1
|
Ritger AC, Loh MK, Stickling CP, Padival M, Ferrara NC, Rosenkranz JA. Repeated social stress increases posterior medial amygdala neuronal activity in stress-susceptible adult male rats. J Neurophysiol 2025; 133:582-597. [PMID: 39772896 DOI: 10.1152/jn.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons. The posterior division of the MeA (MeAp) has been implicated in driving social engagement. We hypothesized that repeated social stress would cause parallel changes in in vivo activity of MeAp neurons and social behavior. The resident-intruder paradigm was used to produce repeated social stress in adult male rats. After repeated social stress, MeAp neurons were recorded with in vivo single-unit electrophysiology in anesthetized rats. MeAp neurons, specifically those in the posterodorsal subnucleus (MeApd), fired faster in stressed rats than in controls, and this effect was directly associated with stressor intensity. The MeAp sends dense projections to the posterior bed nucleus of stria terminalis (pBNST) and ventromedial hypothalamus (VMH), and both regions are essential for social engagement and are sensitive to social stressors. MeAp projections to pBNST had higher activity after stress, whereas projections to the VMH were not affected. These effects were significant only in rats that displayed susceptibility to this social stressor, as demonstrated by lower weight gain. Furthermore, the effect of stress on MeApd and MeAp-pBNST neuronal firing was correlated with lower social interaction. These results indicate that heightened MeApd and MeA-pBNST activity may contribute to alterations in social behaviors following social stress.NEW & NOTEWORTHY Social stress contributes to psychiatric disorders and impacts multiple brain regions. However, effects on a crucial area for social function, the medial amygdala (MeA), are unclear. We found that social stress increased firing of posterior MeA neurons, and particularly neurons that project to bed nucleus of the stria terminalis, a region implicated in anxiety. Effects of stress on this circuit were associated with diminished social interaction and help clarify how stress can impact social functions.
Collapse
Affiliation(s)
- Alexandra C Ritger
- Department of Foundational Sciences and Humanities, Discipline of Neuroscience, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Maxine K Loh
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Courtney P Stickling
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| |
Collapse
|
2
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
3
|
McAllister IL, Vijayasekaran S, McLenachan S, Bhikoo R, Chen FK, Zhang D, Kanagalingam E, Yu DY. Cytokine Levels in Experimental Branch Retinal Vein Occlusion Treated With Either Bevacizumab or Triamcinolone Acetonide. Transl Vis Sci Technol 2024; 13:13. [PMID: 38899953 PMCID: PMC11193067 DOI: 10.1167/tvst.13.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To compare gene expression changes following branch retinal vein occlusion (BRVO) in the pig with and without bevacizumab (BEV) and triamcinolone acetonide (TA). Methods Photothrombotic BRVOs were created in both eyes of four groups of nine pigs (2, 6, 10, and 20 days). In each group, six pigs received intravitreal injections of BEV in one eye and TA in the fellow eye, with three pigs serving as untreated BRVO controls. Three untreated pigs served as healthy controls. Expression of mRNA of vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), dystrophin (DMD), potassium inwardly rectifying channel subfamily J member 10 protein (Kir4.1, KCNJ10), aquaporin-4 (AQP4), stromal cell-derived factor-1α (CXCL12), interleukin-6 (IL6), interleukin-8 (IL8), monocyte chemoattractant protein-1 (CCL2), intercellular adhesion molecule 1 (ICAM1), and heat shock factor 1 (HSF1) were analyzed by quantitative reverse-transcription polymerase chain reaction. Retinal VEGF protein levels were characterized by immunohistochemistry. Results In untreated eyes, BRVO significantly increased expression of GFAP, IL8, CCL2, ICAM1, HSF1, and AQP4. Expression of VEGF, KCNJ10, and CXCL12 was significantly reduced by 6 days post-BRVO, with expression recovering to healthy control levels by day 20. Treatment with BEV or TA significantly increased VEGF, DMD, and IL6 expression compared with untreated BRVO eyes and suppressed BRVO-induced CCL2 and AQP4 upregulation, as well as recovery of KCNJ10 expression, at 10 to 20 days post-BRVO. Conclusions Inflammation and cellular osmohomeostasis rather than VEGF suppression appear to play important roles in BRVO-induced retinal neurodegeneration, enhanced in both BEV- and TA-treated retinas. Translational Relevance Inner retinal neurodegeneration seen in this acute model of BRVO appears to be mediated by inflammation and alterations in osmohomeostasis rather than VEGF inhibition, which may have implications for more specific treatment modalities in the acute phase of BRVO.
Collapse
Affiliation(s)
- Ian L. McAllister
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarojini Vijayasekaran
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Riyaz Bhikoo
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Emily Kanagalingam
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
5
|
Rusakov DA, Giese KP, Sandi C, Dommett E, Overton PG. Remembering Mike Stewart. Neuropharmacology 2022; 207:108962. [PMID: 35051447 DOI: 10.1016/j.neuropharm.2022.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Karl Peter Giese
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Carmen Sandi
- Swiss Federal Institute of Technology in Lausanne (EPFL), Rte Cantonale, 1015, Lausanne, Switzerland
| | - Eleanore Dommett
- Institute of Psychiatry, Physiology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Vicar Lane, Sheffield, S1 2LT, UK
| |
Collapse
|
6
|
Saini V, Kaur T, Kalotra S, Kaur G. The neuroplasticity marker PSA-NCAM: Insights into new therapeutic avenues for promoting neuroregeneration. Pharmacol Res 2020; 160:105186. [DOI: 10.1016/j.phrs.2020.105186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
|
7
|
Effects of the Antidepressant Fluoxetine on the Somatostatin Interneurons in the Basolateral Amygdala. Neuroscience 2018; 386:205-213. [DOI: 10.1016/j.neuroscience.2018.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
8
|
Guirado R, Carceller H, Castillo-Gómez E, Castrén E, Nacher J. Automated analysis of images for molecular quantification in immunohistochemistry. Heliyon 2018; 4:e00669. [PMID: 30003163 PMCID: PMC6039854 DOI: 10.1016/j.heliyon.2018.e00669] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/18/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022] Open
Abstract
The quantification of the expression of different molecules is a key question in both basic and applied sciences. While protein quantification through molecular techniques leads to the loss of spatial information and resolution, immunohistochemistry is usually associated with time-consuming image analysis and human bias. In addition, the scarce automatic software analysis is often proprietary and expensive and relies on a fixed threshold binarization. Here we describe and share a set of macros ready for automated fluorescence analysis of large batches of fixed tissue samples using FIJI/ImageJ. The quantification of the molecules of interest are based on an automatic threshold analysis of immunofluorescence images to automatically identify the top brightest structures of each image. These macros measure several parameters commonly quantified in basic neuroscience research, such as neuropil density and fluorescence intensity of synaptic puncta, perisomatic innervation and col-localization of different molecules and analysis of the neurochemical phenotype of neuronal subpopulations. In addition, these same macro functions can be easily modified to improve similar analysis of fluorescent probes in human biopsies for diagnostic purposes based on the expression patterns of several molecules.
