1
|
Li Y, Yang X, Wei Z, Niu H, Wu L, Chen C, Liu H, Cai T, Fan H. Sulforaphane Wrapped in Self-Assembled Nanomicelle Enhances the Effect of Sonodynamic Therapy on Glioma. Pharmaceutics 2024; 17:34. [PMID: 39861683 PMCID: PMC11769538 DOI: 10.3390/pharmaceutics17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Methods: Through ultrasonic polymerization, the amphiphilic peptides (C18GR7RGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM. Results/Conclusions: SFN@RB@SPM can be internalized by the glioma cells through the tumor-targeting motif RGDS (abbreviated for the peptide sequence composed of arginine, glycine, aspartic acid, and serine), and further executes antitumor function during SDT. Also, SFN@RB@SPM could be easily taken up by U87-MG cells and cross the BBB in glioma-bearing mice during SDT. The mechanism investigation revealed that, compared with the SFN-free nanocomplex (RB@SPM), SFN@RB@SPM induced much more apoptosis of U87-MG cells in an ROS-dependent manner through the depletion of glutathione by SFN and the cavitation effect by SDT. In animal experiments, besides a significant reduction in tumor volume and a delay in losing body weight, H&E staining showed a massive infiltration of neutrophils adjacent to the tumor sites, indicating this novel nanocomplex SFN@RB@SPM can synergistically augment SDT efficacy, partially by enhancing the antitumor function of innate immunity.
Collapse
Affiliation(s)
- Yihong Li
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Xuejie Yang
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Zhen Wei
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Heng Niu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Liyang Wu
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Caijing Chen
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Huina Liu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Huadong Fan
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Dementia and Neurorehabilitation Research, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| |
Collapse
|
2
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Sebek M, Menichetti G. Network Science and Machine Learning for Precision Nutrition. PRECISION NUTRITION 2024:367-402. [DOI: 10.1016/b978-0-443-15315-0.00012-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Prakash V, Gabrani R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:336-347. [PMID: 37957904 DOI: 10.2174/0118715257262003231031171910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Vijeta Prakash
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
5
|
Gasparello J, Papi C, Zurlo M, Gambari L, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules 2022; 27:molecules27041299. [PMID: 35209084 PMCID: PMC8875359 DOI: 10.3390/molecules27041299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| |
Collapse
|
6
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
7
|
Colapietro A, Rossetti A, Mancini A, Martellucci S, Ocone G, Pulcini F, Biordi L, Cristiano L, Mattei V, Delle Monache S, Marampon F, Gravina GL, Festuccia C. Multiple Antitumor Molecular Mechanisms Are Activated by a Fully Synthetic and Stabilized Pharmaceutical Product Delivering the Active Compound Sulforaphane (SFX-01) in Preclinical Model of Human Glioblastoma. Pharmaceuticals (Basel) 2021; 14:1082. [PMID: 34832864 PMCID: PMC8626029 DOI: 10.3390/ph14111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Giuseppe Ocone
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Fanny Pulcini
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Leda Biordi
- Laboratory of Medical Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Division of Human Anatomy, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
| | - Simona Delle Monache
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| |
Collapse
|
8
|
Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms222011201. [PMID: 34681862 PMCID: PMC8541491 DOI: 10.3390/ijms222011201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 μM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.
Collapse
|
9
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
10
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
11
|
Jardim FR, Almeida FJSD, Luckachaki MD, Oliveira MRD. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2021; 21:263-279. [PMID: 32253837 DOI: 10.1631/jzus.b1900614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
Collapse
Affiliation(s)
- Fernanda Rafaela Jardim
- Forensic Institute, Forensic Toxicology Division, Postmortem Toxicology Sector, CEP 90160-093, Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil
| | | | - Marcos Roberto de Oliveira
- Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil.,Department of Biochemistry Prof. "Tuiskon Dick", Federal University of Rio Grande do Sul (UFRGS), CEP 90035-000, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
13
|
Abouzed TK, Beltagy EER, Kahilo KA, Ibrahim WM. Molecular changes associated with the anticancer effect of sulforaphane against Ehrlich solid tumour in mice. J Biochem Mol Toxicol 2020; 35:e22655. [PMID: 33094879 DOI: 10.1002/jbt.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023]
Abstract
The anticancer effect of sulforaphane (SFN) is mediated by several signalling pathways. However, little is known regarding the underlying mechanism in Ehrlich solid tumours (ESTs) in mice. This study was conducted to determine molecular changes associated with the anticancer effect of SFN and to compare its preventive (cotreatment) and therapeutic (posttreatment) effects. Ehrlich (murine mammary adenocarcinoma) solid tumour was selected and changes in the gene expression were determined in tumour tissues by the real-time polymerase chain reaction. The results showed that SFN increased the expression of the oxidative stress gene NrF2 and its downstream targets (HO1 and CAT). Conversely, SFN administration decreased the expression of the epigenesis-related genes (HDAC1 and DNMT1) and inflammation-related genes (TNFa, NFkB and Cox2). Overall, SFN cotreatment presented notable molecular changes than the posttreatment strategy. These data suggest that molecular changes associated with the anticancer effects of SFN against EST involved induction of oxidative stress, inhibition of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Esraa-Elden R Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.,Department of Clinical Pathology and Clinical Chemistry, Kafrelsheikh University Hospital, Kafr El-Sheikh, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Wilcox A, Murphy M, Tucker D, Laprade D, Roussel B, Chin C, Hallisey V, Kozub N, Brass A, Austriaco N. Sulforaphane alters the acidification of the yeast vacuole. MICROBIAL CELL 2020; 7:129-138. [PMID: 32391394 PMCID: PMC7199281 DOI: 10.15698/mic2020.05.716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a compound [1-isothiocyanato-4-(methylsulfinyl)-butane] found in broccoli and other cruciferous vegetables that is currently of interest because of its potential as a chemopreventive and a chemotherapeutic drug. Recent studies in a diverse range of cellular and animal models have shown that SFN is involved in multiple intracellular pathways that regulate xenobiotic metabolism, inflammation, cell death, cell cycle progression, and epigenetic regulation. In order to better understand the mechanisms of action behind SFN-induced cell death, we undertook an unbiased genome wide screen with the yeast knockout (YKO) library to identify SFN sensitive (SFNS) mutants. The mutants were enriched with knockouts in genes linked to vacuolar function suggesting a link between this organelle and SFN's mechanism of action in yeast. Our subsequent work revealed that SFN increases the vacuolar pH of yeast cells and that varying the vacuolar pH can alter the sensitivity of yeast cells to the drug. In fact, several mutations that lower the vacuolar pH in yeast actually made the cells resistant to SFN (SFNR). Finally, we show that human lung cancer cells with more acidic compartments are also SFNR suggesting that SFN's mechanism of action identified in yeast may carry over to higher eukaryotic cells.
