1
|
McGregor R, Matzeu A, Thannickal TC, Wu F, Cornford M, Martin-Fardon R, Siegel JM. Sensitivity of Hypocretin System to Chronic Alcohol Exposure: A Human and Animal Study. Neuroscience 2023; 522:1-10. [PMID: 37121379 PMCID: PMC10681027 DOI: 10.1016/j.neuroscience.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA.
| | - Alessandra Matzeu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Frank Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Marcia Cornford
- Department of Pathology, Harbor University of California, Los Angeles, Medical, Center, Torrance, CA 90509, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| |
Collapse
|
2
|
Orexin A and B in the rat superior salivatory nucleus. Auton Neurosci 2020; 228:102712. [PMID: 32721850 DOI: 10.1016/j.autneu.2020.102712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Orexin (OX), which regulates sleep and wakefulness and feeding behaviors has 2 isoforms, orexin-A and -B (OXA and OXB). In this study, the distribution of OXA and OXB was examined in the rat superior salivatory nucleus (SSN) using retrograde tracing and immunohistochemical and methods. OXA- and OXB-immunoreactive (-ir) nerve fibers were seen throughout the SSN. These nerve fibers surrounded SSN neurons retrogradely labeled with Fast blue (FB) from the corda-lingual nerve. FB-positive neurons had pericellular OXA- (47.5%) and OXB-ir (49.0%) nerve fibers. Immunohistochemistry for OX receptors also demonstrated the presence of OX1R and OX2R in FB-positive SSN neurons. The majority of FB-positive SSN neurons contained OX1R- (69.7%) or OX2R-immunoreactivity (57.8%). These neurons had small and medium-sized cell bodies. In addition, half of FB-positive SSN neurons which were immunoreactive for OX1R (47.0%) and OX2R (52.2%) had pericellular OXA- and OXB-ir nerve fibers, respectively. Co-expression of OX1R- and OX2R was common in FB-positive SSN neurons. The present study suggests a possibility that OXs regulate the activity of SSN neurons through OX receptors.
Collapse
|
3
|
Tanaka S, Higuchi M, Seki S, Enomoto A, Kogo M. Orexins modulate membrane excitability in rat trigeminal motoneurons. J Oral Sci 2020; 62:265-270. [DOI: 10.2334/josnusd.19-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Masataka Higuchi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Soju Seki
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Akifumi Enomoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kindai University
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
4
|
Costa A, Castro-Zaballa S, Lagos P, Chase MH, Torterolo P. Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation. Peptides 2018; 104:50-61. [PMID: 29680268 DOI: 10.1016/j.peptides.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized in the postero-lateral hypothalamus and incerto-hypothalamic area. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes, such as sleep. Unlike rodents, in the order carnivora as well as in humans, MCH exerts its biological functions through two receptors: MCHR-1 and MCHR-2. Hence, the cat is an optimal animal to model MCHergic functions in humans. In the present study, we examined the distribution of MCH-positive fibers in the brainstem of the cat. MCHergic axons with distinctive varicosities and boutons were heterogeneously distributed, exhibiting different densities in distinct regions of the brainstem. High density of MCHergic fibers was found in the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the periaqueductal gray, the pendunculopontine tegmental nucleus, the locus coeruleus and the prepositus hypoglossi. Because these areas are involved in the control of REM sleep, the present anatomical data support the role of this neuropeptidergic system in the control of this behavioral state.
