1
|
Das R, Dey A, Uppal S. A method for in situ visualization of Protein-Nascent RNA interactions in single cell using Proximity Ligation Assay (IPNR-PLA) in mammalian cells. Transcription 2023; 14:146-157. [PMID: 36927323 PMCID: PMC10807467 DOI: 10.1080/21541264.2023.2190296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Proximity ligation assay (PLA) is an immunofluorescence assay, which determines in situ interaction of two biomolecules present within 40 nm close proximity. Here, we describe a modification of PLA for visual detection of in situ protein interactions with nascent RNA in a single cell (IPNR-PLA). In IPNR-PLA, nascent RNA is labeled by incorporating 5-fluorouridine (FU), a uridine nucleotide analogue, followed by covalent cross-linking of the interacting partners in proximity to newly synthesized RNA. By using combination of anti-BrdU antibody, which specifically binds to FU, and primary antibody against a protein of interest, the IPNR reaction results in fluorescent puncta as a positive signal, only if the candidate proteins are in proximity to nascent RNA. We have validated this method by demonstrating known CDK9 and elongating RNA pol II interaction with nascent RNA. Finally, we used this method to test for the presence of DNA double strand breaks as well as Poly (ADP-ribose) polymerase 1 (PARP1), an RNA binding protein, in the vicinity of nascent RNA in cancer cells. The capability of performing parallel IF labeling and quantifiable multiparameter measurements within heterogeneous cell populations makes IPNR-PLA very attractive for use in biological studies. Overall, we have developed the IPNR-PLA method for analysis of protein association with nascent RNA with single-cell resolution, which is highly sensitive, quantitative, efficient, and requires little starting experimental material.
Collapse
Affiliation(s)
- Rituparna Das
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay,Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Anusree Dey
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay,Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Sheetal Uppal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay,Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| |
Collapse
|
2
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
3
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
4
|
van’t Sant LJ, White JJ, Hoeijmakers JHJ, Vermeij WP, Jaarsma D. In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathol Commun 2021; 9:94. [PMID: 34020718 PMCID: PMC8139001 DOI: 10.1186/s40478-021-01200-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.
Collapse
|
5
|
Smirnov E, Trosan P, Cabral JV, Studeny P, Kereïche S, Jirsova K, Cmarko D. Discontinuous transcription of ribosomal DNA in human cells. PLoS One 2020; 15:e0223030. [PMID: 32119673 PMCID: PMC7051091 DOI: 10.1371/journal.pone.0223030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
Numerous studies show that various genes in all kinds of organisms are transcribed discontinuously, i.e. in short bursts or pulses with periods of inactivity between them. But it remains unclear whether ribosomal DNA (rDNA), represented by multiple copies in every cell, is also expressed in such manner. In this work, we synchronized the pol I activity in the populations of tumour derived as well as normal human cells by cold block and release. Our experiments with 5-fluorouridine (FU) and BrUTP confirmed that the nucleolar transcription can be efficiently and reversibly arrested at +4°C. Then using special software for analysis of the microscopic images, we measured the intensity of transcription signal (incorporated FU) in the nucleoli at different time points after the release. We found that the ribosomal genes in the human cells are transcribed discontinuously with periods ranging from 45 min to 75 min. Our data indicate that the dynamics of rDNA transcription follows the undulating pattern, in which the bursts are alternated by periods of rare transcription events.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Sami Kereïche
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dušan Cmarko
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Karbassi E, Rosa-Garrido M, Chapski DJ, Wu Y, Ren S, Wang Y, Stefani E, Vondriska TM. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. J Mol Cell Cardiol 2019; 128:198-211. [PMID: 30742811 PMCID: PMC6644685 DOI: 10.1016/j.yjmcc.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Heart failure is associated with hypertrophying of cardiomyocytes and changes in transcriptional activity. Studies from rapidly dividing cells in culture have suggested that transcription may be compartmentalized into factories within the nucleus, but this phenomenon has not been tested in vivo and the role of nuclear architecture in cardiac gene regulation is unknown. While alterations to transcription have been linked to disease, little is known about the regulation of the spatial organization of transcription and its properties in the pathological setting. In the present study, we investigate the structural features of endogenous transcription factories in the heart and determine the principles connecting chromatin structure to transcriptional regulation in vivo. Super-resolution imaging of endogenous RNA polymerase II clusters in neonatal and adult cardiomyocytes revealed distinct properties of transcription factories in response to pathological stress: neonatal nuclei demonstrated changes in number of clusters, with parallel increases in nuclear area, while the adult nuclei underwent changes in size and intensity of RNA polymerase II foci. Fluorescence in situ hybridization-based labeling of genes revealed locus-specific relationships between expression change and anatomical localization-with respect to nuclear periphery and heterochromatin regions, both sites associated with gene silencing-in the nuclei of cardiomyocytes in hearts (but not liver hepatocytes) of mice subjected to pathologic stimuli that induce heart failure. These findings demonstrate a role for chromatin organization and rearrangement of nuclear architecture for cell type-specific transcription in vivo during disease. RNA polymerase II ChIP and chromatin conformation capture studies in the same model system demonstrate formation and reorganization of distinct nuclear compartments regulating gene expression. These findings reveal locus-specific compartmentalization of stress-activated, housekeeping and silenced genes in the anatomical context of the endogenous nucleus, revealing basic principles of global chromatin structure and nuclear architecture in the regulation of gene expression in healthy and diseased conditions.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Manuel Rosa-Garrido
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Douglas J Chapski
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Yong Wu
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Shuxun Ren
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Yibin Wang
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Enrico Stefani
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine/Cardiology, Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Dr., Los Angeles, CA 90095, United States.