Collapse
Affiliation(s)
- Alexander Wilcox
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - Michael Murphy
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - Douglass Tucker
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - David Laprade
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Breton Roussel
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Christopher Chin
- Department of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, 368 Plantation St., ASC 1001, Worcester, MA 01605, USA
| | - Victoria Hallisey
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Noah Kozub
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Abraham Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, 368 Plantation St., ASC 1001, Worcester, MA 01605, USA
| | - Nicanor Austriaco
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| |
Collapse
|
15
|
Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43:371-384. [PMID: 32152852 DOI: 10.1007/s12272-020-01225-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.
Collapse
|
16
|
Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway. Pharmacol Rep 2020; 72:285-295. [DOI: 10.1007/s43440-020-00081-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
17
|
Apaza Ticona LN, Tena Pérez V, Bermejo Benito P. Local/traditional uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112152. [PMID: 31421183 DOI: 10.1016/j.jep.2019.112152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tropaeolum tuberosum Ruíz & Pavón (Tropaeolaceae). Sim (commonly called Mashua) is an indigenous plant that has medicinal values for various ethnic groups of the regions of the Andes mountain range of South America, which use it for the treatment of diseases venereal, lung and skin; for the healing of internal and external wounds; and as an analgesic for kidney and bladder pain. AIM OF THE REVIEW We critically summarised the current evidence on the botanic characterisation and distribution, ethnopharmacology, secondary metabolites, pharmacological activities, qualitative and quantitative analysis, and toxicology of T. tuberosum. MATERIALS AND METHODS The relevant information on T. tuberosum was gathered from worldwide accepted scientific databases via electronic search (Google scholar, Elsevier, SciFinder, ScienceDirect, PubMed, SpringerLink, Web of Science, Scopus, Wiley Online, Mendeley, Scielo and Dialnet electronic databases). Information was also obtained from the literature and books as well as PhD and MSc dissertations. Plant names were validated by 'The Plant List' (www.theplantlist.org). RESULTS T. tuberosum has diverse uses in local and popular medicine, specifically for relieving pain and infections in humans. Regarding its biological activities, polar extracts (aqueous, hydroalcoholic) and isolated compounds from the tubers have exhibited a wide range of in vitro and in vivo pharmacological effects, including antibacterial, antioxidant, anti-inflammatory activities. Quantitative analysis (e.g., NMR, HPLC, GC-MS) indicated the presence of a set of secondary metabolites, including hydroxybenzoic acids, tannins, flavanols, anthocyanins, glucosinolates, isothiocyanates, phytosterols, fatty acids and alkamides in the tubers of T. tuberosum. Likewise, glucosinolates have been identified in the seeds and isothiocyanates have been detected in leaves, flowers and seeds. CONCLUSIONS T. tuberosum has been tested for various biological activities and the extracts (tubers in particular) demonstrated a promising potential as an antibacterial, antioxidant, anti-inflammatory and inhibitors of benign prostatic hyperplasia. A lack of alignment between the ethno-medicinal uses and existing biological screenings was observed, indicating the need to explore its potential for the treatment against respiratory affections, urinary affections and blood diseases. Likewise, it is necessary to analyse deeply the relationship that exists between the different tuber colours of T. tuberosum and its use for the treatment of certain diseases. Validation of clinical studies of the antibacterial, antioxidant/anti-inflammatory, anti-spermatogenic activities and as inhibitors of benign prostatic hyperplasia is required. Moreover, studies on the toxicity, bioavailability, and pharmacokinetics, in addition to clinical trials, are indispensable for assessing the safety and efficacy of the active metabolites or extracts obtained from T. tuberosum. Other areas that need investigation are the development of future applications based on their active metabolites, such as neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease). Finally, the work purposes to motivate other research groups to carry out a series of scientific studies that can fill the gaps that exist with respect to Mashua properties, and thus be able to change the focus of T. tuberosum (Mashua) that currently has in the consumer society.