Collapse
Affiliation(s)
- Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Spain
- Corresponding author.
| | - Héctor Carceller
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Spain
| | | | - Eero Castrén
- Neuroscience Center, University of Helsinki, Finland
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Spain
| |
Collapse
|
9
|
Zhang X, Ge TT, Yin G, Cui R, Zhao G, Yang W. Stress-Induced Functional Alterations in Amygdala: Implications for Neuropsychiatric Diseases. Front Neurosci 2018; 12:367. [PMID: 29896088 PMCID: PMC5987037 DOI: 10.3389/fnins.2018.00367] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
The amygdala plays a major role in the processing of physiologic and behavioral responses to stress and is characterized by gamma-aminobutyric acid (GABA)-mediated high inhibitory tone under resting state. Human and animal studies showed that stress lead to a hyperactivity of amygdala, which was accompanied by the removal of inhibitory control. However, the contribution of hyperactivity of amygdala to stress-induced neuropsychiatric diseases, such as anxiety and mood disorders, is still dubious. In this review, we will summarize stress-induced various structural and functional alterations in amygdala, including the GABA receptors expression, GABAergic transmission and synaptic plasticity. It may provide new insight on the neuropathologic and neurophysiological mechanisms of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Guanghao Yin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Guoqing Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zallo F, Gardenal E, Verkhratsky A, Rodríguez JJ. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer's disease mice. Neurosci Lett 2018; 681:19-25. [PMID: 29782955 DOI: 10.1016/j.neulet.2018.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023]
Abstract
Neuronal degeneration associated with Alzheimer's disease (AD), is linked to impaired calcium homeostasis and to changes in calcium-binding proteins (CBPs). The AD-related modification of neuronal CBPs remains controversial. Here we analysed the presence and expression of calretinin (CR) and parvalbumin (PV) in the hippocampal CA1 neurones of 18 months old 3xTg-AD mice compared to non-Tg animals. We found a layer specific decrease in number of interneurones expressing CR and PV (by 33.7% and 52%, respectively). Expression of PV decreased (by 13.8%) in PV-positive neurones, whereas expression of CR did not change in CR positive cells. The loss of specific subpopulations of Ca2+-binding proteins expressing interneurones (CR and PV) together with the decrease of PV in the surviving cells may be linked to their vulnerability to AD pathology. Specific loss of inhibitory interneurones with age could contribute to overall increase in the network excitability associated with AD.
Collapse
Affiliation(s)
- Fatima Zallo
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emanuela Gardenal
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; Human Histology and Embryology Unit, Medical School, University of Verona, 37134, Verona, Italy
| | - Alexei Verkhratsky
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain; Achúcarro Basque Center for Neuroscience, 48940, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - José Julio Rodríguez
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain.
| |
Collapse
|
11
|
The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity. Neural Plast 2017; 2017:8640970. [PMID: 28928988 PMCID: PMC5591892 DOI: 10.1155/2017/8640970] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/14/2017] [Indexed: 12/15/2022] Open
Abstract
Stress, injury, and disease trigger glucocorticoid (GC) elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR). While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.
Collapse
|
12
|
Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex. eNeuro 2017; 4:eN-NWR-0034-17. [PMID: 28466069 PMCID: PMC5411163 DOI: 10.1523/eneuro.0034-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fluorescent excitatory and inhibitory neurons, received a single injection of MK801 (NMDAR antagonist) or vehicle solution at postnatal day 7 and/or were socially isolated from the age of weaning until adulthood (3 months old). We found that anxiety-related behavior, brain volume, neuronal structure, and the expression of molecules related to plasticity and E/I neurotransmission in adult mice were importantly affected by early-life stress. Interestingly, many of these effects were potentiated when the stress paradigm was applied to mice perinatally injected with MK801 ("double-hit" model). These results clearly show the impact of early-life stress on the adult brain, especially on the structure and plasticity of inhibitory networks, and highlight the double-hit model as a valuable tool to study the contribution of early-life stress in the emergence of neurodevelopmental psychiatric disorders, such as schizophrenia.
Collapse
|
13
|
Gardenal E, Chiarini A, Armato U, Dal Prà I, Verkhratsky A, Rodríguez JJ. Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci 2017; 11:81. [PMID: 28261055 PMCID: PMC5312420 DOI: 10.3389/fnins.2017.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a G-protein coupled, 7-transmembrane domain receptor ubiquitously expressed throughout the body, brain including. The role of CaSR in the CNS is not well understood; its expression is increasing during development, which has been implicated in memory formation and consolidation, and CaSR localization in nerve terminals has been related to synaptic plasticity and neurotransmission. There is an emerging evidence of CaSR involvement in neurodegenerative disorders and Alzheimer's disease (AD) in particular, where the over-production of β-amyloid peptides was reported to activate CaSR. In the present study, we performed CaSR immunohistochemical and densitometry analysis in the triple transgenic mouse model of AD (3xTg-AD). We found an increase in the expression of CaSR in hippocampal CA1 area and in dentate gyrus in the 3xTg-AD mice when compared to non-transgenic control animals. This increase was significant at 9 months of age and further increased at 12 and 18 months of age. This increase paralleled the accumulation of β-amyloid plaques with age. Increased expression of CaSR favors β-amyloidogenic pathway following direct interactions between β-amyloid and CaSR and hence may contribute to the pathological evolution of the AD. In the framework of this paradigm CaSR may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Emanuela Gardenal
- Human Histology and Embryology Unit, Medical School, University of VeronaVerona, Italy; Basque Foundation for Science, Achúcarro Basque Center for Neuroscience, IKERBASQUEBilbao, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Anna Chiarini
- Human Histology and Embryology Unit, Medical School, University of Verona Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, Medical School, University of Verona Verona, Italy
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, Medical School, University of Verona Verona, Italy
| | - Alexei Verkhratsky
- Basque Foundation for Science, Achúcarro Basque Center for Neuroscience, IKERBASQUEBilbao, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU)Leioa, Spain; Faculty of Biology, Medicine and Health, The University of ManchesterManchester, UK
| | - José J Rodríguez
- Basque Foundation for Science, Achúcarro Basque Center for Neuroscience, IKERBASQUEBilbao, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
14
|
Marco EM, Ballesta JA, Irala C, Hernández MD, Serrano ME, Mela V, López-Gallardo M, Viveros MP. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav 2017; 152:68-80. [DOI: 10.1016/j.pbb.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023]
|
15
|
Hart EE, Stolyarova A, Conoscenti MA, Minor TR, Izquierdo A. Rigid patterns of effortful choice behavior after acute stress in rats. Stress 2017; 20:19-28. [PMID: 27820975 DOI: 10.1080/10253890.2016.1258397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Physical effort is a common cost of acquiring rewards, and decreased effort is a feature of many neuropsychiatric disorders. Stress affects performance on several tests of cognition and decision making in both humans and nonhumans. Only a few recent reports show impairing effects of stress in operant tasks involving effort and cognitive flexibility. Brain regions affected by stress, such as the medial prefrontal cortex and amygdala, are also implicated in mediating effortful choices. Here, we assessed effort-based decision making after an acute stress procedure known to induce persistent impairment in shuttle escape and elevated plasma corticosterone. In these animals, we also probed levels of polysialyted neural cell adhesion molecule (PSA-NCAM), a marker of structural plasticity, in medial frontal cortex and amygdala. We found that animals that consistently worked for high magnitude rewards continued to do so, even after acute shock stress. We also found that PSA-NCAM was increased in both regions after effortful choice experience but not after shock stress alone. These findings are discussed with reference to the existing broad literature on cognitive effects of stress and in the context of how acute stress may bias effortful decisions to a rigid pattern of responding.