| |
Collapse
|
7
|
Lafarga V, Sung HM, Haneke K, Roessig L, Pauleau AL, Bruer M, Rodriguez-Acebes S, Lopez-Contreras AJ, Gruss OJ, Erhardt S, Mendez J, Fernandez-Capetillo O, Stoecklin G. TIAR marks nuclear G2/M transition granules and restricts CDK1 activity under replication stress. EMBO Rep 2019; 20:e46224. [PMID: 30538118 PMCID: PMC6322364 DOI: 10.15252/embr.201846224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Vanesa Lafarga
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hsu-Min Sung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Haneke
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Roessig
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne-Laure Pauleau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Marius Bruer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andres J Lopez-Contreras
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Oliver J Gruss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Juan Mendez
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Stoecklin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System: Development, Function, and Neurodevelopmental Diseases. Front Genet 2018; 9:308. [PMID: 30127803 PMCID: PMC6087739 DOI: 10.3389/fgene.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Decades of study have shown that epigenetic regulation plays an important role in neural development and function. Several layers of epigenetic mechanisms control functions of the eukaryotic cell nucleus, a well-organized subcellular organelle with distinct compartments: chromatin, its related architectural proteins, and nuclear bodies. As these components function together in the epigenetic regulation of cellular development and functions, they are collectively termed nuclear architecture. In the nervous system, dynamic rearrangement of nuclear architecture correlates with alteration of transcription programs. During maturation and upon depolarization, neurons undergo a reorganization of nuclear architecture that alters gene expression programs. As such changes allow for specialized functions, including learning and memory, nuclear architecture is distinct among cell types. Studying nuclear architecture of neurons may uncover cell-division-independent mechanisms of global and local changes to nuclear architecture. We herein review recent research concerning nuclear architecture in the nervous system and will discuss its importance to the development, maturation, function, and diseases of the nervous system.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
9
|
Yuan F, Xu C, Li G, Tong T. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis. Cell Death Dis 2018; 9:518. [PMID: 29725012 PMCID: PMC5938709 DOI: 10.1038/s41419-018-0572-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
Abstract
The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenzhong Xu
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Dvořáčková M, Fajkus J. Visualization of the Nucleolus Using Ethynyl Uridine. FRONTIERS IN PLANT SCIENCE 2018; 9:177. [PMID: 29503656 PMCID: PMC5820300 DOI: 10.3389/fpls.2018.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Thanks to recent innovative methodologies, key cellular processes such as replication or transcription can be visualized directly in situ in intact tissues. Many studies use so-called click iT chemistry where nascent DNA can be tracked by 5-ethynyl-2'-deoxyuridine (EdU), and nascent RNA by 5-ethynyl uridine (EU). While the labeling of replicating DNA by EdU has already been well established and further exploited in plants, the use of EU to reveal nascent RNA has not been developed to such an extent. In this article, we present a protocol for labeling of nucleolar RNA transcripts using EU and show that EU effectively highlights the nucleolus. The method is advantageous, because the need to prepare transgenic plants expressing fluorescently tagged nucleolar components when the nucleolus has to be visualized can be avoided.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| |
Collapse
|
11
|
Tapia O, Narcís JO, Riancho J, Tarabal O, Piedrafita L, Calderó J, Berciano MT, Lafarga M. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: Role of Cajal bodies and the nucleolus. Neurobiol Dis 2017; 108:83-99. [PMID: 28823932 DOI: 10.1016/j.nbd.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing. Recent studies support that the interaction between CBs and nucleoli, which are especially prominent in neurons, is essential for the nucleolar rRNA homeostasis. We use the SMN∆7 murine model of type I SMA to investigate the cellular basis of the dysfunction of RNA metabolism in MNs. SMN deficiency in postnatal MNs produces a depletion of functional CBs and relocalization of coilin, which is a scaffold protein of CBs, in snRNP-free perinucleolar caps or within the nucleolus. Disruption of CBs is the earliest nuclear sign of MN degeneration. We demonstrate that depletion of CBs, with loss of CB-nucleolus interactions, induces a progressive nucleolar dysfunction in ribosome biogenesis. It includes reorganization and loss of nucleolar transcription units, segregation of dense fibrillar and granular components, retention of SUMO-conjugated proteins in intranucleolar bodies and a reactive, compensatory, up-regulation of mature 18S rRNA and genes encoding key nucleolar proteins, such as upstream binding factor, fibrillarin, nucleolin and nucleophosmin. We propose that CB depletion and nucleolar alterations are essential components of the dysfunction of RNA metabolism in SMA.