Collapse
Affiliation(s)
- Alicia Costa
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | - Michael H Chase
- WebSciences International and UCLA School of Medicine, Los Angeles, USA
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
5
|
Rivas M, Torterolo P, Ferreira A, Benedetto L. Hypocretinergic system in the medial preoptic area promotes maternal behavior in lactating rats. Peptides 2016; 81:9-14. [PMID: 27083313 DOI: 10.1016/j.peptides.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Hypocretin-1 and 2 (HCRT-1 and HCRT-2, respectively) are neuropeptides synthesized by neurons located in the postero-lateral hypothalamus, whose projections are widely distributed throughout the brain. The hypocretinergic (HCRTergic) system has been associated with the generation and maintenance of wakefulness, as well as with the promotion of motivated behaviors. In lactating rats, intra-cerebroventricular HCRT-1 administration stimulates maternal behavior, whilst lactation per se increases the expression of HCRT type 1 receptor (HCRT-R1). Due to the fact that HCRTergic receptors are expressed in the medial preoptic area (mPOA), a region critically involved in maternal behavior, we hypothesize that HCRT-1 promotes maternal behavior acting on this region. In order to evaluate this hypothesis, we assessed the maternal behavior of lactating rats following microinjections of HCRT-1 (10 or 100μM) and the selective HCRT-R1 antagonist SB-334867 (250μM) into the mPOA, during the first and second postpartum weeks. While intra-mPOA microinjections of HCRT-1 (100μM) increased corporal pup licking during the second postpartum week, the blockade of HCRT-R1 significantly decreased active components of maternal behavior, such as retrievals, corporal and ano-genital lickings, and increased the time spent in nursing postures in both postpartum periods. We conclude that HCRTergic system in the mPOA may stimulate maternal behavior, suggesting that endogenous HCRT-1 is necessary for the natural display of this behavior.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Urbanavicius J, Lagos P, Torterolo P, Abin-Carriquiry JA, Scorza C. Melanin-concentrating hormone projections to the dorsal raphe nucleus: An immunofluorescence and in vivo microdialysis study. J Chem Neuroanat 2016; 72:16-24. [DOI: 10.1016/j.jchemneu.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
|
7
|
Torterolo P, Castro-Zaballa S, Cavelli M, Velasquez N, Brando V, Falconi A, Chase MH, Migliaro ER. Heart rate variability during carbachol-induced REM sleep and cataplexy. Behav Brain Res 2015; 291:72-79. [DOI: 10.1016/j.bbr.2015.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022]
|
8
|
Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P. Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Res 2015; 1598:114-28. [DOI: 10.1016/j.brainres.2014.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/27/2022]
|
9
|
Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2014; 49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Nian Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Qi-Cheng Qiao
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
10
|
López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014; 61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Berta Sanz-Morello
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014; 7:19-29. [PMID: 26483897 PMCID: PMC4521687 DOI: 10.1016/j.slsci.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, Los Angeles, USA
- UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
12
|
Csaba Z, Krejci E, Bernard V. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. J Comp Neurol 2013. [PMID: 23184757 DOI: 10.1002/cne.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20-30%) of plasma membrane-associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission.
Collapse
Affiliation(s)
- Zsolt Csaba
- Université Paris Descartes, 75006 Paris, France.
| | | | | |
Collapse
|
13
|
Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013; 1491:68-77. [PMID: 23122879 PMCID: PMC3529971 DOI: 10.1016/j.brainres.2012.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
Within the postero-lateral hypothalamus neurons that utilize hypocretin or melanin-concentrating hormone (MCH) as neuromodulators are co-distributed. These neurons have been involved in the control of behavioral states, and a deficit in the hypocretinergic system is the pathogenic basis of narcolepsy with cataplexy. In this report, utilizing immunohistochemistry and retrograde tracing techniques, we examined the hypocretinergic innervation of the nucleus pontis oralis (NPO), which is the executive site that is responsible for the generation of REM sleep in the cat. The retrograde tracer cholera toxin subunit b (CTb) was administered in pontine regions where carbachol microinjections induced REM sleep. Utilizing immunohistochemical techniques, we found that approximately 1% of hypocretinergic