1
|
Karsan N, Marzoughi S, Goadsby PJ. Advances in understanding migraine for the development of novel pharmacotherapies: the use of human provocation migraine models. Expert Opin Pharmacother 2025. [PMID: 40353527 DOI: 10.1080/14656566.2025.2505231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Whilst migraine treatment has advanced significantly over recent times, the mechanisms of attack genesis and heterogeneity in treatment response are two amidst several areas that remain poorly understood and require further development. Experimental migraine provocation is an area that holds promise in advancing this understanding. AREAS COVERED We conducted a literature search using PubMed, of 'human migraine triggering' and 'human migraine provocation' to identify articles of interest. We discuss therapeutic targets that have emerged from such work, including calcitonin family peptides (amylin (AMY) and adrenomedullin (ADM)), pituitary adenylate cyclase-activating peptide (PACAP) and potassium channels. We discuss our views on the clinical translation of the outcomes of such studies, and their previous and potential future impact on migraine therapeutics. EXPERT OPINION Migraine provocation models provide a valuable means to study human migraine phenotypically and biologically, as well as to assess treatment response. Downstream intracellular mechanisms of provocation agents can be targeted during cellular processing to alter cell function and influence migraine mechanisms. It is important to caveat the clinical translation of provocation studies, given that just because a substance triggers migraine experimentally, does not necessarily mean that the substance is involved in the spontaneous human condition.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
| | - Sina Marzoughi
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
2
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
3
|
Zhao C, Fu X, Yang Z, Zhang Q, Zhao Y. ATP-sensitive potassium channel opener, Nicorandil, inhibits NF-κB/AIM2/GSDMD pathway activation to protect against neuroinflammation in ischemic stroke. Neurochem Int 2024; 179:105810. [PMID: 39069080 DOI: 10.1016/j.neuint.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The absent in melanoma 2 (AIM2) inflammasome contributes to ischemic brain injury by inducing cell pyroptosis and inflammatory responses. Our research group has previously demonstrated that ATP-sensitive potassium channels (KATP channels) openers can modulate neuronal synaptic plasticity post-ischemic stroke for neuroprotection. However, the specific mechanisms of KATP channels in the inflammatory response following ischemic stroke remain unclear. Here, we assessed cellular damage by observing changes in BV-2 morphology and viability. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, mNSS scoring, Nissl staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining were used to evaluate behavioral deficits, brain injury severity, and neuronal damage in mice subjected to middle cerebral artery occlusion (MCAO). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to measure cell pyroptosis and nuclear factor-kappaB (NF-κB) activation in vivo and in vitro. We observed that AIM2 protein expression was upregulated and localized within the cytoplasm of BV-2 cells. Notably, low-dose Nicorandil treatment reduced inflammatory cytokine secretion and pyroptosis-related protein expression, including AIM2, cleaved cysteinyl aspartate-specific protease-1 (cleaved caspase-1), and Gasdermin D N-terminal (GSDMD-NT). Further investigations revealed that the KATP channel inhibitor 5-HD upregulated p-NF-κB p65, NF-κB p65, and p-IκBα expression, reversing Nicorandil's neuroprotective effect in vivo. In summary, our results suggest that Nicorandil may serve as a potential therapeutic option for ischemic stroke. Targeting AIM2 and NF-κB represents effective strategies for inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Chenming Zhao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaojuan Fu
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Zhuoying Yang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiujun Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuanzheng Zhao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
5
|
Wu B, Xu W. Case report: Neonatal diabetes mellitus caused by KCNJ11 mutation presenting with intracranial hemorrhage. Front Neurol 2023; 14:1072078. [PMID: 36937531 PMCID: PMC10022729 DOI: 10.3389/fneur.2023.1072078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Neonatal diabetes mellitus (NDM) is a rare type of monogenic diabetes. At present, most published studies have focused on the types of gene mutations associated with NDM and the therapeutic effect of sulfonylureas (SUs) on the disease; few studies on NDM-associated intracranial hemorrhage (ICH) exist. In addition, p.V59M mutations generally lead to intermediate DEND (iDEND: intermediate developmental delay and neonatal diabetes) syndrome without epilepsy. Here, we present a case of a 1-month-old male infant who was diagnosed with NDM caused by a KCNJ11 missense mutation (p.V59M), presenting with cerebral injury. In the early stage of the disease, continuous insulin dose adjustment did not achieve an ideal level of blood glucose. Although blood glucose was subsequently controlled by oral SUs, which were administered after the genetic test result, the patient still displayed epilepsy and developmental delay. In this case report, we present our experience in the treatment of the infant, switching from insulin to oral SUs and we thought that SUs have limited effects on improving the prognosis of neurodevelopmental disturbances in NDM with foci of encephalomalacia. In addition, there may be a relationship between KCNJ11 missense mutations and cerebral injury, and further research must be carried out to confirm these points.