Collapse
Affiliation(s)
- Olga Tapia
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcís
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Javier Riancho
- Service of Neurology, University Hospital Marqués de Valdecilla-IDIVAL-CIBERNED, Santander, Spain
| | - Olga Tarabal
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Lídia Piedrafita
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Jordi Calderó
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
12
|
Tsekrekou M, Stratigi K, Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int J Mol Sci 2017; 18:ijms18071411. [PMID: 28671574 PMCID: PMC5535903 DOI: 10.3390/ijms18071411] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
13
|
Hornáček M, Kováčik L, Mazel T, Cmarko D, Bártová E, Raška I, Smirnov E. Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus 2017. [PMID: 28622108 DOI: 10.1080/19491034.2017.1306160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nucleoli are formed on the basis of ribosomal DNA (rDNA) clusters called Nucleolus Organizer Regions (NORs). Each NOR contains multiple genes coding for RNAs of the ribosomal particles. The prominent components of the nucleolar ultrastructure, fibrillar centers (FC) and dense fibrillar components (DFC), together compose FC/DFC units. These units are centers of rDNA transcription by RNA polymerase I (pol I), as well as the early processing events, in which an essential role belongs to fibrillarin. Each FC/DFC unit probably corresponds to a single transcriptionally active gene. In this work, we transfected human-derived cells with GFP-RPA43 (subunit of pol I) and RFP-fibrillarin. Following changes of the fluorescent signals in individual FC/DFC units, we found two kinds of kinetics: 1) the rapid fluctuations with periods of 2-3 min, when the pol I and fibrillarin signals oscillated in anti-phase manner, and the intensities of pol I in the neighboring FC/DFC units did not correlate. 2) fluctuations with periods of 10 to 60 min, in which pol I and fibrillarin signals measured in the same unit did not correlate, but pol I signals in the units belonging to different nucleoli were synchronized. Our data indicate that a complex pulsing activity of transcription as well as early processing is common for ribosomal genes.
Collapse
Affiliation(s)
- M Hornáček
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - L Kováčik
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - T Mazel
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - D Cmarko
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - E Bártová
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic.,b Institute of Biophysics of the CAS , Brno , Czech Republic
| | - I Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| | - E Smirnov
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University, and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
14
|
Abstract
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.
Collapse
Affiliation(s)
- Miguel Lafarga
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Olga Tapia
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Ana M Romero
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Maria T Berciano
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| |
Collapse
|
15
|
Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics 2016; 8:58. [PMID: 27213019 PMCID: PMC4875624 DOI: 10.1186/s13148-016-0214-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
16
|
Mata-Garrido J, Casafont I, Tapia O, Berciano MT, Lafarga M. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta Neuropathol Commun 2016; 4:41. [PMID: 27102221 PMCID: PMC4840862 DOI: 10.1186/s40478-016-0312-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Abstract
There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of aberrant mRNA and protein products encoded by damaged genes.
Collapse
|
17
|
Smirnov E, Hornáček M, Kováčik L, Mazel T, Schröfel A, Svidenská S, Skalníková M, Bartová E, Cmarko D, Raška I. Reproduction of the FC/DFC units in nucleoli. Nucleus 2016; 7:203-15. [PMID: 26934002 DOI: 10.1080/19491034.2016.1157674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The essential structural components of the nucleoli, Fibrillar Centers (FC) and Dense Fibrillar Components (DFC), together compose FC/DFC units, loci of rDNA transcription and early RNA processing. In the present study we followed cell cycle related changes of these units in 2 human sarcoma derived cell lines with stable expression of RFP-PCNA (the sliding clamp protein) and GFP-RPA43 (a subunit of RNA polymerase I, pol I) or GFP-fibrillarin. Correlative light and electron microscopy analysis showed that the pol I and fibrillarin positive nucleolar beads correspond to individual FC/DFC units. In vivo observations showed that at early S phase, when transcriptionally active ribosomal genes were replicated, the number of the units in each cell increased by 60-80%. During that period the units transiently lost pol I, but not fibrillarin. Then, until the end of interphase, number of the units did not change, and their duplication was completed only after the cell division, by mid G1 phase. This peculiar mode of reproduction suggests that a considerable subset of ribosomal genes remain transcriptionally silent from mid S phase to mitosis, but become again active in the postmitotic daughter cells.