neurons in the tuberal area of the hypothalamus project to the NPO. In addition, approximately 6% of all CTb+ neurons in this region were hypocretinergic. The hypocretinergic innervation of the NPO was also compared with the innervation of the same site by MCH-containing neurons. More than three times as many MCHergic neurons were found to project to the NPO compared with hypocretinergic cells; both neuronal types exhibited bilateral projections. We also identified a group of non-hypocretinergic non-MCHergic neuronal group of neurons that were intermingled with both hypocretinergic and MCHergic neurons that also projected to this same brainstem region. These neurons were grater in number that either hypocretin or MCH-containing neurons; their soma size was also smaller and their projections were mainly ipsilateral. The present anatomical data suggest that hypocretinergic, MCHergic and an unidentified companion group of neurons of the postero-lateral hypothalamus participate in the regulation of the neuronal activity of NPO neurons, and therefore, are likely to participate in the control of wakefulness and REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
14
|
Stettner GM, Kubin L. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus. J Appl Physiol (1985) 2012; 114:119-30. [PMID: 23104701 DOI: 10.1152/japplphysiol.00965.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perifornical (PF) region of the posterior hypothalamus promotes wakefulness and facilitates motor activity. In anesthetized rats, local disinhibition of PF neurons by GABA(A) receptor antagonists activates orexin (OX) neurons and elicits a systemic response, including increases of hypoglossal nerve activity (XIIa), respiratory rate, heart rate, and blood pressure. The increase of XIIa is mediated to hypoglossal (XII) motoneurons by pathways that do not require noradrenergic or serotonergic projections. We hypothesized that the pathway might include OX-dependent activation locally within the PF region or direct projections of OX neurons to the XII nucleus. Adult, male Sprague-Dawley rats were urethane anesthetized, vagotomized, paralyzed, and ventilated. Gabazine (GABA(A) receptor antagonist, 0.18 mM, 20 nl) was injected into the PF region, and ~2 h later, a second gabazine injection was performed preceded by injection of a dual OX1/2 receptor antagonist (almorexant; 90 mM) either into the XII nucleus (40-60 nl at 2-3 rostrocaudal levels; n = 6 rats), or into the PF region (40-60 nl; n = 6 rats). XIIa, respiratory rate, heart rate, and arterial blood pressure were analyzed for 70 min after each gabazine injection. The excitatory effects of PF gabazine on XIIa, respiratory, and heart rates were significantly reduced by up to 44-82% when gabazine injections were preceded by PF almorexant injections, but not when almorexant was injected into the XII nucleus. These data suggest that a significant portion of XII motoneuronal and cardiorespiratory activation evoked by disinhibition of PF neurons is mediated by local OX-dependent mechanisms within the posterior hypothalamus.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046, USA.
| | | |
Collapse
|
15
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
16
|
Torterolo P, Ramos OV, Sampogna S, Chase MH. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors. Physiol Behav 2011; 104:823-30. [PMID: 21839102 DOI: 10.1016/j.physbeh.2011.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/12/2011] [Accepted: 07/28/2011] [Indexed: 01/06/2023]
Abstract
Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus.
Collapse
Affiliation(s)
- Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
17
|
Fernández-Alvarez A, Gómez-Sena L, Fabbiani MG, Budelli R, Abudara V. Endogenous presynaptic nitric oxide supports an anterograde signaling in the central nervous system. J Neurochem 2011; 118:546-57. [PMID: 21644995 DOI: 10.1111/j.1471-4159.2011.07336.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons. In retrogradely labeled motoneurons, we indirectly monitored NO using triazolofluorescein (DAF-2T) fluorescence, and evaluated sGC activity by confocal cGMP immunofluorescence. Multiple fibers stimulation enhanced NO content and cGMP immunofluorescence into numerous nNOS-negative motoneurons; NOS inhibitors prevented depolarization-induced effects, whereas NO donors mimicked them. Enhance of cGMP immunofluorescence required extracellular Ca(2+), a nNOS-physiological activator, and was prevented by inhibiting sGC, silencing neuronal activity or impeding NO diffusion. In conclusion, NO released presynaptically from multiple cooperative tiny fibers attains concentrations sufficient to activate sGC in many motoneurons despite of the low source/target size ratio and source dispersion; thus, endogenous NO is an effective anterograde neuromodulator. By adjusting nNOS activation, presynaptic Ca(2+) might modulate the NO diffusion field in the TMN.