Collapse
Affiliation(s)
- Evan E Hart
- a Department of Psychology , University of California at Los Angeles , Los Angeles , CA , USA
| | - Alexandra Stolyarova
- a Department of Psychology , University of California at Los Angeles , Los Angeles , CA , USA
| | - Michael A Conoscenti
- a Department of Psychology , University of California at Los Angeles , Los Angeles , CA , USA
| | - Thomas R Minor
- a Department of Psychology , University of California at Los Angeles , Los Angeles , CA , USA
- b Brain Research Institute, University of California at Los Angeles , Los Angeles , CA , USA
- c Integrative Center for Learning and Memory, University of California at Los Angeles , CA , USA
| | - Alicia Izquierdo
- a Department of Psychology , University of California at Los Angeles , Los Angeles , CA , USA
- b Brain Research Institute, University of California at Los Angeles , Los Angeles , CA , USA
- c Integrative Center for Learning and Memory, University of California at Los Angeles , CA , USA
- d Integrative Center for Addictions, University of California at Los Angeles , CA , USA
| |
Collapse
|
16
|
Ammassari-Teule M. Is structural remodeling in regions governing memory an univocal correlate of memory? Neurobiol Learn Mem 2016; 136:28-33. [DOI: 10.1016/j.nlm.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
|
17
|
Job MO, Cooke BM. PSA-NCAM in the posterodorsal medial amygdala is necessary for the pubertal emergence of attraction to female odors in male hamsters. Horm Behav 2015; 75:91-9. [PMID: 26335887 DOI: 10.1016/j.yhbeh.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity.
Collapse
Affiliation(s)
- Martin O Job
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Bradley M Cooke
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Castillo-Gómez E, Coviello S, Perez-Rando M, Curto Y, Carceller H, Salvador A, Nacher J. Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons. Brain Res Bull 2015; 116:45-56. [DOI: 10.1016/j.brainresbull.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
|
19
|
Stolyarova A, Izquierdo A. Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodeling in adolescence and adulthood. Front Behav Neurosci 2015; 9:115. [PMID: 25999830 PMCID: PMC4423437 DOI: 10.3389/fnbeh.2015.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/21/2015] [Indexed: 11/13/2022] Open
Abstract
Adolescent behavior is typified by increased risk-taking, reward- and novelty-seeking, as well as an augmented need for social and environmental stimulation. This behavioral phenotype may result from alterations in outcome valuation or reward learning. In the present set of experiments, we directly compared adult and adolescent animals on tasks measuring both of these processes. Additionally, we examined developmental differences in dopamine D1-like receptor (D1R), dopamine D2-like receptor (D2R), and polysialylated neural cell adhesion molecule (PSA-NCAM) expression in animals that were trained on an effortful reward valuation task, given that these proteins play an important role in the functional development of the amygdala-prefrontocortical (PFC) circuit and mesocorticolimbic dopamine system. We found that adolescent animals were not different from adults in appetitive associative learning, but exhibited distinct pattern of responses to differences in outcome values, which was paralleled by an enhanced motivation to invest effort to obtain larger rewards. There were no differences in D2 receptor expression, but D1 receptor expression was significantly reduced in the striatum of animals that had experiences with reward learning during adolescence compared to animals that went through the same experiences in adulthood. We observed increased levels of PSA-NCAM expression in both PFC and amygdala of late adolescents compared to adults that were previously trained on an effortful reward valuation task. PSA-NCAM levels in PFC were strongly and positively associated with high effort/reward (HER) choices in adolescents, but not in adult animals. Increased levels of PSA-NCAM expression in adolescents may index increased structural plasticity and represent a neural correlate of a reward sensitive endophenotype.
Collapse
Affiliation(s)
- Alexandra Stolyarova
- Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California at Los Angeles Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|
20
|
Gillette R, Miller-Crews I, Skinner MK, Crews D. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat. Front Genet 2015; 6:56. [PMID: 25784924 PMCID: PMC4345841 DOI: 10.3389/fgene.2015.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/06/2015] [Indexed: 01/18/2023] Open
Abstract
Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Isaac Miller-Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University Pullman, WA, USA
| | - David Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA ; Department of Integrative Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
21
|
Bruzos-Cidón C, Miguelez C, Rodríguez JJ, Gutiérrez-Lanza R, Ugedo L, Torrecilla M. Altered neuronal activity and differential sensitivity to acute antidepressants of locus coeruleus and dorsal raphe nucleus in Wistar Kyoto rats: a comparative study with Sprague Dawley and Wistar rats. Eur Neuropsychopharmacol 2014; 24:1112-22. [PMID: 24582527 DOI: 10.1016/j.euroneuro.2014.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 12/27/2022]
Abstract
The Wistar Kyoto rat (WKY) has been proposed as an animal model of depression. The noradrenergic nucleus, locus coeruleus (LC) and the serotonergic nucleus, dorsal raphe (DRN) have been widely implicated in the ethiopathology of this disease. Thus, the goal of the present study was to investigate in vivo the electrophysiological properties of LC and DRN neurons from WKY rats, using single-unit extracellular techniques. Wistar (Wis) and Sprague Dawley (SD) rats were used as control strains. In the LC from WKY rats the basal firing rate was higher than that obtained in the Wis and SD strain, and burst firing activity also was greater compared to that in Wis strain but not in SD. The sensitivity of LC neurons to the inhibitory effect of the α2-adrenoceptor agonist, clonidine and the antidepressant reboxetine was lower in WKY rats compared to Wis, but not SD. Regarding DRN neurons, in WKY rats burst activity was lower than that obtained in Wis and SD rats, although no differences were observed in other firing parameters. Interestingly, while the sensitivity of DRN neurons to the inhibitory effect of the 5-HT1A receptor agonist, 8-OH-DPAT was lower in the WKY strain, the antidepressant fluoxetine had a greater inhibitory potency in this rat strain compared to that recorded in the Wis group. Overall, these results point out important electrophysiological differences regarding noradrenergic and serotonergic systems between Wis and WKY rats, supporting the utility of the WKY rat as an important tool in the research of cellular basis of depression.