Collapse
Affiliation(s)
- Evgeny Smirnov
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Matúš Hornáček
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Lubomír Kováčik
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Tomáš Mazel
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Adam Schröfel
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Silvie Svidenská
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Magdalena Skalníková
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Eva Bartová
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic.,b Institute of Biophysics of the CAS , Brno , Czech Republic
| | - Dušan Cmarko
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| | - Ivan Raška
- a Charles University in Prague , First Faculty of Medicine , Institute of Cellular Biology and Pathology , Prague , Czech Republic
| |
Collapse
|
18
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
19
|
Casafont I, Palanca A, Lafarga V, Mata-Garrido J, Berciano MT, Lafarga M. Dynamic Behavior of the RNA Polymerase II and the Ubiquitin Proteasome System During the Neuronal DNA Damage Response to Ionizing Radiation. Mol Neurobiol 2015; 53:6799-6808. [PMID: 26660115 DOI: 10.1007/s12035-015-9565-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022]
Abstract
Neurons are highly vulnerable to genotoxic agents. To restore genome integrity upon DNA lesions, neurons trigger a DNA damage response (DDR) that requires chromatin modifications and transcriptional silencing at DNA damage sites. To study the reorganization of the active RNA polymerase II (Pol II), which transcribes all mRNA-encoding genes, and the participation of the ubiquitin-proteasome system (UPS) in the neuronal DDR, we have used rat sensory ganglion neurons exposed to X-rays (4 Gy) ionizing radiation (IR). In control neurons, Pol II appears concentrated in numerous chromatin microfoci identified as transcription factories by the incorporation of 5'-fluorouridine into nascent RNA. Upon IR treatment, numerous IR-induced foci (IRIF), which were immunoreactive for γH2AX and 53BP1, were observed as early as 30 min post-IR; their number progressively reduced at 3 h, 1 day, and 3 days post-IR. The formation of IRIF was associated with a decrease in Pol II levels by both immunofluorescence and Western blotting. Treatment with the proteasome inhibitor bortezomib strongly increased Pol II levels in both control and irradiated neurons, suggesting that proteasome plays a proteolytic role by clearing stalled Pol II complexes at DNA damage sites, as a prelude to DNA repair. Neuronal IRIF recruited ubiquitylated proteins, including ubiquitylated histone H2A (Ub-H2A), and the catalytic proteasome 20S. Ub-H2A has been associated with transcriptional silencing at DNA damage sites. On the other hand, the participation of UPS in neuronal DDR may be essential for the ubiquitylation of Pol II and other proteasome substrates of the DNA repair machinery and their subsequent proteasome-mediated degradation.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Cardenal Herrera Oria s/N, Santander, 39011, Spain
| | - Ana Palanca
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Cardenal Herrera Oria s/N, Santander, 39011, Spain
| | - Vanesa Lafarga
- Laboratorio de Inestabilidad Genómica, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jorge Mata-Garrido
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Cardenal Herrera Oria s/N, Santander, 39011, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Cardenal Herrera Oria s/N, Santander, 39011, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Cardenal Herrera Oria s/N, Santander, 39011, Spain.
| |
Collapse
|
20
|
Romero AM, Palanca A, Ruiz-Soto M, Llorca J, Marín MP, Renau-Piqueras J, Berciano MT, Lafarga M. Chronic Alcohol Exposure Decreases 53BP1 Protein Levels Leading to a Defective DNA Repair in Cultured Primary Cortical Neurons. Neurotox Res 2015; 29:69-79. [PMID: 26264240 DOI: 10.1007/s12640-015-9554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/08/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
Chronic alcohol consumption may cause neurodevelopmental and neurodegenerative disorders. Alcohol neurotoxicity is associated with the production of acetaldehyde and reactive oxygen species that induce oxidative DNA damage. However, the molecular mechanisms by which ethanol disturbs the DNA damage response (DDR), resulting in a defective DNA repair, remain unknown. Here, we have used cultured primary cortical neurons exposed to 50 or 100 mM ethanol for 7 days to analyze the ethanol-induced DDR. Ethanol exposure produced a dose-dependent generation of double strand breaks and the formation of DNA damage foci immunoreactive for the histone γH2AX, a DNA damage marker, and for the ubiquitylated H2A, which is involved in chromatin remodeling at DNA damage sites. Importantly, these DNA damage foci failed to recruit the protein 53BP1, a crucial DNA repair factor. This effect was associated with a drop in 53BP1 mRNA and protein levels and with an inhibition of global transcription. Moreover, ethanol-exposed neurons treated with ionizing radiation (2 Gy) also failed to recruit 53BP1 at DNA damage foci and exhibited a greater vulnerability to DNA lesions than irradiated control neurons. Our results support that defective DNA repair, mediated by the deficient expression and recruitment of 53BP1 to DNA damage sites, represents a novel mechanism involved in ethanol neurotoxicity. The design of therapeutic strategies that increase or stabilize 53BP1 levels might potentially promote DNA repair and partially compensate alcohol neurotoxicity.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital La Fe, Valencia, Spain.,Unidad de Microscopía IIS La Fe, Valencia, Spain
| | - Ana Palanca
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Av. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Maria Ruiz-Soto
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Av. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Javier Llorca
- Division of Epidemiology and Public Health, "CIBER de Epidemiología y Salud Pública (CIBERESP)", IDIVAL, University of Cantabria, Santander, Spain
| | | | - Jaime Renau-Piqueras
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Av. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Av. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|
21
|
Riancho J, Ruiz-Soto M, Berciano MT, Berciano J, Lafarga M. Neuroprotective Effect of Bexarotene in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:250. [PMID: 26190974 PMCID: PMC4486838 DOI: 10.3389/fncel.2015.00250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1(G93A) mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1(G93A) mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.
Collapse
Affiliation(s)
- Javier Riancho
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - María Ruiz-Soto
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - José Berciano
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| |
Collapse
|
22
|
Riancho J, Ruiz-Soto M, Villagrá NT, Berciano J, Berciano MT, Lafarga M. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1(G93A) Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2014; 8:346. [PMID: 25374511 PMCID: PMC4206191 DOI: 10.3389/fncel.2014.00346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1(G93A), during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5'-fluorouridine (5'-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5'-FU into nascent RNA. Immunogold particles of 5'-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), University of Cantabria , Santander , Spain
| | - Maria Ruiz-Soto
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Nuria T Villagrá
- Service of Pathology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Jose Berciano
- Service of Neurology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), University of Cantabria , Santander , Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| |
Collapse
|
23
|
Smirnov E, Borkovec J, Kováčik L, Svidenská S, Schröfel A, Skalníková M, Švindrych Z, Křížek P, Ovesný M, Hagen GM, Juda P, Michalová K, Cardoso MC, Cmarko D, Raška I. Separation of replication and transcription domains in nucleoli. J Struct Biol 2014; 188:259-66. [PMID: 25450594 DOI: 10.1016/j.jsb.2014.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 01/07/2023]
Abstract
In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation.