Collapse
|
18
|
Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P. Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 2011; 218:259-66. [DOI: 10.1016/j.bbr.2010.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
|
19
|
Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011; 2:14. [PMID: 21516258 PMCID: PMC3080035 DOI: 10.3389/fneur.2011.00014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/02/2011] [Indexed: 12/18/2022] Open
Abstract
Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, University of the Republic Montevideo, Uruguay
| | | | | |
Collapse
|
20
|
Fung SJ, Xi M, Zhang J, Torterolo P, Sampogna S, Morales FR, Chase MH. Projection neurons from the central nucleus of the amygdala to the nucleus pontis oralis. J Neurosci Res 2010; 89:429-36. [PMID: 21259329 DOI: 10.1002/jnr.22554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
The present retrograde labeling study was designed to determine the presence and pattern of projections from individual subdivisions of the central nucleus of the amygdala (CNA) to the nucleus pontis oralis (NPO), which is a critical brainstem site involved in the generation and maintenance of active (REM) sleep. Projections from the CNA were labeled with the retrograde tracer cholera toxin B-subunit (CTB), which was injected, unilaterally, via microiontophoresis, into the NPO. Sections of the amygdala were immunostained in order to identify CTB-labeled CNA neurons and CNA neurons that contained CTB plus the vesicular glutamate transporter 2 (VGLUT2), which is a marker for glutamatergic neurons. Histological analyses revealed that retrogradely labeled neurons that project to the NPO were localized, ipsilaterally, within the medial, lateral, and capsular subdivisions of the CNA. In addition, a substantial proportion (24%) of all retrogradely labeled CNA neurons also exhibited VGLUT2 immunoreactivity. The present study demonstrates that glutamatergic neurons, which are present within various subdivisions of the CNA, project directly to the NPO. These data lend credence to the hypothesis that NPO neurons that are involved in the control of active sleep are activated by glutamatergic projections from the amygdala.
Collapse
Affiliation(s)
- Simon J Fung
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lagos P, Torterolo P, Jantos H, Monti JM. Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 2010; 1369:112-8. [PMID: 21078307 DOI: 10.1016/j.brainres.2010.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
Hypothalamic neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator exert a positive control over energy homeostasis, inducing feeding and decreasing metabolism. Recent studies have shown also that this system plays a role in the generation and/or maintenance of sleep. MCHergic neurons project to the serotonergic dorsal raphe nucleus (DR), a neuroanatomical structure involved in several functions during wakefulness (W), and in the regulation of rapid-eye movements (REM) sleep. Recently, we determined the effect of MCH microinjected into the DR on sleep variables in the rat. MCH produced a marked increment of REM sleep, whereas slow wave sleep (SWS) showed only a moderate increase. In the present study, we analyze the effect of immunoneutralization of MCH in the DR on sleep and W in the rat. Compared to the control solution, microinjections of anti-MCH antibodies (1/100 solution in 0.2 μl) induced a significant increase in REM sleep latency (31.2±7.1 vs. 84.2±24.8 min, p<0.05) and a decrease of REM sleep time (37.8±5.4 vs. 17.8±2.9 min, p<0.05) that was related to the reduction in the number of REM sleep episodes. In addition, there was an increase of total W time (49.8±4.6 vs. 72.0±5.7 min, p<0.01). Light sleep and SWS remained unchanged. The intra-DR administration of a more diluted solution of anti-MCH antibodies (1/500) or rabbit pre-immune serum did not modify neither W nor REM sleep variables. Our findings strongly suggest that MCH released in the DR facilitates the occurrence of REM sleep.
Collapse
Affiliation(s)
- Patricia Lagos
- Department of Physiology, School of Medicine, University of the Republic, Montevideo, Uruguay
| | | | | | | |
Collapse
|
22
|
Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat 2010; 39:20-34. [DOI: 10.1016/j.jchemneu.2009.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022]
|
23
|
Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2009; 221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the lateral hypothalamus (LH) that synthesize hypocretins (Hcrt-1 and Hcrt-2) are active during wakefulness and excite lumbar motoneurons. Because hypocretinergic cells also discharge during phasic periods of rapid eye movement (REM) sleep, we sought to examine their action on the activity of motoneurons during this state. Accordingly, cat lumbar motoneurons were intracellularly recorded, under alpha-chloralose anesthesia, prior to (control) and during the carbachol-induced REM sleep-like atonia (REMc). During control conditions, LH stimulation induced excitatory postsynaptic potentials (composite EPSP) in motoneurons. In contrast, during REMc, identical LH stimulation induced inhibitory PSPs in motoneurons. We then tested the effects of LH stimulation on motoneuron responses following the stimulation of the nucleus reticularis gigantocellularis (NRGc) which is part of a brainstem-spinal cord system that controls motoneuron excitability in a state-dependent manner. LH stimulation facilitated NRGc stimulation-induced composite EPSP during control conditions whereas it enhanced NRGc stimulation-induced IPSPs during REMc. These intriguing data indicate that the LH exerts a state-dependent control of motor activity. As a first step to understand these results, we examined whether hypocretinergic synaptic mechanisms in the spinal cord were state dependent. We found that the juxtacellular application of Hcrt-1 induced motoneuron excitation during control conditions whereas motoneuron inhibition was enhanced during REMc. These data indicate that the hypocretinergic system acts on motoneurons in a state-dependent manner via spinal synaptic mechanisms. Thus, deficits in Hcrt-1 may cause the coexistence of incongruous motor signs in cataplectic patients, such as motor suppression during wakefulness and movement disorders during REM sleep.