Collapse
Affiliation(s)
- Luis Nestor Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria S/n, 28040, Madrid, Spain.
| | - Victor Tena Pérez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Paulina Bermejo Benito
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria S/n, 28040, Madrid, Spain
| |
Collapse
|
18
|
Lucarini E, Micheli L, Martelli A, Testai L, Calderone V, Ghelardini C, Di Cesare Mannelli L. Efficacy of isothiocyanate-based compounds on different forms of persistent pain. J Pain Res 2018; 11:2905-2913. [PMID: 30510445 PMCID: PMC6250104 DOI: 10.2147/jpr.s161882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Current pharmacotherapy for persistent pain related to neuropathy or articular diseases is unsatisfactory, due to the large number of unresponsive patients and side effects. Isothiocyanates (ITCs) are a class of natural or synthetic compounds characterized by the general formula R–NCS. ITCs show antihyperalgesic effects in models of central and peripheral nervous tissue injury and anti-inflammatory properties. The pharmacodynamics are strictly related to the release of the gasotransmitter hydrogen sulfide (H2S) from their moiety. In particular, phenyl ITC (PITC) and 3-carboxyphenyl ITC (3C-PITC) exhibit interesting slow H2S-release properties suitable for treating painful pathology. The aim of the present work was to evaluate the efficacy of PITC and 3C-PITC against mechanical hyperalgesia and spontaneous pain induced by nerve injury and osteoarthritis. Methods Nerve injury and osteoarthritis were induced in rats by ligation of the sciatic nerve (chronic constriction injury) and intra-articular injection of monoiodoacetate, respectively. Behavioral tests were performed 14 days after damage induction. Results Single subcutaneous administrations of PITC, 3C-PITC (4.43 and 13.31 µmol kg−1, respectively) were able to completely reverse hypersensitivity to noxious stimuli in both models of neuropathic and osteoarticular pain. The effect of ITCs was compared with that of NaHS, the prototypical H2S donor, showing similar efficacy and higher potency. ITCs and NaHS also reduced spontaneous pain. Conclusion ITCs offer a promising novel approach to counteract persistent, drug-resistant painful pathology.
Collapse
Affiliation(s)
- Elena Lucarini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research, and Child Health (Neurofarba), University of Florence, Florence, Italy,
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research, and Child Health (Neurofarba), University of Florence, Florence, Italy,
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research, and Child Health (Neurofarba), University of Florence, Florence, Italy,
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research, and Child Health (Neurofarba), University of Florence, Florence, Italy,
| |
Collapse
|
19
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
20
|
Chen HE, Lin JF, Tsai TF, Lin YC, Chou KY, Hwang TIS. Allyl Isothiocyanate Induces Autophagy through the Up-Regulation of Beclin-1 in Human Prostate Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-19. [PMID: 30284468 DOI: 10.1142/s0192415x18500830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allyl isothiocyanate (AITC), one of the most widely studied phytochemicals, inhibits the survival of human prostate cancer cells while minimally affecting normal prostate epithelial cells. Our study demonstrates the mechanism of AITC-induced cell death in prostate cancer cells. AITC induces autophagy in RV1 and PC3 cells, judging from the increased level of LC3-II protein in a dose- and time-dependent manner, but not in the normal prostate epithelial cell (PrEC). Inhibition of autophagy in AITC-treated cells decreased cell viability and enhanced apoptosis, suggesting that the autophagy played a protective role. There are several pathways activated in ATIC-treated cells. We detected the phosphorylation forms of mTOR, ERK, AMPK, JNK and p38, and ERK AMPK and JNK activation were also detected. However, inhibition of AITC-activated ERK, AMPK and JNK by pre-treatment of specific inhibitors did not alter autophagy induction. Finally, increased beclin-1 expression was detected in AITC-treated cells, and inhibition of AITC-induced beclin-1 attanuated autophagy induction, indicating that AITC-induced autophagy occurs through upregulating beclin-1. Overall, our data show for the first time that AITC induces protective autophagy in Rv1 and PC3 cells through upregulation of beclin-1. Our results could potentially contribute to a therapeutic application of AITC in prostate cancer patients.
Collapse
Affiliation(s)
- Hung-En Chen
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ji-Fan Lin
- † Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Te-Fu Tsai
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Yi-Chia Lin
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Kuang-Yu Chou
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Thomas I-Sheng Hwang
- * Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- ‡ Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
- § Department of Urology, Taipei Medical University, Taipei 111, Taiwan
| |
Collapse
|
21
|
Jiang X, Liu Y, Ma L, Ji R, Qu Y, Xin Y, Lv G. Chemopreventive activity of sulforaphane. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2905-2913. [PMID: 30254420 PMCID: PMC6141106 DOI: 10.2147/dddt.s100534] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of morbidity and mortality in the world. Carcinogenesis is a multistep process induced by genetic and epigenetic changes that disrupt pathways controlling cell proliferation, apoptosis, differentiation, and senescence. In this context, many bioactive dietary compounds from vegetables and fruits have been demonstrated to be effective in cancer prevention and intervention. Over the years, sulforaphane (SFN), found in cruciferous vegetables, has been shown to have chemopreventive activity in vitro and in vivo. SFN protects cells from environmental carcinogens and also induces growth arrest and/or apoptosis in various cancer cells. In this review, we will discuss several potential mechanisms of the chemopreventive activity of SFN, including regulation of Phase I and Phase II drug-metabolizing enzymes, cell cycle arrest, and induction of apoptosis, especially via regulation of signaling pathways such as Nrf2-Keap1 and NF-κB. Recent studies suggest that SFN can also affect the epigenetic control of key genes and greatly influence the initiation and progression of cancer. This research may provide a basis for the clinical use of SFN for cancer chemoprevention and enable us to design preventive strategies for cancer management, reduce cancer development and recurrence, and thus improve patient survival.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ye Liu
- Department of Pathobiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Lixin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui Ji
- Department of Internal Medicine, Florida Hospital, Orlando, FL, USA
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Guoyue Lv
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
22
|
Sunkaria A, Bhardwaj S, Yadav A, Halder A, Sandhir R. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice. J Nutr Biochem 2018; 51:69-79. [DOI: 10.1016/j.jnutbio.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/08/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
|
23
|
Andělová H, Rudolf E, Červinka M. In Vitro Antiproliferative Effects of Sulforaphane on Human Colon Cancer Cell Line SW620. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017. [DOI: 10.14712/18059694.2017.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The isothiocyanate sulforaphane (SF) has been reported to possess chemopreventive efficiency towards various malignancies including colon cancer. Here, we investigated the antiproliferative and pro-apoptotic effects of SF on colon cancer cell line SW620. We found that SF at concentrations of 10–50 μM inhibits cell viability and proliferation of SW620 cells in a time- and dose-dependent manner, with IC50 being 26 μM (24 h), 24.4 μM (48 h) and 18 μM (72 h). Also, in the same cells SF caused DNA damage and chromatin condensation after 24 h and 48 h as revealed by phospho-H2A.X western blot analysis and DAPI staining of nuclei. These changes were accompanied by the elevated activity of caspase 3, although after 20 μM SF concentration only. Together, these results indicate that SF suppresses growth of human metastacic colonocytes and induces apoptotic cell death.