Collapse
Affiliation(s)
- E Smirnov
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Borkovec
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - L Kováčik
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - S Svidenská
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - A Schröfel
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - M Skalníková
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Z Švindrych
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Křížek
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - M Ovesný
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - G M Hagen
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Juda
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - K Michalová
- Centre of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnosis, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - M C Cardoso
- Department of Biology, Technische Universitat Darmstadt, Darmstadt, Germany
| | - D Cmarko
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - I Raška
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 2014; 71:1961-75. [PMID: 24061536 PMCID: PMC11113442 DOI: 10.1007/s00018-013-1474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022]
Abstract
Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
25
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1842:848-59. [PMID: 24269586 DOI: 10.1016/j.bbadis.2013.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022]
Abstract
The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - María T Berciano
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain.
| |
Collapse
|
26
|
So LKY, Cheung SKC, Ma HL, Chen XP, Cheng SH, Lam YW. In situ labeling of transcription sites in marine medaka. J Histochem Cytochem 2013; 58:173-81. [PMID: 19826073 DOI: 10.1369/jhc.2009.954511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/01/2009] [Indexed: 02/03/2023] Open
Abstract
Transcription factories have been characterized in cultured mammalian cells, but little is known about the regulation of these nuclear structures in different primary cell types. Using marine medaka, we observed transcription sites labeled by the metabolic incorporation of 5-fluorouridine (5-FU) into nascent RNA. Medaka was permeable to 5-FU in ambient water and became fully labeled within 4 hr of incubation. The incorporation of 5-FU was inhibited by the transcription inhibitor actinomycin D. The 5-FU incorporation sites were detected in the cell nucleus, and could be abolished by RNase digestion. The tissue distribution of 5-FU incorporation was visualized by immunocytochemistry on whole-mount specimens and histological sections. The 5-FU labeling appeared highly cell type specific, suggesting a regulation of the overall transcription activities at tissue level. Mapping of transcription factories by 5-FU incorporation in fish provides a useful and physiologically relevant model for studying the control of gene expression in the context of the functional organization of the cell nucleus. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Leo K Y So
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
27
|
Nonnekens J, Perez-Fernandez J, Theil AF, Gadal O, Bonnart C, Giglia-Mari G. Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing. Hum Mol Genet 2013; 22:2881-93. [DOI: 10.1093/hmg/ddt143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A. A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7:e39371. [PMID: 22724006 PMCID: PMC3378572 DOI: 10.1371/journal.pone.0039371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/19/2012] [Indexed: 11/19/2022] Open
Abstract
CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - Cristina Abraira
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
- Institut National de la Santé et de la Recherche Médicale, ADR Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
29
|
Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 2012; 137:657-67. [DOI: 10.1007/s00418-012-0921-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 12/21/2022]
|
30
|
S1-1 nuclear domains: characterization and dynamics as a function of transcriptional activity. Biol Cell 2012; 100:523-35. [DOI: 10.1042/bc20070142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 2011; 122:481-93. [PMID: 21915754 DOI: 10.1007/s00401-011-0869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 12/18/2022]
Abstract
Neurons are very sensitive to DNA damage induced by endogenous and exogenous genotoxic agents, as defective DNA repair can lead to neurodevelopmental disorders, brain tumors and neurodegenerative diseases with severe clinical manifestations. Understanding the impact of DNA damage/repair mechanisms on the nuclear organization, particularly on the regulation of transcription and cell cycle, is essential to know the pathophysiology of defective DNA repair syndromes. In this work, we study the nuclear architecture and spatiotemporal organization of chromatin compartments involved in the DNA damage response (DDR) in rat sensory ganglion neurons exposed to X-ray irradiation (IR). We demonstrate that the neuronal DDR involves the formation of two categories of DNA-damage processing chromatin compartments: transient, disappearing within the 1 day post-IR, and persistent, where unrepaired DNA is accumulated. Both compartments concentrate components of the DDR pathway, including γH2AX, pATM and 53BP1. Furthermore, DNA damage does not induce neuronal apoptosis but triggers the G0-G1 cell cycle phase transition, which is mediated by the activation of the ATM-p53 pathway and increased protein levels of p21 and cyclin D1. Moreover, the run on transcription assay reveals a severe inhibition of transcription at 0.5 h post-IR, followed by its rapid recovery over the 1 day post-IR in parallel with the progression of DNA repair. Therefore, the response of healthy neurons to DNA damage involves a transcription- and cell cycle-dependent but apoptosis-independent process. Furthermore, we propose that the segregation of unrepaired DNA in a few persistent chromatin compartments preserves genomic stability of undamaged DNA and the global transcription rate in neurons.