Collapse
Affiliation(s)
- Jack Yamuy
- WebSciences International, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
24
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Torterolo P, Sampogna S, Chase MH. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 2009; 1268:76-87. [PMID: 19269278 DOI: 10.1016/j.brainres.2009.02.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 01/08/2023]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area and project diffusely throughout the central nervous system, including areas that participate in the generation and maintenance of sleep and wakefulness. Recent studies have shown that hypothalamic MCHergic neurons are active during active sleep (AS), and that intraventricular microinjections of MCH induce AS sleep; however, there are no data available regarding the manner in which MCHergic neurons participate in the control of this behavioral state. Utilizing immunohistochemical and retrograde tracing techniques, we examined, in the cat, projections from MCHergic neurons to the nucleus pontis oralis (NPO), which is considered to be the executive area that is responsible for the generation and maintenance of AS. In addition, we explored the effects on sleep and waking states produced by the microinjection of MCH into the NPO. We first determined that MCHergic fibers and terminals are present in the NPO. We also found that when a retrograde tracer (cholera toxin subunit B) was placed in the NPO MCHergic neurons of the hypothalamus were labeled. When MCH was microinjected into the NPO, there was a significant increase in the amount of AS (19.8+/-1.4% versus 11.9+/-0.2%, P<0.05) and a significant decrease in the latency to AS (10.4+/-4.2 versus 26.6+/-2.3 min, P<0.05). The preceding anatomical and functional data support our hypothesis that the MCHergic system participates in the regulation of AS by modulating neuronal activity in the NPO.
Collapse
Affiliation(s)
- Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay.
| | - Sharon Sampogna
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA
| | - Michael H Chase
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Notsu K, Tsumori T, Yokota S, Sekine J, Yasui Y. Posterior lateral hypothalamic axon terminals are in contact with trigeminal premotor neurons in the parvicellular reticular formation of the rat medulla oblongata. Brain Res 2008; 1244:71-81. [DOI: 10.1016/j.brainres.2008.09.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 11/25/2022]
|
27
|
The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. Curr Opin Pulm Med 2008; 14:512-8. [PMID: 18812827 DOI: 10.1097/mcp.0b013e32831311d3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Today, numerous studies show that orexin peptides act as regulators of many functions including the control of sleep-wake states, breathing, and central chemosensitivity. However, little is known on neuronal mechanisms by which orexin regulates breathing in a state-dependent manner. This review summarizes recent data on the control of neuronal circuits by orexin, with a special emphasis on breathing, central chemosensitivity, and obstructive sleep apneas. RECENT FINDINGS Activity of hypothalamic orexinergic neurons is subjected to maturation and is mandatory to maintain long bouts of wakefulness in adults. At wake onset, this activity progressively builds up as a result of synaptic interactions and reinforces the awake state. Orexin deficiency attenuates the hypercapnic reflex only during wakefulness and is correlated with an increase in sleep apneas. Intrinsic sensitivity to CO2/pH of orexin neurons may impact on brainstem chemosensitive neurons, and this effect likely involves TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related acid sensitive K+ (TASK)-like potassium currents. SUMMARY Orexin signaling is directly involved in the control of upper airway patency in particular during wakefulness, whereas decreasing activity of orexinergic neurons may contribute to upper airway collapse during sleep causing obstructive sleep apnea. Future research should focus on the role of orexin in upper airway control, which may lead to new clinical strategies for treating breathing disorders associated with sleep.