Collapse
|
24
|
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K, Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37:2829-2838. [PMID: 28393231 DOI: 10.3892/or.2017.5562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited invasion via sustained activation of ERK1/2 in human glioblastoma cells. However, sulforaphane-cysteine (SFN-Cys), an analog of SFN, enriched in plasma with longer half-life, had more potentiality to induce apoptosis. Here we investigated the molecular mechanisms of SFN-Cys-induced apoptosis in human glioblastoma U373MG and U87MG cells. Cell viability assay showed that SFN-Cys inhibited cell viability in a dose-dependent manner. Cell morphology observation also showed SFN-Cys increased the phenotype of cell death in a dose-dependent manner. Furthermore, flow cytometry assay showed that SFN-Cys induced apoptosis significantly in a dose-dependent manner in both cell lines. Furthermore, western blot analysis demonstrated that SFN-Cys induced activation of ERK1/2 in a sustained manner and the activation contributed to upregulation of Bax/Bcl-2 ratio and cleaved caspase 3, and these results can be reversed by the ERK1/2 blocker PD98059. Our results showed that SFN-Cys induced cell apoptosis via sustained activation of ERK1/2 and the ERK1/2 mediated signaling pathways such as activation of caspase 3 and apoptosis-related proteins, thus indicating that SFN-Cys might be a more promising therapeutic agent versus SFN to resist glioblastoma cells, especially in Taxol-resistant cancer cells.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
25
|
Wang N, Wang W, Liu C, Jin J, Shao B, Shen L. Inhibition of growth and induction of apoptosis in A549 cells by compounds from oxheart cabbage extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3813-3820. [PMID: 26679410 DOI: 10.1002/jsfa.7575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Oxheart cabbage (Brassica oleracea var. capitata) is a member of the Brassica genus. Although some studies on the anticancer effects of extracts from oxheart cabbage have been reported, comprehensive information on the bioactive fractions and components from oxheart cabbage extracts is still lacking. The aim of this study was to isolate and identify the bioactive fractions and components from oxheart cabbage seeds using activity-guided isolation methods. RESULTS The cytotoxicity and apoptotic effects of fraction II, fraction III, iberverin, sulforaphane and iberin from oxheart cabbage seed extract were investigated. The results showed that all five components had inhibitory effects on the in vitro growth of A549 cells which were dose-dependent. These compounds also changed the morphology of A549 cells, and their inhibitory activity on A549 cells was as follows: sulforaphane > iberin > iberverin > fraction III > fraction II. The IC50 values were 3.53 ± 0.63, 4.93 ± 1.02, 7.07 ± 0.51, 15.56 ± 0.24 and 27.32 ± 0.63 µg mL(-1) respectively. Fraction II, fraction III, iberverin, sulforaphane and iberin induced cell apoptosis by increasing early apoptosis and late apoptosis/necrosis, and activation of caspase-3, -8 and -9. CONCLUSION These results indicated that the decrease in A549 cell viability by active compounds from oxheart cabbage seed extract was due to the induction of apoptosis. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Wei Wang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Caiqin Liu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jianchang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Bo Shao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Lianqing Shen
- College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
26
|
Jenkins R, Bandera YP, Daniele MA, Ledford LL, Tietje A, Kelso AA, Sehorn MG, Wei Y, Chakrabarti M, Ray SK, Foulger SH. Sequestering survivin to functionalized nanoparticles: a strategy to enhance apoptosis in cancer cells. Biomater Sci 2016; 4:614-26. [PMID: 26845086 PMCID: PMC4803599 DOI: 10.1039/c5bm00580a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Survivin belongs to the family of inhibitor of apoptosis proteins (IAP) and is present in most cancers while being below detection limits in most terminally differentiated adult tissues, making it an attractive protein to target for diagnostic and, potentially, therapeutic roles. Sub-100 nm poly(propargyl acrylate) (PA) particles were surface modified through the copper-catalyzed azide/alkyne cycloaddition of an azide-terminated survivin ligand derivative (azTM) originally proposed by Abbott Laboratories and speculated to bind directly to survivin (protein) at its dimer interface. Using affinity pull-down studies, it was determined that the PA/azTM nanoparticles selectively bind survivin and the particles can enhance apoptotic cell death in glioblastoma cell lines and other survivin over-expressing cell lines such as A549 and MCF7 relative to cells incubated with the original Abbott-derived small molecule inhibitor.
Collapse
Affiliation(s)
- Ragini Jenkins
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species. BIOMED RESEARCH INTERNATIONAL 2015; 2015:402386. [PMID: 26185755 PMCID: PMC4491563 DOI: 10.1155/2015/402386] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 05/31/2015] [Indexed: 01/01/2023]
Abstract
According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species.