Collapse
Affiliation(s)
- Iñigo Casafont
- Departamento de Anatomía y Biología Celular, "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria, IFIMAV, Santander, Spain
| | | | | | | | | |
Collapse
|
32
|
Kar B, Liu B, Zhou Z, Lam YW. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast. BMC Cell Biol 2011; 12:33. [PMID: 21835027 PMCID: PMC3163619 DOI: 10.1186/1471-2121-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. Results In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Conclusion Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.
Collapse
Affiliation(s)
- Bishnupriya Kar
- Department of Biology and Chemistry, City University of Hong Kong, 88 Tat Chee Avenue, Hong Kong.
| | | | | | | |
Collapse
|
33
|
Baltanás FC, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 2011; 286:28287-302. [PMID: 21700704 DOI: 10.1074/jbc.m111.246041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Baltanás FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 2010; 21:374-88. [PMID: 21054627 DOI: 10.1111/j.1750-3639.2010.00461.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Palczewska M, Casafont I, Ghimire K, Rojas AM, Valencia A, Lafarga M, Mellström B, Naranjo JR. Sumoylation regulates nuclear localization of repressor DREAM. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1050-8. [PMID: 21070824 DOI: 10.1016/j.bbamcr.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
DREAM is a Ca(2+)-binding protein with specific functions in different cell compartments. In the nucleus, DREAM acts as a transcriptional repressor, although the mechanism that controls its nuclear localization is unknown. Yeast two-hybrid assay revealed the interaction between DREAM and the SUMO-conjugating enzyme Ubc9 and bioinformatic analysis identified four sumoylation-susceptible sites in the DREAM sequence. Single K-to-R mutations at positions K26 and K90 prevented in vitro sumoylation of recombinant DREAM. DREAM sumoylation mutants retained the ability to bind to the DRE sequence but showed reduced nuclear localization and failed to regulate DRE-dependent transcription. In PC12 cells, sumoylated DREAM is present exclusively in the nucleus and neuronal differentiation induced nuclear accumulation of sumoylated DREAM. In fully differentiated trigeminal neurons, DREAM and SUMO-1 colocalized in nuclear domains associated with transcription. Our results show that sumoylation regulates the nuclear localization of DREAM in differentiated neurons. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
36
|
Casafont I, Berciano MT, Lafarga M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 2009; 17:167-78. [PMID: 19609631 DOI: 10.1007/s12640-009-9086-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/17/2009] [Accepted: 06/24/2009] [Indexed: 11/28/2022]
Abstract
The ubiquitin-dependent proteasome system (UPS) is the major pathway responsible for selective nuclear and cytoplasmic protein degradation. Bortezomib, a boronic acid dipeptide, is a reversible 20S proteasome inhibitor used as novel anticancer drug, particularly in the treatment of multiple myeloma and certain lymphomas. Bortezomib-induced peripheral neuropathy (BIPN) is a widely recognized dose-limiting neurotoxicity of this proteasome inhibitor, which causes a significant negative impact on the quality of life. The pathogenic mechanisms underlying bortezomib neurotoxicity are little known. In this study a rat was used as our animal model to investigate the bortezomib-induced nuclear changes in dorsal root ganglia (DRG) neurons. Our results indicate that this neuronal population is an important target of bortezomib neurotoxicity. Nuclear changes include accumulation of ubiquitin-protein conjugates, reduction of transcriptional activity, and nuclear retention of poly(A) RNAs in numerous spherical or ring-shaped dense granules. They also contained the RNA-binding proteins PABPN1 (poly(A) binding protein nuclear 1) and Sam68, but lacked the mRNA nuclear export factors REF and Y14. At the cytoplasmic level, most neurons exhibited chromatolysis, supporting the inhibition of mRNA translation. Our results indicate that bortezomib interferes with transcription, nuclear processing and transport, and cytoplasmic translation of mRNAs in DRG neurons. They also support that this neuronal dysfunction is an essential pathogenic mechanism in the BIPN, which is characterized by sensory impairment including sensory ataxia.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enferemedades Neurodegenerativas (CIBERNED), Faculty of Medicine, University of Cantabria, Avd. Cardenal Herrera Oria s/n, Santander, Spain
| | | | | |
Collapse
|
37
|
Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 2009; 167:235-41. [PMID: 19539030 DOI: 10.1016/j.jsb.2009.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/10/2009] [Indexed: 12/30/2022]
Abstract
TDP-43 is a RNA/DNA-binding protein structurally related to nuclear hnRNP proteins. Previous biochemical studies have shown that this nuclear protein plays a role in the regulation of gene transcription, alternative splicing and mRNA stability. Despite the ubiquitous distribution of TDP-43, the growing list of TDP-43 proteinopathies is primarily associated with neurodegenerative disorders. Particularly, TDP-43 redistributes to the cytoplasm and forms pathological inclusions in amyotrophic lateral sclerosis and several forms of sporadic and familiar frontotemporal lobar degeneration. Here, we have studied the nuclear compartmentalization of TDP-43 in normal rat neurons by using light and electron microscopy immunocytochemistry with molecular markers for nuclear compartments, a transcription assay with 5'-fluorouridine, and in situ hybridization for telomeric DNA. TDP-43 is concentrated in euchromatin domains, specifically in perichromatin fibrils, nuclear sites of transcription and cotranscriptional splicing. In these structures, TDP-43 colocalizes with 5'-fluorouridine incorporation sites into nascent pre-mRNA. TDP-43 is absent in transcriptionally silent centromeric and telomeric heterochromatin, as well as in the Cajal body, a transcription free nuclear compartment. Furthermore, a weak TDP-43 immunolabeling is found in nuclear speckles of splicing factors. The specific localization of TDP-43 in active sites of transcription and cotranscriptional splicing is consistent with biochemical data indicating a role of TDP-43 in the regulation of transcription and alternative splicing.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria, 39011 Santander, Spain
| | | | | | | | | |
Collapse
|
38
|