Collapse
Affiliation(s)
- C Bruzos-Cidón
- Department of Pharmacology, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - C Miguelez
- Department of Pharmacology, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Department of Pharmacology, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - J J Rodríguez
- Department of Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, 48940 Leioa, Spain
| | - R Gutiérrez-Lanza
- Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, 48940 Leioa, Spain
| | - L Ugedo
- Department of Pharmacology, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - M Torrecilla
- Department of Pharmacology, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| |
Collapse
|
22
|
Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proc Natl Acad Sci U S A 2014; 111:7462-7. [PMID: 24808139 DOI: 10.1073/pnas.1401811111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of stress effects on the brain have traditionally focused on neurons, without considering the cerebral microcirculation. Here we report that stress impairs neurovascular coupling (NVC), the process that matches neuronal activity with increased local blood flow. A stressed phenotype was induced in male rats by administering a 7-d heterotypical stress paradigm. NVC was modeled by measuring parenchymal arteriole (PA) vasodilation in response to neuronal stimulation in amygdala brain slices. After stress, vasodilation of PAs to neuronal stimulation was greatly reduced, and dilation of isolated PAs to external K(+) was diminished, suggesting a defect in smooth muscle inwardly rectifying K(+) (KIR) channel function. Consistent with these observations, stress caused a reduction in PA KIR2.1 mRNA and smooth muscle KIR current density, and blocking KIR channels significantly inhibited NVC in control, but not in stressed, slices. Delivery of corticosterone for 7 d (without stressors) or RU486 (before stressors) mimicked and abrogated NVC impairment by stress, respectively. We conclude that stress causes a glucocorticoid-mediated decrease in functional KIR channels in amygdala PA myocytes. This renders arterioles less responsive to K(+) released from astrocytic endfeet during NVC, leading to impairment of this process. Because the fidelity of NVC is essential for neuronal health, the impairment characterized here may contribute to the pathophysiology of brain disorders with a stress component.
Collapse
|
23
|
Aristieta A, Morera-Herreras T, Ruiz-Ortega JA, Miguelez C, Vidaurrazaga I, Arrue A, Zumarraga M, Ugedo L. Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology (Berl) 2014; 231:1913-24. [PMID: 24271033 PMCID: PMC3984421 DOI: 10.1007/s00213-013-3333-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/12/2013] [Indexed: 11/24/2022]
Abstract
RATIONALE Within the basal ganglia, the subthalamic nucleus (STN) is the only glutamatergic structure and occupies a central position in the indirect pathway. In rat, the STN receives serotonergic input from the dorsal raphe nucleus and expresses serotonergic receptors. OBJECTIVE This study examined the consequences of serotonergic neurotransmission modulation on STN neuron activity. METHODS In vivo single-unit extracellular recordings, HPLC determination, and rotarod and bar test were performed in control, 4-chloro-DL-phenylalanine methyl ester hydrochloride- (pCPA, a serotonin synthesis inhibitor) and chronically fluoxetine-treated rats. RESULTS The pCPA treatment and the administration of serotonin (5-HT) receptor antagonists increased number of bursting neurons in the STN. The systemic administration of the 5-HT(1A) agonist, 8-OH-DPAT, decreased the firing rate and increased the coefficient of variation of STN neurons in pCPA-treated rats but not in control animals. Additionally, microinjection of 8-OH-DPAT into the STN reduced the firing rate of STN neurons, while microinjection of the 5-HT(2C) agonist, Ro 60-0175, increased the firing rate in both control and fluoxetine-treated animals. Finally, the fluoxetine challenge increased the firing rate of STN neurons in fluoxetine-treated rats and induced catalepsy. CONCLUSIONS Our results indicate that the depletion and the blockage of 5-HT modify STN neuron firing pattern. STN neuron activity is under the control of 5-HT(1A) and 5-HT(2C) receptors located both inside and outside the STN. Finally, fluoxetine increases STN neuron activity in chronically fluoxetine-treated rats, which may explain the role of this nucleus in fluoxetine-induced extrapyramidal side effects.
Collapse
Affiliation(s)
- A. Aristieta
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - T. Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - J. A. Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - C. Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - I. Vidaurrazaga
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - A. Arrue
- Red de Salud Mental de Bizkaia. Departamento de Investigación Neuroquímica, Hospital de Zamudio, Arteaga Auzoa, 45, 48170 Zamudio, Spain
| | - M. Zumarraga
- Red de Salud Mental de Bizkaia. Departamento de Investigación Neuroquímica, Hospital de Zamudio, Arteaga Auzoa, 45, 48170 Zamudio, Spain
| | - L. Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
24
|
Pereda-Pérez I, Popović N, Otalora BB, Popović M, Madrid JA, Rol MA, Venero C. Long-term social isolation in the adulthood results in CA1 shrinkage and cognitive impairment. Neurobiol Learn Mem 2013; 106:31-9. [PMID: 23867635 DOI: 10.1016/j.nlm.2013.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
Abstract
Social isolation in adulthood is a psychosocial stressor that can result in endocrinological and behavioral alterations in different species. In rodents, controversial results have been obtained in fear conditioning after social isolation at adulthood, while neural substrates underlying these differences are largely unknown. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) are prominent modulators of synaptic plasticity underlying memory processes in many tasks, including fear conditioning. In this study, we used adult female Octodon degus to investigate the effects of long-term social isolation on contextual and cued fear conditioning, and the possible modulation of the synaptic levels of NCAM and PSA-NCAM in the hippocampus. After 6½ months of social isolation, adult female degus showed a normal auditory-cued fear memory, but a deficit in contextual fear memory, a hippocampal dependent task. Subsequently, we observed reduced hippocampal synaptic levels of PSA-NCAM in isolated compared to grouped-housed female degus. No significant differences were found between experimental groups in hippocampal levels of the three main isoforms of NCAM (NCAM180, NCAM140 and NCAM120). Interestingly, social isolation reduced the volume of the hippocampal CA1 subfield, without affecting the volume of the CA3 subregion or the total hippocampus. Moreover, attenuated body weight gain and reduced number of granulocytes were detected in isolated animals. Our findings indicate for the first time, that long-term social isolation of adult female animals induces a specific shrinkage of CA1 and a decrease in synaptic levels of PSA-NCAM in the hippocampus. These effects may be related to the deficit in contextual fear memory observed in isolated female degus.