Collapse
|
28
|
Lan F, Pan Q, Yu H, Yue X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma. J Neurochem 2015; 134:811-8. [PMID: 25991372 DOI: 10.1111/jnc.13174] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 04/22/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ-induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ-induced apoptosis. Our results revealed that β-catenin and miR-21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR-21 expression through inhibiting the Wnt/β-catenin/TCF4 pathway. Furthermore, down-regulation of miR-21 enhanced the pro-apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ-mediated apoptosis in a miR-21-dependent manner. In conclusion, SFN effectively enhances TMZ-induced apoptosis by inhibiting miR-21 via Wnt/β-catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment. Our studies indicate that sulforaphane (SFN) enhances temozolomide (TMZ)-induced apoptosis because of down-regulation of miR-21 through Wnt/β-catenin signaling in glioblastoma (GBM) cells. These findings demonstrate SFN could be considered as a potential adjuvant therapeutic agent in treating GBM patients combined with TMZ in the future to affect resistance emergence. The further explorations are essential for the clinical application of SFN in GBM patients, and our results reveal an important mechanism of SFN chemopreventive and chemotherapeutic activity. Chr17, chromosome 17.
Collapse
Affiliation(s)
- FengMing Lan
- Department of Radiation Oncology, Tianjin Hospital, Tianjin, China
| | - Qiang Pan
- Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Huiming Yu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of radiotherapy, Peking University Cancer Hospital & Institute, Beijin, China
| | - Xiao Yue
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| |
Collapse
|
29
|
De Gianni E, Fimognari C. Anticancer Mechanism of Sulfur-Containing Compounds. MECHANISM OF THE ANTICANCER EFFECT OF PHYTOCHEMICALS 2015; 37:167-92. [DOI: 10.1016/bs.enz.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Techapiesancharoenkij N, Fiala JLA, Navasumrit P, Croy RG, Wogan GN, Groopman JD, Ruchirawat M, Essigmann JM. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1. Toxicol Appl Pharmacol 2014; 282:52-60. [PMID: 25450479 DOI: 10.1016/j.taap.2014.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 12/31/2022]
Abstract
Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer.
Collapse
Affiliation(s)
| | - Jeannette L A Fiala
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Robert G Croy
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerald N Wogan
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - John M Essigmann
- Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Turrini E, Ferruzzi L, Fimognari C. Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues. Expert Opin Drug Metab Toxicol 2014; 10:1677-90. [PMID: 25339439 DOI: 10.1517/17425255.2014.972933] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Defects in initiating or executing cell death programs are responsible for cancer chemoresistance. The growing understanding of apoptotic programs suggests that compounds simultaneously inhibiting multiple signaling pathways might provide a better therapeutic outcome than that of individual inhibitors. AREAS COVERED Natural compounds can modulate different survival pathways, thus enhancing the therapeutic effects of anticancer treatments. This review provides an overview of the preclinical and clinical relevance of chemosensitization, giving special reference to curcumin (CUR) and sulforaphane (SFN) as agents to overcome apoptosis resistance against chemotherapy. EXPERT OPINION Even if CUR and SFN are common dietary constituents, they are characterized by several problems still unresolved and hampering their development as anticancer drugs. For a drug to be safe, it must be devoid of toxicity, and some studies conducted to date raises concern about CUR and SFN safety. Moreover, the efficacy of a drug, alone or in association, is usually determined by randomized, placebo-controlled, double-blind clinical trials. No such trials have shown CUR and SFN to be effective so far. Thus, caution should be exercised when suggesting the use of CUR or SFN for cancer-related therapeutic purpose, especially for very early stage of malignancy, or in patients who are undergoing chemotherapy.
Collapse
Affiliation(s)
- Eleonora Turrini
- Alma Mater Studiorum-University of Bologna, Department for Life Quality Studies , Rimini , Italy +39 0541 434658 ; +39 051 2095624 ;
| | | | | |
Collapse
|
32
|
Li C, Zhou Y, Peng X, Du L, Tian H, Yang G, Niu J, Wu W. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells. PLoS One 2014; 9:e90520. [PMID: 24587385 PMCID: PMC3938755 DOI: 10.1371/journal.pone.0090520] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/02/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN) was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells. METHODS First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2) and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM) was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6. RESULTS The results showed that SFN (20 µM) remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion. CONCLUSIONS SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.
Collapse
Affiliation(s)
- Chunliu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lianlian Du
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Abstract
Cancer is a complex disease characterized by multiple genetic and molecular alterations involving transformation, deregulation of apoptosis, proliferation, invasion, angiogenesis, and metastasis. To grow, invade, and metastasize, tumors need host components and primary dysfunction in the tumor microenvironment, in addition to cell dysfunction, can be crucial for carcinogenesis. A great variety of phytochemicals have been shown to be potentially capable of inhibiting and modulating several relevant targets simultaneously and is therefore non-specific. Because of the enormous biological diversity of cancer, this pleiotropism might constitute an advantage. Phytochemicals, in particular diet-derived compounds, have therefore been proposed and applied in clinical trials as cancer chemopreventive/chemotherapeutic agents. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables. SFN has proved to be an effective chemoprotective agent in cell culture, in carcinogen-induced and genetic animal cancer models, as well as in xenograft models of cancer. It promoted potent cytostatic and cytotoxic effects orchestrated by the modulation of different molecular targets. Cell vulnerability to SFN-mediated apoptosis was subject to regulation by cell-cycle-dependent mechanisms but was independent of a mutated p53 status. Moreover, combination of SFN with cytotoxic therapy potentiated the cytotoxic effect mediated by chemotherapy in vitro, thus suggesting its potential therapeutic benefit in clinical settings. Overall, SFN appears to be an effective and safe chemopreventive molecule and a promising tool to fight cancer.