Collapse
|
6
|
Tsentsevitsky AN, Gafurova CR, Petrov AM. KATP channels as ROS-dependent modulator of neurotransmitter release at the neuromuscular junctions. Life Sci 2022; 310:121120. [DOI: 10.1016/j.lfs.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
7
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
8
|
EbrahimAmini A, Stefanovic B, Carlen PL. Effects of In Vivo Intracellular ATP Modulation on Neocortical Extracellular Potassium Concentration. Biomedicines 2022; 10:biomedicines10071568. [PMID: 35884873 PMCID: PMC9312484 DOI: 10.3390/biomedicines10071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Neuronal and glial activity are dependent on the efflux of potassium ions into the extracellular space. Efflux of K is partly energy-dependent as the activity of pumps and channels which are involved in K transportation is ATP-dependent. In this study, we investigated the effect of decreased intracellular ATP concentration ([ATP]i) on the extracellular potassium ion concentration ([K]o). Using in vivo electrophysiological techniques, we measured neocortical [K]o and the local field potential (LFP) while [ATP]i was reduced through various pharmacological interventions. We observed that reducing [ATP]i led to raised [K]o and DC-shifts resembling spreading depolarization-like events. We proposed that most likely, the increased [K]o is mainly due to the impairment of the Na/K ATPase pump and the ATP-sensitive potassium channel in the absence of sufficient ATP, because Na/K ATPase inhibition led to increased [K]o and ATP-sensitive potassium channel impairment resulted in decreased [K]o. Therefore, an important consequence of decreased [ATP]i is an increased [K]o. The results of this study acknowledge one of the mechanisms involved in [K]o dynamics.
Collapse
Affiliation(s)
- Azin EbrahimAmini
- Krembil Research Institute, Toronto, ON M5T 0S8, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Correspondence: ; Tel.: +647-648-6668
| | - Bojana Stefanovic
- Sunnybrook Health Sciences Center, Medical Biophysics, Toronto, ON M4N 3M5, Canada;
| | - Peter L. Carlen
- Krembil Research Institute, Toronto, ON M5T 0S8, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Abstract
ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.
Collapse
|
10
|
Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin 2020; 41:1519-1524. [PMID: 32994545 DOI: 10.1038/s41401-020-00512-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7's unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic-ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.