Collapse
Affiliation(s)
- Inmaculada Pereda-Pérez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Juan del Rosal 10, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Mariappan S, Bogdanowicz W, Marimuthu G, Rajan KE. Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:775-83. [DOI: 10.1007/s00359-013-0838-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/24/2022]
|
26
|
The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013; 2013:805497. [PMID: 23691371 PMCID: PMC3649690 DOI: 10.1155/2013/805497] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023] Open
Abstract
Depression is a devastating and prevalent disease, with profound effects on neural structure and function; however the etiology and neuropathology of depression remain poorly understood. Though antidepressant drugs exist, they are not ideal, as only a segment of patients are effectively treated, therapeutic onset is delayed, and the exact mechanism of these drugs remains to be elucidated. Several theories of depression do exist, including modulation of monoaminergic neurotransmission, alterations in neurotrophic factors, and the upregulation of adult hippocampal neurogenesis, and are briefly mentioned in the review. However none of these theories sufficiently explains the pathology and treatment of depression unto itself. Recently, neural plasticity theories of depression have postulated that multiple aspects of brain plasticity, beyond neurogenesis, may bridge the prevailing theories. The term “neural plasticity” encompasses an array of mechanisms, from the birth, survival, migration, and integration of new neurons to neurite outgrowth, synaptogenesis, and the modulation of mature synapses. This review critically assesses the role of adult hippocampal neurogenesis and the cell adhesion molecule, PSA-NCAM (which is known to be involved in many facets of neural plasticity), in depression and antidepressant treatment.
Collapse
|
27
|
Amygdalar expression of proteins associated with neuroplasticity in major depression and suicide. J Psychiatr Res 2013; 47:384-90. [PMID: 23260340 DOI: 10.1016/j.jpsychires.2012.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Doublecortin (DCX) and polysialilated neural cell adhesion molecule (PSA-NCAM), two proteins associated with immature neuronal phenotypes and elevated neuroplasticity in the adult brain, have recently been identified in the mammalian amygdala, and evidence from rodent studies suggests that stress may modify their expression in this brain region. The purpose of the present study was to investigate whether the expression of proteins involved in neuroplasticity is altered in the amygdala of individuals with depression. METHODS Basolateral amygdala (BLA) and central amygdala (CeA) postmortem human brain samples were collected from individuals with a history of depression (n = 22 and 25, respectively) and psychiatrically healthy controls (CTRL; n = 14). Proteins associated with neuroplasticity were quantified using Western blotting. RESULTS Immunoblots revealed that depressed subjects displayed increased expression of DCX (p = 0.033) and PSA-NCAM (p = 0.027) in the BLA as compared to CTRLs. Subsequent analyses revealed that this effect was due primarily to a subset of depressed subjects who had not died by suicide (DNS). DNS subjects displayed higher DCX than CTRLs (p < 0.001) and depressed suicides (p = 0.001), and higher PSA-NCAM than CTRLs (p = 0.007). Conversely, within the CeA, DNS subjects displayed a tendency toward lower DCX expression than CTRLs (p = 0.062), and higher BDNF levels than DS subjects (p = 0.045). CONCLUSION These results suggest that the BLA and CeA display contrasting patterns of neuroplasticity in depression, and that greater impairment of amygdalar neuroplasticity may be associated with increased risk of suicide.
Collapse
|
28
|
Structural plasticity of interneurons in the adult brain: role of PSA-NCAM and implications for psychiatric disorders. Neurochem Res 2013; 38:1122-33. [PMID: 23354722 DOI: 10.1007/s11064-013-0977-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/26/2023]
Abstract
Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these structural changes take place has been focused mainly on excitatory neurons, while little attention has been paid to interneurons. The exploration of these plastic phenomena in interneurons is very important, not only for our knowledge of CNS physiology, but also for understanding better the etiology of different psychiatric and neurological disorders in which alterations in the structure and connectivity of inhibitory networks have been described. Here we review recent work on the structural remodeling of interneurons in the adult brain, both in basal conditions and after chronic stress or sensory deprivation. We also describe studies from our laboratory and others on the putative mediators of this interneuronal structural plasticity, focusing on the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule is expressed by some interneurons in the adult CNS and, through its anti-adhesive and insulating properties, may participate in the remodeling of their structure. Finally, we review recent findings on the possible implication of PSA-NCAM on the remodeling of inhibitory neurons in certain psychiatric disorders and their treatments.
Collapse
|
29
|
|
30
|
Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76:160-74. [PMID: 23040813 DOI: 10.1016/j.neuron.2012.08.037] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 12/20/2022]
Abstract
In this review, we propose a broader view of the role of the fibroblast growth factor (FGF) family in modulating brain function. We suggest that some of the FGF ligands together with the FGF receptors are altered in individuals with affective disorder and modulate emotionality in animal models. Thus, we propose that members of the FGF family may be genetic predisposing factors for anxiety, depression, or substance abuse; that they play a key organizing role during early development but continue to play a central role in neuroplasticity in adulthood; and that they work not only over extended time frames, but also via rapid signaling mechanisms, allowing them to exert an "on-line" influence on behavior. Therefore, the FGF family appears to be a prototype of "switch genes" that are endowed with organizational and modulatory properties across the lifespan, and that may represent molecular candidates as biomarkers and treatment targets for affective and addictive disorders.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
31
|
Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. Brain Struct Funct 2012. [PMID: 23179864 DOI: 10.1007/s00429-012-0479-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic stress in experimental animals induces dendritic atrophy and decreases spine density in principal neurons of the medial prefrontal cortex (mPFC). This structural plasticity may play a neuroprotective role and underlie stress-induced behavioral changes. Different evidences indicate that the prefrontocortical GABA system is also altered by stress and in major depression patients. In the amygdala, chronic stress induces dendritic remodeling both in principal neurons and in interneurons. However, it is not known whether similar structural changes occur in mPFC interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these changes, because it is known to influence the dendritic organization of adult cortical interneurons. We have analyzed the dendritic arborization and spine density of mPFC interneurons in adult mice after 21 days of restraint stress and have found dendritic hypertrophy in a subpopulation of interneurons identified mainly as Martinotti cells. This aversive experience also decreases the number of glutamate decarboxylase enzyme, 67 kDa isoform (GAD67) expressing somata, without affecting different parameters related to apoptosis, but does not alter the number of interneurons expressing PSA-NCAM. Quantitative retrotranscription-polymerase chain reaction (qRT-PCR) analysis of genes related to general and inhibitory neurotransmission and of PSA synthesizing enzymes reveals increases in the expression of NCAM, synaptophysin and GABA(A)α1. Together these results show that mPFC inhibitory networks are affected by chronic stress and suggest that structural plasticity may be an important feature of stress-related psychiatric disorders where this cortical region, specially their GABAergic system, is altered.