Collapse
|
34
|
Negrette-Guzmán M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J. Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. Free Radic Biol Med 2013; 65:1078-1089. [PMID: 23999506 DOI: 10.1016/j.freeradbiomed.2013.08.182] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/25/2023]
Abstract
The chemotherapeutic isothiocyanate sulforaphane (SFN) was early linked to anticarcinogenic and antiproliferative activities. Soon after, this compound, derived from cruciferous vegetables, became an excellent and useful trial for anti-cancer research in experimental models including growth tumor, metastasis, and angiogenesis. Many subsequent reports showed modifications in mitochondrial signaling, functionality, and integrity induced by SFN. When cytoprotective effects were found in toxic and ischemic insult models, seemingly contradictory behaviors of SFN were discovered: SFN was inducing deleterious changes in cancer cell mitochondria that eventually would carry the cell to death via apoptosis and also was protecting noncancer cell mitochondria against oxidative challenge, which prevented cell death. In both cases, SFN exhibited effects on mitochondrial redox balance and phase II enzyme expression, mitochondrial membrane potential, expression of the family of B cell lymphoma 2 homologs, regulation of proapoptotic proteins released from mitochondria, activation/inactivation of caspases, mitochondrial respiratory complex activities, oxygen consumption and bioenergetics, mitochondrial permeability transition pore opening, and modulation of some kinase pathways. With the ultimate findings related to the induction of mitochondrial biogenesis by SFN, it could be considered that SFN has effects on mitochondrial dynamics that explain some divergent points. In this review, we list the reports involving effects on mitochondrial modulation by SFN in anti-cancer models as well as in cytoprotective models against oxidative damage. We also attempt to integrate the data into a mechanism explaining the various effects of SFN on mitochondrial function in only one concept, taking into account mitochondrial biogenesis and dynamics and making a comparison with the theory of reactive oxygen species threshold of cell death. Our interest is to achieve a complete view of cancer and protective therapies based on SFN that can be extended to other chemotherapeutic compounds with similar characteristics. The work needed to test this hypothesis is quite extensive.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, DF, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, DF, Mexico
| | - Edilia Tapia
- Laboratorio de Patología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, DF, Mexico.
| |
Collapse
|
35
|
Hur J, Yoo M, Shin DB, Lee S. Inhibition of nitric oxide production corresponds to the sulforaphane content in Korean sheperd’s purse (Capsella bursa-pastoris) and related species in BV-2 cell. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0187-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
36
|
Pan HC, Yang CN, Hung YW, Lee WJ, Tien HR, Shen CC, Sheehan J, Chou CT, Sheu ML. Reciprocal modulation of C/EBP-α and C/EBP-β by IL-13 in activated microglia prevents neuronal death. Eur J Immunol 2013; 43:2854-65. [DOI: 10.1002/eji.201343301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/08/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Hung Chuan Pan
- Faculty of Medicine; School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Neurosurgery; Taichung Veterans General Hospital; Taichung Taiwan
| | - Cheng Ning Yang
- Institute of Neuroscience; School of Life Science; National Yang-Ming University; Taipei Taiwan
| | - Yi Wen Hung
- Department of Education and Research; Taichung Veterans General Hospital; Taichung Taiwan
- Department of Veterinary Medicine; College of Veterinary Medicine; National Chung Hsing University; Taichung Taiwan
| | - Wen Jane Lee
- Department of Education and Research; Taichung Veterans General Hospital; Taichung Taiwan
| | - Hsing Ru Tien
- Institute of Biomedical Sciences; College of Life Science; National Chung Hsing University; Taichung Taiwan
| | - Chin Chang Shen
- Institute of Nuclear Energy Research; Atomic Energy Council; Longtan Taoyuan Taiwan
| | - Jason Sheehan
- Department of Neurological Surgery; University of Virginia Health System; Charlottesville VA USA
| | - Chiang Ting Chou
- School of Nursing; Chang Gung University of Science and Technology; Chiayi Campus Taiwan
| | - Meei Ling Sheu
- Department of Education and Research; Taichung Veterans General Hospital; Taichung Taiwan
- Institute of Biomedical Sciences; College of Life Science; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
37
|
Song W, Li SS, Qiu PP, Shen DY, Tian L, Zhang QY, Liao LX, Chen QX. Apoptosis Induced by Aqueous Extracts of Crocodile Bile in Human Heptacarcinoma SMMC-7721. Appl Biochem Biotechnol 2013; 170:15-24. [DOI: 10.1007/s12010-013-0120-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
|
38
|
Chakrabarti M, Ai W, Banik NL, Ray SK. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem Res 2013; 38:420-32. [PMID: 23192662 PMCID: PMC11877322 DOI: 10.1007/s11064-012-0936-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/17/2012] [Accepted: 11/16/2012] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is an extracranial solid tumor that usually occurs in infants and children. Malignant neuroblastomas remain mostly refractory to currently available chemotherapeutic agents. So, new therapeutic agents and their molecular mechanisms for induction of cell death must be explored for successful treatment of human malignant neuroblastomas. Two polyphenolic compounds, which are abundant in green tea, are (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG) that possess impressive anti-cancer properties. It is not known yet whether EGC and EGCG can modulate the levels of expression of specific microRNAs (miRs) for induction of apoptosis in human malignant neuroblastomas. In this investigation, we revealed that treatment with EGC or EGCG caused induction of apoptosis with significant changes in expression of specific oncogenic miRs (OGmiRs) and tumor suppressor miRs (TSmiRs) in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cell lines. Treatment of both cell lines with either 50 μM EGC or 50 μM EGCG decreased expression of the OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of the TSmiRs (miR-7-1, miR-34a, and miR-99a) leading to induction of extrinsic and intrinsic pathways of apoptosis. Our data also demonstrated that overexpression of miR-93 decreased efficacy while overexpression of miR-7-1 increased efficacy of the green tea polyphenols for induction of apoptosis in both cell lines. In conclusion, our current investigation clearly indicates that overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
39
|
Pramanik M, Chatterjee N, Das S, Saha KD, Bhaumik A. Anthracene-bisphosphonate based novel fluorescent organic nanoparticles explored as apoptosis inducers of cancer cells. Chem Commun (Camb) 2013; 49:9461-3. [DOI: 10.1039/c3cc44989k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Analysis of the tumoral cytotoxicity of green tea-infusions enriched with broccoli. Food Chem 2012; 132:1197-1206. [DOI: 10.1016/j.foodchem.2011.11.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/03/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022]
|
41
|
Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Galderisi U. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. AGE (DORDRECHT, NETHERLANDS) 2012; 34:281-293. [PMID: 21465338 PMCID: PMC3312628 DOI: 10.1007/s11357-011-9231-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/02/2011] [Indexed: 04/16/2023]
Abstract
Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.