Lafarga M, Casafont I, Bengoechea R, Tapia O, Berciano MT. Cajal's contribution to the knowledge of the neuronal cell nucleus. Chromosoma 2009; 118:437-43. [PMID: 19404660 DOI: 10.1007/s00412-009-0212-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 11/26/2022]
Abstract
In 1906, the Spanish neurobiologist Santiago Ramón y Cajal was awarded the Nobel Prize in Physiology or Medicine in recognition of his work on the structure of neurons and their connections. Cajal is commonly regarded as the father of modern neuroscience. What is less well known is that Cajal also had a great interest in intracellular neuronal structures and developed the reduced silver nitrate method for the study of neurofibrils (neurofilaments) and nuclear subcompartments. It was in 1903 that Cajal discovered the "accessory body" ("Cajal body") and seven years later, published an article on the organization of the cell nucleus in mammalian neurons that represents a masterpiece of nuclear structure at the light microscopy level. In addition to the accessory body, it includes the analysis of several nuclear components currently recognized as fibrillar centers of the nucleolus, nuclear speckles of splicing factors, transcription foci, nuclear matrix, and the double nuclear membrane. The aim of this article is to revisit Cajal's contributions to the knowledge of the neuronal nucleus in light of our current understanding of nuclear structure and function.
Collapse
Affiliation(s)
- Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enferemedades Neurodegenerativas, University of Cantabria, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| | | | | | | | | |
Collapse
|
39
|
Takizawa T, Meshorer E. Chromatin and nuclear architecture in the nervous system. Trends Neurosci 2008; 31:343-52. [PMID: 18538423 DOI: 10.1016/j.tins.2008.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/24/2023]
Abstract
Neurons are arguably the most varied cell type both morphologically and functionally. Their fate during differentiation and development and the activity of mature neurons are significantly determined and regulated by chromatin. The nucleus is compartmentalized and the arrangement of these compartments, termed the nuclear architecture, distinguishes one cell type from another and dictates many nuclear processes. Nuclear architecture determines the arrangement of chromosomes, the positioning of genes within chromosomes, the distribution of nuclear bodies and the interplay between these different factors. Importantly, chromatin regulation has been shown to be the basis for a variety of central nervous system processes including grooming and nursing, depression and stress, and drug abuse, among others. Here we review the regulation and function of nuclear architecture and chromatin structure in the context of the nervous system and discuss the potential use of histone deacetylase inhibitors as chromatin-directed therapy for nervous system disorders.
Collapse
Affiliation(s)
- Takumi Takizawa
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Villagra NT, Bengoechea R, Vaqué JP, Llorca J, Berciano MT, Lafarga M. Nuclear compartmentalization and dynamics of the poly(A)-binding protein nuclear 1 (PABPN1) inclusions in supraoptic neurons under physiological and osmotic stress conditions. Mol Cell Neurosci 2008; 37:622-33. [DOI: 10.1016/j.mcn.2007.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/14/2007] [Accepted: 12/06/2007] [Indexed: 11/26/2022] Open
|
41
|
Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem Cell Biol 2007; 129:55-64. [PMID: 17926058 DOI: 10.1007/s00418-007-0348-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2007] [Indexed: 01/01/2023]
Abstract
Ankyrin-repeat protein with a PEST motif and a proline-rich region (Arpp), also designated as Ankrd2, is a member of the muscle ankyrin repeat proteins (MARPs), which have been proposed to be involved in muscle stress response pathways. Arpp/Ankrd2 is localized mainly in the I-band of striated muscle. However, it has recently been reported that Arpp/Ankrd2 can interact with nuclear proteins, such as premyelocytic leukemia protein (PML), p53 and YB-1 in vitro. In this study, to determine whether nuclear accumulation of Arpp/Ankrd2 actually occurs, we performed an immunohistochemical investigation of gastrocnemius muscles that had been injured by injection of cardiotoxin or contact with dry ice. We found that Arpp/Ankrd2 accumulated in the nuclei of myofibers located adjacent to severely damaged myofibers after muscle injury. Double-labeled immunohistochemistry revealed that Arpp/Ankrd2 accumulated in the nuclei of sarcomere-damaged myofibers. Furthermore, we found that Arpp/Ankrd2 tended to be localized in euchromatin where genes are transcriptionally activated. Based on these findings, we suggest that Arpp/Ankrd2 may translocate from the I-band to the nucleus in response to muscle damage and may participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu-city, Oita, 879-5593, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Solovjeva LV, Svetlova MP, Chagin VO, Tomilin NV. Inhibition of transcription at radiation-induced nuclear foci of phosphorylated histone H2AX in mammalian cells. Chromosome Res 2007; 15:787-97. [PMID: 17874213 DOI: 10.1007/s10577-007-1162-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 11/26/2022]
Abstract
Double-strand DNA breaks (DSBs) induced by ionizing radiation can be visualized in human cells using antibodies against Ser-139 phosphorylated histone H2AX (gamma-H2AX). Large gamma-H2AX foci are seen in the nucleus fixed 1 hour after irradiation and their number corresponds to the number of DSBs, allowing analysis of these genome lesions after low doses. We estimated whether transcription is affected in chromatin domains containing gamma-H2AX by following in vivo incorporation of 5-bromouridine triphosphate (BrUTP) loaded by cell scratching (run-on assay). We found that BrUTP incorporation is strongly suppressed at gamma-H2AX foci, suggesting that H2AX phosphorylation inhibits transcription. This is not caused by preferential association of gamma-H2AX foci with constitutive or facultative heterochromatin, which was visualized in irradiated cells using antibodies against histone H3 trimethylated at lysine-9 (H3-K9m3) or histone H3 trimethylated at lysine-27 (H3-K27m3). Apparently, formation of gamma-H2AX induces changes of chromatin that inhibit assembly of transcription complexes without heterochromatin formation. Inhibition of transcription by phosphorylation of histone H2AX can decrease chromatin movement at DSBs and frequency of misjoining of DNA ends.