Collapse
|
32
|
Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 2012; 37:1209-23. [PMID: 22240307 DOI: 10.1016/j.psyneuen.2011.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/24/2023]
Abstract
Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)--in response to an acute stressor following either sub-chronic (2 weeks) or chronic (4 weeks) unpredictable stress (CUS). Sprague-Dawley rats were characterized using a battery of behavioral tasks, and three principal traits were identified: anxiety, exploration and activity. When combined, the first two traits were found to explain the variability in the stress responses. Our findings confirm the increased risk of animals with high anxiety developing certain depression-like behaviors (e.g., increased floating time in the forced swim test) when progressively exposed to stress. In contrast, the behavioral profile based on combined low anxiety and low exploration was resistant to alterations related to social behaviors, while the high anxiety and low exploration profile displayed a particularly vulnerable pattern of physiological and neurobiological responses after sub-chronic stress exposure. Our findings indicate important differences in animals' vulnerability and/or resilience to the effects of repeated stress, particularly during initial or intermediate levels of stress exposure, and they highlight that the behavioral inhibition profile of an animal provides a particular susceptibility to responding in a deleterious manner to stress.
Collapse
|
33
|
Varea E, Guirado R, Gilabert-Juan J, Martí U, Castillo-Gomez E, Blasco-Ibáñez JM, Crespo C, Nacher J. Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res 2012; 46:189-97. [PMID: 22099865 DOI: 10.1016/j.jpsychires.2011.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/07/2023]
Abstract
Neuroimaging has revealed structural abnormalities in the amygdala of different psychiatric disorders. The polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, which expression is altered in schizophrenia, major depression and in animal models of these disorders, may participate in these changes. However, PSA-NCAM has not been studied in the human amygdala. To know whether its expression and that of presynaptic markers, was affected in psychiatric disorders, we have analyzed post-mortem sections from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. PSA-NCAM was expressed in neuronal somata and neuropil puncta, many of which corresponded to interneurons. Depressed patients showed decreases in PSA-NCAM expression in the basolateral and basomedial amygdala; synaptophysin and GAD67 were also decreased, while VGLUT-1 was increased, in different nuclei. Increases in PSA-NCAM expression were found in the lateral nucleus of bipolar patients; synaptophysin and GAD67 were reduced, and VGLUT-1 increased, in their basolateral and lateral nuclei. The expression of synaptophysin and GAD67 was downregulated in the basolateral nucleus of schizophrenics. These results indicate that inhibitory and excitatory amygdaloid circuits are affected in these disorders and that abnormal PSA-NCAM expression in depressive and bipolar patients may underlie these alterations.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ragu Varman D, Marimuthu G, Emmanuvel Rajan K. Environmental enrichment exerts anxiolytic effects in the Indian field mouse (Mus booduga). Appl Anim Behav Sci 2012. [DOI: 10.1016/j.applanim.2011.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Alkadhi KA. Chronic stress and Alzheimer's disease-like pathogenesis in a rat model: prevention by nicotine. Curr Neuropharmacol 2011; 9:587-597. [PMID: 22654719 PMCID: PMC3263455 DOI: 10.2174/157015911798376307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/10/2011] [Accepted: 06/10/2011] [Indexed: 01/08/2023] Open
Abstract
Environmental factors including chronic stress may play a critical role in the manifestation of Alzheimer's disease (AD).This review summarizes our studies of the aggravation of the impaired cognitive ability and its cellular and molecular correlates by chronic psychosocial stress and prevention by nicotine in an Aβ rat model of AD. We utilized three approaches: learning and memory tests in the radial arm water maze, electrophysiological recordings of the cellular correlates of memory, long-term potentiation (LTP) and long-term depression (LTD), in anesthetized rats, and immunoblot analysis of synaptic plasticity- and cognition-related signaling molecules. The Aβ rat model, representing the sporadic form of established AD, was induced by continuous i.c.v. infusion of a pathogenic dose of Aβ peptides via a 14- day osmotic pump. In this AD model, chronic stress intensified cognitive deficits, accentuated the disruption of signaling molecules levels and produced greater depression of LTP than what was seen with Aβ infusion alone. Chronic treatment with nicotine was highly efficient in preventing the effects of Aβ infusion and the exacerbating impact of chronic stress. Possible mechanisms for the effect of chronic stress are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
36
|
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 2011; 6:55. [PMID: 21801442 PMCID: PMC3199854 DOI: 10.1186/1750-1326-6-55] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 07/30/2011] [Indexed: 01/21/2023] Open
Abstract
Astrocytes are fundamental for brain homeostasis and the progression and outcome of many neuropathologies including Alzheimer's disease (AD). In the triple transgenic mouse model of AD (3xTg-AD) generalised hippocampal astroglia atrophy precedes a restricted and specific β-amyloid (Aβ) plaque-related astrogliosis. Astrocytes are critical for CNS glutamatergic transmission being the principal elements of glutamate homeostasis through maintaining its synthesis, uptake and turnover via glutamate-glutamine shuttle. Glutamine synthetase (GS), which is specifically expressed in astrocytes, forms glutamine by an ATP-dependent amination of glutamate. Here, we report changes in GS astrocytic expression in two major cognitive areas of the hippocampus (the dentate gyrus, DG and the CA1) in 3xTg-AD animals aged between 9 and 18 months. We found a significant reduction in Nv (number of cell/mm3) of GS immunoreactive (GS-IR) astrocytes starting from 12 months (28.59%) of age in the DG, and sustained at 18 months (31.65%). CA1 decrease of GS-positive astrocytes Nv (33.26%) occurs at 18 months. This Nv reduction of GS-IR astrocytes is paralleled by a decrease in overall GS expression (determined by its optical density) that becomes significant at 18 months (21.61% and 19.68% in DG and CA1, respectively). GS-IR Nv changes are directly associated with the presence of Aβ deposits showing a decrease of 47.92% as opposed to 23.47% in areas free of Aβ. These changes in GS containing astrocytes and GS-immunoreactivity indicate AD-related impairments of glutamate homeostatic system, at the advanced and late stages of the disease, which may affect the efficacy of glutamatergic transmission in the diseased brain that may contribute to the cognitive deficiency.