Collapse
Affiliation(s)
- Fulvia Zanichelli
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Pagnotta
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Maria Cartenì
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Fiorina Casale
- Department of Pediatrics “F. Fede”, Second University of Naples, Naples, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA USA
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
42
|
Chakrabarti M, Khandkar M, Banik NL, Ray SK. Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res 2012; 1454:1-13. [PMID: 22498172 DOI: 10.1016/j.brainres.2012.03.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Malignant neuroblastomas are childhood tumors that remain mostly incurable. We explored efficacy of N-(4-hydroxyphenyl) retinamide (4-HPR) and (-)-epigallocatechin-3-gallate (EGCG) in altering expression of oncogenic microRNAs (OGmiRs) and tumor suppressor miRs (TSmiRs) for controlling growth of human malignant neuroblastoma SK-N-BE2 and IMR-32 cells. Combination of 4-HPR and EGCG most significantly decreased expression of OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of TSmiRs (miR-7-1, miR-34a, and miR-99a) in both cell lines. Overexpression of miR-93 and miR-7-1, respectively, decreased and increased efficacy of treatments. Thus, alterations in expression of specific OGmiRs and TSmiRs by 4-HPR and EGCG inhibited growth of malignant neuroblastomas.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
43
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
44
|
Roy Choudhury S, Karmakar S, Banik NL, Ray SK. Valproic acid induced differentiation and potentiated efficacy of taxol and nanotaxol for controlling growth of human glioblastoma LN18 and T98G cells. Neurochem Res 2011; 36:2292-305. [PMID: 21786169 PMCID: PMC11877315 DOI: 10.1007/s11064-011-0554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
Abstract
Glioblastoma shows poor response to current therapies and warrants new therapeutic strategies. We examined the efficacy of combination of valproic acid (VPA) and taxol (TX) or nanotaxol (NTX) in human glioblastoma LN18 and T98G cell lines. Cell differentiation was manifested in changes in morphological features and biochemical markers. Cell growth was controlled with down regulation of vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), nuclear factor-kappa B (NF-κB), phospho-Akt (p-Akt), and multi-drug resistance (MDR) marker, indicating suppression of angiogenic, survival, and multi-drug resistance pathways. Cell cycle analysis showed that combination therapy (VPA and TX or NTX) increased the apoptotic sub G1 population and apoptosis was further confirmed by Annexin V-FITC/PI binding assay and scanning electron microscopy. Combination therapy caused activation of caspase-8 and cleavage of Bid to tBid and increased Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF). Upregulation of calpain and caspases (caspase-9 and caspase-3) and substrate degradation were also detected in course of apoptosis. The combination of VPA and NTX most effectively controlled the growth of LN18 and T98G cells. Therefore, this combination of drugs can be used as an effective treatment for controlling growth of human glioblastoma cells.
Collapse
Affiliation(s)
- Subhasree Roy Choudhury
- Department of Pathology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
45
|
Jan CR, Chen CY, Wang SC, Kuo SY. Phenethyl isothiocyanate induces Ca2+ movement and cytotoxicity in PC3 human prostate cancer cells. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Roy Choudhury S, Karmakar S, Banik NL, Ray SK. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification. Invest New Drugs 2010; 28:812-24. [PMID: 19777160 PMCID: PMC11877317 DOI: 10.1007/s10637-009-9324-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/08/2009] [Indexed: 11/28/2022]
Abstract
Neuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification.
Collapse
Affiliation(s)
- Subhasree Roy Choudhury
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C11, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
47
|
Karmakar S, Choudhury SR, Banik NL, Ray SK. Activation of Multiple Molecular Mechanisms for Increasing Apoptosis in Human Glioblastoma T98G Xenograft. JOURNAL OF CANCER SCIENCE & THERAPY 2010; 2:107-113. [PMID: 21666767 PMCID: PMC3111053 DOI: 10.4172/1948-5956.1000033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glioblastoma is the most malignant brain tumor of astroglial origin. It renders poor response or resistance to existing therapeutics. We used all-trans retinoic acid (ATRA) and interferon gamma (IFN-γ) alone and in combination for controlling human glioblastoma T98G xenografted in nude mice. Histopathological examination showed astrocytic differentiation in ATRA group, some apoptosis in IFN-γ group, and occurrence of differentiation and enhancement of apoptosis in ATRA plus IFN-γ group. ATRA plus IFN-γ induced extrinsic pathway of apoptosis by activation of caspase-8 and cleavage of Bid to tBid and also down regulation of hTERT, c-IAP2, and survivin and upregulation of Smac/Diablo to promote apoptosis. Mitochondrial release of apoptosis-inducing factor (AIF) induced caspase-independent pathway and also upregulation of calpain and caspase-dependent pathways ultimately activated caspase-3 for apoptosis. Increased activities of calpain and caspase-3 degraded 270 kD α-spectrin at the specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. In situ TUNEL and double immunofluorescent labelings detected apoptosis with increased expression of calpain, caspase-12, caspase-3, and AIF in tumors after treatment with IFN-γ and most effectively with ATRA plus IFN-γ. Results indicated that ATRA plus IFN-γ activated multiple molecular mechanisms for increasing apoptosis in human glioblastoma in vivo.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Subhasree Roy Choudhury
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
48
|
