with distinctive cytoarchitecture and functions, providing a good model system to study the correlations among cerebral metabolism, regional cytoarchitecture and connectivity. In this study, the metabolic profiles in two voxels containing mainly the medial PFC (mPFC) and posterior part of the cingulate cortex (pCG), respectively, were measured with single-voxel in vivo 1 H-MRS in adult male rats. The levels of glutamine synthetase and glutamatergic synaptic proteins, including vesicular glutamate transporter 1, vesicular glutamate transporter 2 (VGLUT2) and post-synaptic density protein 95 (PSD95), as well as the density of astrocytes, in these two regions were also compared semi-quantitatively. It was shown that, relative to the pCG voxel, the mPFC voxel had significantly higher N-acetyl aspartate, glutamate (Glu), glutamine (Gln), Glx (Glu + Gln), myo-inositol and taurine levels. The VGLUT2/PSD95 levels and astrocyte density were also higher in the mPFC voxel than in the pCG voxel. Taken together, these results indicated that regional metabolic variations in the PFC of the adult male rat may reflect regional differences in the density of astrocytes and glutamatergic terminals associated with subcortical projections. The study provided a link between the Glu concentration measured with localized in vivo 1 H-MRS and regional glutamatergic activities/connections in the rat PFC.
Collapse
Affiliation(s)
- Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijuan Zou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
44
|
Trudeau LE, El Mestikawy S. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Front Neural Circuits 2018; 12:113. [PMID: 30618649 PMCID: PMC6305298 DOI: 10.3389/fncir.2018.00113] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple discoveries made since the identification of vesicular glutamate transporters (VGLUTs) two decades ago revealed that many neuronal populations in the brain use glutamate in addition to their "primary" neurotransmitter. Such a mode of cotransmission has been detected in dopamine (DA), acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE) and surprisingly even in GABA neurons. Interestingly, work performed by multiple groups during the past decade suggests that the use of glutamate as a cotransmitter takes different forms in these different populations of neurons. In the present review, we will provide an overview of glutamate cotransmission in these different classes of neurons, highlighting puzzling differences in: (1) the proportion of such neurons expressing a VGLUT in different brain regions and at different stages of development; (2) the sub-cellular localization of the VGLUT; (3) the localization of the VGLUT in relation to the neurons' other vesicular transporter; and (4) the functional role of glutamate cotransmission.
Collapse
Affiliation(s)
- Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sorbonne Universités, Université Pierre et Marie Curie UM 119-CNRS UMR 8246-INSERM U1130, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| |
Collapse
|
45
|
Sarkar S, Atoji Y. Distribution of vesicular glutamate transporters in the brain of the turtle (Pseudemys scripta elegans). J Comp Neurol 2018; 526:1690-1702. [PMID: 29603220 DOI: 10.1002/cne.24439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
46
|
Fakhoury M. The tail of the ventral tegmental area in behavioral processes and in the effect of psychostimulants and drugs of abuse. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:30-38. [PMID: 29421265 DOI: 10.1016/j.pnpbp.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
The tail of the ventral tegmental area (tVTA) is a recently identified structure that exerts a major inhibitory drive onto midbrain dopamine (DA) neurons. Also referred to as the rostromedial tegmental nucleus (RMTg), the tVTA is a cluster of gamma-aminobutyric acid (GABA)ergic neurons that starts within the posterior end of the VTA, where it is restricted dorsolateral to the caudal part of the interpeduncular nucleus, and extends into the pons. First identified in the rat, the tVTA has been described in many species, including mice and monkeys, as a region exhibiting similar anatomical and behavioral properties; it receives strong excitatory inputs from the lateral habenula (LHb), conveys negative reward-related information, and inhibits midbrain DA neuron activity. As an important inhibitory afferent to midbrain DA neurons, the tVTA is also implicated in drug abuse and in the complex interplay between reward and aversion processes. The overarching goal of this review is to provide the current state of knowledge on the anatomy and connectivity of the tVTA and to discuss recent evidence implicating this structure in reward-related processes and in the effect of psychostimulants and drugs of abuse.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
48
|
Gibson CL, Balbona JT, Niedzwiecki A, Rodriguez P, Nguyen KCQ, Hall DH, Blakely RD. Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLoS Genet 2018; 14:e1007269. [PMID: 29590100 PMCID: PMC5891035 DOI: 10.1371/journal.pgen.1007269] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022] Open
Abstract
Across phylogeny, glutamate (Glu) signaling plays a critical role in regulating neural excitability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and neurodegenerative disorders including Parkinson's disease, where theories suggest that excitotoxic insults may accelerate a naturally occurring process of dopamine (DA) neuron degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA signaling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce premature and progressive DA neuron degeneration, with light and electron microscopy studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consistent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of Glu signaling supporting DA neuron degeneration. Degeneration can be significantly suppressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA neurons in early larval stages, without the protective actions of SWIP-10, contributes to insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an efficient platform for the identification of molecular mechanisms that enhance risk for Parkinson's disease and/or the identification of agents that can limit neurodegenerative disease progression.
Collapse
Affiliation(s)
- Chelsea L. Gibson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Joseph T. Balbona
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Ashlin Niedzwiecki
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Randy D. Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States of America
- Department of Psychiatry, Vanderbilt University, Nashville, TN, United States of America
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States of America
- * E-mail:
| |
Collapse
|
49
|
Johnson CS, Bains JS, Watts AG. Neurotransmitter diversity in pre-synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. J Comp Neurol 2018; 526:1287-1306. [PMID: 29424419 DOI: 10.1002/cne.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine β-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.
Collapse
Affiliation(s)
- Caroline S Johnson
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| | - Jaideep S Bains
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, and Neuroscience, Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
50
|
Mao H, Hamodeh S, Sultan F. Quantitative Comparison Of Vesicular Glutamate Transporters in rat Deep Cerebellar Nuclei. Neuroscience 2018; 376:152-161. [PMID: 29462701 DOI: 10.1016/j.neuroscience.2018.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/23/2022]
Abstract
The excitatory synapses of the rat deep cerebellar nuclei (DCN) were quantitatively analyzed by vesicular glutamate transporter 1 and 2 (vGluT1 and vGluT2) immunolabeling. We calculated the number and sizes of the labeled boutons and compared them between lateral/dentate nucleus (LN/DN), posterior interposed nucleus (PIN), anterior interposed nucleus (AIN), and medial nucleus (MN). The density of vGluT1+ boutons differs significantly within these nuclei. In contrast, the vGluT2+ bouton density is more similar between different nuclei. The phylogenetically newer DCN (LN/DN and PIN) have a 39% higher density of vGluT1+ boutons than the phylogenetically older DCN (AIN and MN). The volume of vGluT1+ boutons does not differ between the DCN, however the average volume of vGluT2+ boutons is larger in MN. In summary, our current results confirm and extend our previous findings showing that the increase in dendritic and axonal wiring in phylogenetically newer DCN is associated with an increase in vGluT1+ bouton density.
Collapse
Affiliation(s)
- Haian Mao
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Salah Hamodeh
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Fahad Sultan
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany; Department of Integrative Medical Biology, Umeå University, Linnéus väg 9, 901 87 Umeå, Sweden.
| |
Collapse
|