Collapse
Affiliation(s)
- Markel Olabarria
- Institute of Experimental Medicine, ASCR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Gilabert-Juan J, Castillo-Gomez E, Pérez-Rando M, Moltó MD, Nacher J. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol 2011; 232:33-40. [PMID: 21819983 DOI: 10.1016/j.expneurol.2011.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/17/2011] [Accepted: 07/19/2011] [Indexed: 01/11/2023]
Abstract
Chronic stress in experimental animals, one of the most accepted models of chronic anxiety and depression, induces structural remodeling of principal neurons in the amygdala and increases its excitation by reducing inhibitory tone. These changes may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity and expressed by interneurons in the adult CNS, which is downregulated in the amygdala after chronic stress. We have analyzed the amygdala of adult mice after 21 days of restraint stress, studying with qRT-PCR the expression of genes related to general and inhibitory neurotransmission, and of PSA synthesizing enzymes. The expression of GAD67, synaptophysin and PSA-NCAM was also studied in specific amygdaloid nuclei using immunohistochemistry. We also analyzed dendritic arborization and spine density, and cell activity, monitoring c-Fos expression, in amygdaloid interneurons. At the mRNA level, the expression of GAD67 and of St8SiaII was significantly reduced. At the protein level there was an overall reduction in the expression of GAD67, synaptophysin and PSA-NCAM, but significant changes were only detected in specific amygdaloid regions. Chronic stress did not affect dendritic spine density, but reduced dendritic arborization in interneurons of the lateral and basolateral amygdala. These results indicate that chronic stress modulates inhibitory neurotransmission in the amygdala by regulating the expression of molecules involved in this process and by promoting the structural remodeling of interneurons. The addition of PSA to NCAM by St8SiaII may be involved in these changes.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Spain
| | | | | | | | | |
Collapse
|
38
|
Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Blockade of endogenous neuraminidase leads to an increase of neuronal excitability and activity-dependent synaptogenesis in the rat hippocampus. Eur J Neurosci 2010; 32:1889-96. [PMID: 21044183 DOI: 10.1111/j.1460-9568.2010.07468.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysialic acids are widely distributed in neuronal tissue. Due to their position on glycoproteins and gangliosides on the outer cell membranes and anionic nature, polysialic acids are involved in multiple cell signaling events. The level of sialylation of the cellular surface is regulated by endogenous neuraminidase (NEU), which catalyses the hydrolysis of terminal sialic acid residues. Using the specific blocker of endogenous NEU, N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA), we show that downregulation of the endogenous NEU activity causes a significant increase in the level of hippocampal tissue sialylation. Acute application of NADNA increased the firing frequency and amplitude of spontaneous synchronous oscillations, and frequency of multiple unit activity in cultured hippocampal slices. The tonic phase of seizure-like activity in the low-magnesium model of ictogenesis was significantly increased in slices pretreated with NADNA. These data indicate that the degree of synchronization is influenced by the amount of active NEU in cultured hippocampal slices. Pretreatment with NADNA led to an increase of the density of simple and perforated synapses in the hippocampal CA1 stratum radiatum region. Co-incubation of slices with NADNA and high concentrations of calcium eliminated the effect of the NEU blocker on synaptic density, suggesting that synaptogenesis observed following downregulation of the endogenous NEU activity is an activity-dependent process.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | | | |
Collapse
|
39
|
Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 2010; 44:808-16. [PMID: 20172535 DOI: 10.1016/j.jpsychires.2010.01.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 01/29/2023]
Abstract
Chronic unpredictable stress (CUS) is a widely used animal model of depression. The present study was undertaken to investigate behavioral, physiological and molecular effects of CUS and/or chronic antidepressant treatment (venlafaxine or imipramine) in the same set of animals. Anhedonia, a core symptom of depression, was assessed by measuring consumption of a palatable solution. Exposure to CUS reduced intake of a palatable solution and this effect was prevented by chronic antidepressant treatment. Moreover, chronic antidepressant treatment decreased depressive-like behavior in a modified forced swim test in stressed rats. Present evidence suggests a role for brain-derived neurotrophic factor (BDNF) in depression. BDNF mRNA levels in the ventral and dorsal hippocampus were assessed by in situ hybridization. Exposure to CUS was not correlated with a decrease but rather with an increase in BDNF mRNA expression in both the dentate gyrus of the dorsal hippocampus and the CA3 region of the ventral hippocampus indicating that there is no simple link between depression-like behaviors per se and brain BDNF levels in rats. However, a significant increase in BDNF mRNA levels in the dentate gyrus of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity.
Collapse
|
40
|
Gómez-Climent MÁ, Guirado R, Castillo-Gómez E, Varea E, Gutierrez-Mecinas M, Gilabert-Juan J, García-Mompó C, Vidueira S, Sanchez-Mataredona D, Hernández S, Blasco-Ibáñez JM, Crespo C, Rutishauser U, Schachner M, Nacher J. The Polysialylated Form of the Neural Cell Adhesion Molecule (PSA-NCAM) Is Expressed in a Subpopulation of Mature Cortical Interneurons Characterized by Reduced Structural Features and Connectivity. Cereb Cortex 2010; 21:1028-41. [DOI: 10.1093/cercor/bhq177] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Noristani HN, Olabarria M, Verkhratsky A, Rodríguez JJ. Serotonin fibre sprouting and increase in serotonin transporter immunoreactivity in the CA1 area of hippocampus in a triple transgenic mouse model of Alzheimer's disease. Eur J Neurosci 2010; 32:71-9. [PMID: 20576032 DOI: 10.1111/j.1460-9568.2010.07274.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that deteriorates cognitive functions and associated brain regions such as the hippocampus, being the primary cause of dementia. Serotonin (5-HT) is widely present in the hippocampus, being an important neurotransmitter involved in learning and memory. Although recent evidence suggests alterations in 5-HT neurotransmission in AD, it is not clear how hippocampal 5-HT innervation is modified. Here, we studied hippocampal 5-HT innervation by analysing: (i) the expression, density and distribution of 5-HT transporter (SERT)-immunoreactive fibres; (ii) the specific morphological characteristics of serotonergic fibres and their relation to amyloid plaques; and (iii) the total number of 5-HT neurons within the raphe nuclei in triple transgenic mouse model of AD. We used quantitative light microscopy immunohistochemistry comparing transgenic and non-transgenic animals of different ages (3, 6, 9, 12 and 18 months). The transgenic animals showed a significant increase in SERT fibres in the hippocampus in a subfield-, strata- and age-specific manner. The increase in SERT fibres was specific to the CA1 stratum lacunosum-moleculare. An increase in SERT fibres in transgenic animals was observed at 3 months (by 61%) and at 18 months (by 74%). No changes, however, were found in the total number of raphe 5-HT neurons at any age. Our results indicate that triple transgenic mice display changes in the expression of SERT and increased SERT fibres sprouting, which may account for imbalanced serotonergic neurotransmission associated with (or linked to) AD cognitive impairment.
Collapse
Affiliation(s)
- H N Noristani
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
42
|
Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience 2010; 167:825-37. [DOI: 10.1016/j.neuroscience.2010.02.067] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/15/2022]
|
43
|
Bisaz R, Sandi C. The role of NCAM in auditory fear conditioning and its modulation by stress: a focus on the amygdala. GENES BRAIN AND BEHAVIOR 2010; 9:353-64. [DOI: 10.1111/j.1601-183x.2010.00563.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Conboy L, Bisaz R, Markram K, Sandi C. Role of NCAM in Emotion and Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:271-96. [DOI: 10.1007/978-1-4419-1170-4_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Abstract
Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.