Kong JS, Yoo SA, Kim HS, Kim HA, Yea K, Ryu SH, Chung YJ, Cho CS, Kim WU. Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate. ACTA ACUST UNITED AC 2010; 62:159-70. [PMID: 20039434 DOI: 10.1002/art.25017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables such as broccoli, regulates synoviocyte hyperplasia and T cell activation in rheumatoid arthritis (RA). METHODS Synoviocyte survival was assessed by MTT assay. The levels of Bcl-2, Bax, p53, and pAkt were determined by Western blot analysis. Cytokine concentrations in culture supernatants from mononuclear cells were analyzed by enzyme-linked immunosorbent assay. The in vivo effects of SFN were examined in mice with experimentally induced arthritis. RESULTS SFN induced synoviocyte apoptosis by modulating the expression of Bcl-2/Bax, p53, and pAkt. In addition, nonapoptotic doses of SFN inhibited T cell proliferation and the production of interleukin-17 (IL-17) and tumor necrosis factor alpha (TNFalpha) by RA CD4+ T cells stimulated with anti-CD3 antibody. Anti-CD3 antibody-induced increases in the expression of retinoic acid-related orphan receptor gammat and T-bet were also repressed by SFN. Moreover, the intraperitoneal administration of SFN to mice suppressed the clinical severity of arthritis induced by injection of type II collagen (CII), the anti-CII antibody levels, and the T cell responses to CII. The production of IL-17, TNFalpha, IL-6, and interferon-gamma by lymph node cells and spleen cells from these mice was markedly reduced by treatment with SFN. Anti-CII antibody-induced arthritis in mice was also alleviated by SFN injection. CONCLUSION SFN was found to inhibit synovial hyperplasia, activated T cell proliferation, and the production of IL-17 and TNFalpha by rheumatoid T cells in vitro. The antiarthritic and immune regulatory effects of SFN, which were confirmed in vivo, suggest that SFN may offer a possible treatment option for RA.
Collapse
Affiliation(s)
- Jin-Sun Kong
- Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
KARMAKAR S, CHOUDHURY SROY, BANIK NL, RAY SK. Combination of N-(4-hydroxyphenyl) retinamide and genistein increased apoptosis in neuroblastoma SK-N-BE2 and SH-SY5Y xenografts. Neuroscience 2009; 163:286-95. [PMID: 19540315 PMCID: PMC3103945 DOI: 10.1016/j.neuroscience.2009.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/11/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Neuroblastoma is the childhood malignancy that mainly occurs in adrenal glands and is found also in the neck, chest, abdomen, and pelvis. New therapeutic strategies are urgently needed for successful treatment of this pediatric cancer. In this investigation, we examined efficacy of the retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) and the isoflavonoid genistein (GST) alone and also in combination for controlling the growth of human malignant neuroblastoma SK-N-BE2 and SH-SY5Y xenografts in nude mice. Combination of 4-HPR and GST significantly reduced tumor volume in vivo due to overwhelming apoptosis in both neuroblastoma xenografts. Time-dependently, combination of 4-HPR and GST caused reduction in body weight, tumor weight, and tumor volume. Combination of 4-HPR and GST increased Bax:Bcl-2 ratio, mitochondrial release of Smac, downregulation of baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins including BIRC-2 and BIRC-3, and activation of caspase-3 and apoptosis inducing factor (AIF). Further, downregulation of nuclear factor-kappa B (NF-kappaB), vascular endothelial growth factor (VEGF), and fibroblast growth factor 2 (FGF2) was also detected. In situ immunofluorescent labelings of tumor sections showed overexpression of calpain, caspase-12, and caspase-3, and also AIF in the course of apoptosis. Combination therapy increased apoptosis in the xenografts but did not induce kidney and liver toxicities in the animals. Results demonstrated that combination of 4-HPR and GST induced multiple molecular mechanisms for apoptosis and thus could be highly effective for inhibiting growth of malignant neuroblastoma in preclinical animal models.
Collapse
Affiliation(s)
- S. KARMAKAR
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - S. ROY CHOUDHURY
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - N. L. BANIK
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - S. K. RAY
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
50
|
Karmakar S, Davis KA, Choudhury SR, Deeconda A, Banik NL, Ray SK. Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways. Biochem Biophys Res Commun 2009; 388:705-10. [PMID: 19695221 DOI: 10.1016/j.bbrc.2009.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor in infants and young children. Current treatments are not always effective and new therapies are needed. We examined efficacy of combination of the small molecule Bcl-2 inhibitor HA14-1 (HA) and the dietary isoflavonoid apigenin (APG) in human malignant neuroblastoma cells. Dose-response studies indicated that treatment with HA and APG for 24 h synergistically reduced cell viability in human malignant neuroblastoma SK-N-DZ, SH-SY5Y, and IMR32 cells. For further studies, we selected SK-N-DZ cells that showed the highest sensitivity following treatment with 2.5 microM HA, 100 microM APG, or combination (2.5 microM HA+100 microM APG). Wright staining showed increase in morphological features of apoptosis. Cell cycle distribution and Annexin V assay showed that combination therapy caused more apoptosis than either treatment alone. Western blotting revealed that combination therapy downregulated angiogenic factors and also induced extrinsic pathway of apoptosis with activation of caspase-8 for Bid cleavage to tBid. Alterations in Bax and Bcl-2 levels resulted in an increase in Bax:Bcl-2 ratio to activate intrinsic pathway of apoptosis with mitochondrial release of cytochrome c into the cytosol and activation of proteases. Increases in calpain and caspase-3 activities generated 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Results showed that combination of HA and APG could be used for downregulation of angiogenic factors and activation of extrinsic and intrinsic pathways of apoptosis in malignant neuroblastoma cells.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | |
Collapse
|