Collapse
|
28
|
Melanin-concentrating hormone (MCH) immunoreactivity in non-neuronal cells within the raphe nuclei and subventricular region of the brainstem of the cat. Brain Res 2008; 1210:163-78. [PMID: 18410908 DOI: 10.1016/j.brainres.2008.02.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/31/2008] [Accepted: 02/29/2008] [Indexed: 11/22/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized within the postero-lateral hypothalamus and zona incerta. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes such as energy homeostasis and sleep. In the present report, we examined the distribution of MCH immunoreactivity in the brainstem of the cat. In addition to MCH+ axons, we found MCH-immunoreactive cells that have not been previously described either in the midbrain raphe nuclei or in the periaqueductal and periventricular areas. These MCH+ cells constituted: 1. ependymal cells that lined the fourth ventricle and aqueduct, 2. ependymal cells with long basal processes that projected deeply into the subventricular (subaqueductal) parenchyma, and, 3. cells in subventricular regions and the midbrain raphe nuclei. The MCH+ cells in the midbrain raphe nuclei were closely related to neuronal processes of serotonergic neurons. Utilizing Neu-N and GFAP immunohistochemistry we determined that the preceding MCH+ cells were neither neurons nor astrocytes. However, we found that vimentin, an intermediate-filament protein that is used as a marker for tanycytes, was specifically co-localized with MCH in these cells. We conclude that MCH is present in tanycytes whose processes innervate the midbrain raphe nuclei and adjacent subependymal regions. Because tanycytes are specialized cells that transport substances from the cerebrospinal fluid (CSF) to neural parenchyma, we suggest that MCH is absorbed from the CSF by tanycytes and subsequently liberate to act upon neurons of brainstem nuclei.
Collapse
|
29
|
Torterolo P, Sampogna S, Morales FR, Chase MH. MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 2006; 1119:101-14. [PMID: 17027934 PMCID: PMC1802635 DOI: 10.1016/j.brainres.2006.08.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 08/04/2006] [Accepted: 08/13/2006] [Indexed: 11/20/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) and others that employ hypocretin as neurotransmitter are located in the hypothalamus and project diffusely throughout the CNS, including areas that participate in the generation and maintenance of the states of sleep and wakefulness. In the present report, immunohistochemical methods were employed to examine the distribution of MCHergic and hypocretinergic neurons. In order to test the hypothesis that the MCHergic system is capable of influencing specific behavioral states, we studied Fos immunoreactivity in MCH-containing neurons during (1) quiet wakefulness, (2) active wakefulness with motor activity, (3) active wakefulness without motor activity, (4) quiet sleep and (5) active sleep induced by carbachol (AS-carbachol). We determined that MCHergic neuronal somata in the cat are intermingled with hypocretinergic neurons in the dorsal and lateral hypothalamus, principally in the tuberal and tuberomammillary regions; however, hypocretinergic neurons extended more in the anterior-posterior axis than MCHergic neurons. Axosomatic and axodendritic contacts were common between these neurons. In contrast to hypocretinergic neurons, which are known to be active during motor activity and AS-carbachol, Fos immunoreactivity was not observed in MCH-containing neurons in conjunction with any of the preceding behavioral conditions. Non-MCHergic, non-hypocretinergic neurons that expressed c-fos during active wakefulness with motor activity were intermingled with MCH and hypocretin-containing neurons, suggesting that these neurons are related to some aspect of motor function. Further studies are required to elucidate the functional sequela of the interactions between MCHergic and hypocretinergic neurons and the phenotype of the other neurons that were active during motor activity.
Collapse
Affiliation(s)
- Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800, Montevideo-Uruguay
| | - Sharon Sampogna
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
| | - Francisco R. Morales
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800, Montevideo-Uruguay
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
| | - Michael H. Chase
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
- UCLA School of Medicine, Los Angeles, CA 90095
| |
Collapse
|