Collapse
Affiliation(s)
- Benno Roozendaal
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, the Netherlands.
| | | | | |
Collapse
|
46
|
Bisaz R, Conboy L, Sandi C. Learning under stress: A role for the neural cell adhesion molecule NCAM. Neurobiol Learn Mem 2009; 91:333-42. [DOI: 10.1016/j.nlm.2008.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/19/2008] [Accepted: 11/07/2008] [Indexed: 12/19/2022]
|
47
|
Varea E, Castillo-Gómez E, Gómez-Climent MA, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J. Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging 2009; 30:808-18. [PMID: 17904697 DOI: 10.1016/j.neurobiolaging.2007.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/25/2007] [Accepted: 08/14/2007] [Indexed: 01/30/2023]
Abstract
Changes in the ability of neuronal networks to undergo structural remodeling may be involved in the age-associated cognitive decline. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) declines dramatically during postnatal development, but persists in several regions of the young-adult rat telencephalon, where it participates, through its anti-adhesive properties, in neuronal structural plasticity. However, PSA-NCAM expression during aging has only been studied in the dentate gyrus and the piriform cortex layer II, where it is strongly downregulated in adult (middle-aged) individuals. Using immunohistochemistry, we have observed that in most of the telencephalic areas studied the number of PSA-NCAM expressing cells and the intensity of PSA-NCAM expression in the neuropil remains stable during aging. Old rats only show decreases in the number of PSA-NCAM expressing cells in the lateral amygdala and retrosplenial cortex, and in neuropil expression of stratum lucidum. Given the role of PSA-NCAM in neuronal plasticity, the present results indicate that, even during aging, many regions of the CNS may display neurite, spine or synaptic remodeling.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Maćkowiak M, Dudys D, Chocyk A, Wedzony K. Repeated risperidone treatment increases the expression of NCAM and PSA-NCAM protein in the rat medial prefrontal cortex. Eur Neuropsychopharmacol 2009; 19:125-37. [PMID: 19042107 DOI: 10.1016/j.euroneuro.2008.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/02/2008] [Accepted: 10/21/2008] [Indexed: 02/03/2023]
Abstract
The present study investigates whether the anti-schizophrenic drug risperidone may evoke changes in the expression of NCAM/PSA-NCAM proteins, an indispensable element in the remodeling of synaptic arrangements, in the medial prefrontal cortex (mPFC). Rats were treated with risperidone (0.2 mg/kg, i.p.) either once or repeatedly (once a day, for 21 days). The expression of NCAM and PSA-NCAM proteins was analyzed via western blot and immunohistochemistry at intervals of 3 h and 3, 6, and 9 days after the single or the last risperidone dose. Repeated (but not acute) administration of risperidone was found to increase the expression of NCAM-180, NCAM-140 and PSA-NCAM proteins at 3 or 6 days after treatment. PSA-NCAM immunoreactivity was found in cell bodies, perisomatic-like sites, and in the neuropil of the mPFC. Neither single nor repeated risperidone administration changed the number of PSA-NCAM neurons in the mPFC. In contrast, the repeated risperidone treatment increased the number of PSA-NCAM perisomatic-like sites and the length density of PSA-NCAM positive neuropil at 3 days after the last injection. The data obtained indicate that risperidone, given repeatedly, may promote the remodeling of the structure of presumably GABA-ergic interneurons and that it may evoke the rearrangement of the synaptic contact in the mPFC.
Collapse
Affiliation(s)
- Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | | | | | | |
Collapse
|
49
|
Olanzapine, but not haloperidol, enhances PSA-NCAM immunoreactivity in rat prefrontal cortex. Int J Neuropsychopharmacol 2008; 11:591-5. [PMID: 18593508 DOI: 10.1017/s1461145708009061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repeated antipsychotic treatment may produce adaptive changes ranging from cytoarchitectural rearrangements to synaptic modifications that might contribute to clinical improvement. We performed a prolonged treatment (2 wk) with the first-generation antipsychotic (FGA) haloperidol (1 mg/kg) and the second-generation antipsychotic (SGA) olanzapine (2 mg/kg twice daily) and analysed the expression of the polysialylated form of neural cell adhesion molecule (PSA-NCAM) in rat hippocampus and prefrontal cortex via immunohistochemistry. We found a regional- and drug-selective increase of PSA-NCAM expression in prefrontal cortex of olanzapine-treated rats with no effects in hippocampus; conversely, haloperidol did not produce a change in either brain region. Our findings reveal a possible role for PSA-NCAM in the mechanism of action of the SGA olanzapine adding complexity as well as specificity to the molecular changes set in motion by this drug.
Collapse
|
50
|
Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats. Exp Neurol 2008; 214:97-111. [PMID: 18718470 DOI: 10.1016/j.expneurol.2008.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 07/09/2008] [Accepted: 07/18/2008] [Indexed: 01/28/2023]
Abstract
A "neuroplastic" hypothesis proposes that changes in neuronal structural plasticity may underlie the aetiology of depression and the action of antidepressants. The medial prefrontal cortex (mPFC) is affected by this disorder and shows an intense expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-associated molecule, which is expressed mainly in interneurons. The monoamines serotonin, dopamine and noradrenaline are the principal targets of antidepressant action. Pharmacological manipulation of serotonin levels regulates synaptophysin and PSA-NCAM expression in the adult mPFC. However, the involvement of structural plasticity on the antidepressant effects of dopamine has not been well explored yet. Using immunohistochemistry, we have studied the relationship between dopaminergic fibers and PSA-NCAM expressing neurons in the mPFC and the expression of D2 receptors. In order to evaluate the effects of dopamine in neuronal structural plasticity and on inhibitory neurotransmission, we have analyzed the expression of synaptophysin, PSA-NCAM and GAD67 in the mPFC after cortical dopamine depletion with 6-OHDA and after chronic treatments with the D2 receptor antagonist haloperidol or the D2 receptor agonist PPHT. Many dopaminergic fibers were observed in close apposition to PSA-NCAM expressing neurons and 76% of these cells co-expressed D2 receptor. Both haloperidol treatment and 6-OHDA injection reduced significantly PSA-NCAM, synaptophysin and GAD67 expression in the mPFC. Conversely, PPHT treatment increased the expression of these molecules. Our results give support to the "neuroplastic" hypothesis of depression, suggesting that dopamine acting on D2 receptors may modulate neuronal structural plasticity and inhibitory neurotransmission through changes in PSA-NCAM expression.
Collapse
|