Collapse
Affiliation(s)
- Liudmila V Solovjeva
- Institute of Cytology, Russian Academy of Sciences, Tikchoretskii Av. 4, 194064, St. Petersburg, Russia
| | | | | | | |
Collapse
|
43
|
Casafont I, Bengoechea R, Navascués J, Pena E, Berciano MT, Lafarga M. The giant fibrillar center: a nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons. J Struct Biol 2007; 159:451-61. [PMID: 17587596 DOI: 10.1016/j.jsb.2007.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/21/2022]
Abstract
This paper studies the molecular organization, neuronal distribution and cellular differentiation dynamics of the giant fibrillar centers (GFCs) of nucleoli in rat sensory ganglia neurons. The GFC appeared as a round nucleolar domain (1-2 microm in diameter) partially surrounded by the dense fibrillar component and accompanied by numerous small FCs. By immunocytochemistry, the GFC concentrated the upstream binding factor, which may serve as a marker of this structure, and also contain RNA polymerase I, DNA topoisomerase I, SUMO-1 and Ubc9. However, they lack ubiquitin-proteasome conjugates and 20S proteasome. Transcription assay with 5'-fluorouridine incorporation revealed the presence of nascent RNA on the dense fibrillar component of the neuronal nucleolus, but not within the low electron-density area of the GFC. The formation of GFCs is neuronal size dependent: they were found in 58%, 30% and 0% of the large, medium and small neurons, respectively. GFCs first appeared during the postnatal period, concomitantly with a stage of neuronal growth, myelination and bioelectrical maturation. GFCs were not observed in segregated nucleoli induced by severe inhibition of RNA synthesis. We suggest that the formation of GFCs is associated with a high rate of ribosome biogenesis of the transcriptionally more active large-size neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Nucleolus/chemistry
- Cell Nucleolus/ultrastructure
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Ganglia, Sensory/ultrastructure
- Male
- Microscopy, Immunoelectron
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Pol1 Transcription Initiation Complex Proteins/analysis
- Proteasome Endopeptidase Complex/analysis
- Proteasome Endopeptidase Complex/metabolism
- RNA, Ribosomal/analysis
- RNA, Ribosomal/metabolism
- Rats
- Rats, Sprague-Dawley
- SUMO-1 Protein/analysis
- SUMO-1 Protein/metabolism
- Transcription, Genetic
- Ubiquitin/analysis
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology, and Biomedicine Unit, CSIC, University of Cantabria, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val-Bernal JF, Lafarga M. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Struct Biol 2006; 158:410-20. [PMID: 17275332 DOI: 10.1016/j.jsb.2006.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 12/29/2022]
Abstract
This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.
Collapse
Affiliation(s)
- Maria T Berciano
- Department of Anatomy and Cell Biology, and Biomedicine Unit (CSIC), University of Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Valero J, Berciano MT, Weruaga E, Lafarga M, Alonso JR. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Mol Cell Neurosci 2006; 33:283-95. [PMID: 16978877 DOI: 10.1016/j.mcn.2006.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/04/2006] [Accepted: 08/01/2006] [Indexed: 01/01/2023] Open
Abstract
DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.
Collapse
Affiliation(s)
- Jorge Valero
- Laboratorio de Plasticidad Neuronal y Neurorreparación, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca. Avd. Alfonso X el Sabio s/n, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
46
|
Raska I, Shaw PJ, Cmarko D. Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 2006; 18:325-34. [PMID: 16687244 DOI: 10.1016/j.ceb.2006.04.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear sub-compartment. It is where ribosome biogenesis takes place, but it is becoming clear that the nucleolus also has non-ribosomal functions. In this review we discuss recent progress in our understanding of how both ribosome biosynthesis and some non-ribosomal functions relate to observable nucleolar structure. We still do not have detailed enough information about the in situ organization of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy techniques means that a description of the organization of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | |
Collapse
|
47
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|