Collapse
|
11
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
12
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Arabian M, Aboutaleb N, Soleimani M, Ajami M, Habibey R, Pazoki-Toroudi H. Activation of mitochondrial KATP channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia. Adv Med Sci 2018; 63:213-219. [PMID: 29223124 DOI: 10.1016/j.advms.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/22/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Pharmacologic preconditioning, through activating several mechanisms and mediators, can increase the tolerance of different tissues against ischemia/reperfusion (I/R) injury. Recent studies have shown that morphine preconditioning has protective effects in different organs, especially in the heart. Nevertheless, its mechanisms are not well elucidated in the brain. The present study aimed to clarify whether the activation of mitochondrial KATP (mKATP) channels in chronic morphine (CM) preconditioning could decrease hippocampus damage following I/R injury. MATERIALS AND METHODS CM preconditioning was performed by the administration of additive doses of morphine for 5days before I/R injury induction. I/R injury was induced by the occlusion of bilateral common carotid arteries. The possible role of mKATP channels was evaluated by the injection of 5-hydroxydecanoate (5-HD) before I/R injury. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was performed to detect apoptosis in hippocampal neurons. The expressions of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (BAX) and levels of malondialdehyde (MDA) and catalase (CAT) enzymes were assessed. RESULTS CM attenuated apoptosis in the hippocampal CA1 neurons (P<0.001 vs I/R), and mKATP channel blocking with 5-HD significantly increased apoptosis (P<0.001 vs CM+I/R). CM increased CAT activity (P<0.05 vs I/R) and Bcl-2 protein expression (P<0.01 vs I/R), while it decreased MDA level (P<0.05 vs I/R) and BAX protein expression (P<0.05 vs I/R). Pretreatment with 5-HD abolished all the above-mentioned effects of CM. CONCLUSIONS These findings describe novel evidence whereby CM preconditioning in hippocampal CA1 neurons can improve oxidative stress and apoptosis through the activation of mKATP channels and eventually protect the hippocampal tissue against I/R injury.
Collapse
Affiliation(s)
- Maedeh Arabian
- Rajaie Cardiovascular, Medical, and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Ajami
- Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Habibey
- Department of Neuroscience and Brain Technologies-Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Physiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 2018; 138:20-31. [PMID: 29775678 DOI: 10.1016/j.neuropharm.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
Although a number of experimental and clinical studies have shown that hypoxia typically accompanies acute inflammatory responses, the combinatorial effect of the two insults on basic neural function has not been thoroughly investigated. Previous studies have predominantly suggested that hypoxia reduces network activity; however, several studies suggest the opposite effect. Of note, inflammation is known to increase neural activity. In the current study, we examined the effects of limited oxygen in combination with an inflammatory stimulus, as well as the effects of reoxygenation, on synaptic transmission and excitability. We observed a significant reduction of both synaptic transmission and excitability when hypoxia and inflammation occurred in combination, whereas reoxygenation caused hyperexcitability of neurons. Further, we found that the observed reduction in synaptic transmission was due to compromised presynaptic release efficiency based on an adenosine-receptor-dependent increase in synaptic facilitation. Excitability changes in both directions were attributable to dynamic regulation of the hyperpolarization-activated cation current (Ih) and to changes in the input resistance and the voltage difference between resting membrane potential and action potential threshold. We found that zatebradine, an Ih current inhibitor, reduced the fluctuation in excitability, suggesting that it may have potential as a drug to ameliorate reperfusion brain injury.
Collapse
|
15
|
Possible involvement of monoamine neurons in the emotional abnormality in Kir6.2-deficient mice. Physiol Behav 2018; 188:251-261. [PMID: 29432787 DOI: 10.1016/j.physbeh.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a regulatory sulfonylurea receptor subunit (SUR1, SUR2A or SUR2B). Although Kir6.2 is widely distributed in the brain, the mechanisms that underlie the impact of Kir6.2 on emotional behavior are not yet fully understood. To clarify the role of Kir6.2 in emotional behavior, in the present study, we investigated the behavioral characteristics of Kir6.2-knockout (Kir6.2-/-) mice. Kir6.2-/- mice showed impaired general behavior in a locomotor activity test and open field test. In addition, anxiety-like behavior was observed in the open field test, elevated plus-maze test and light-dark test. In particular, excessive anxiety-like behavior was observed in female Kir6.2-/- mice. Moreover, we investigated whether Kir6.2 is expressed on monoamine neurons in the brain. Immunohistochemical studies showed that Kir6.2 was co-localized with tryptophan hydroxylase (TPH), a marker of serotonergic neurons, in dorsal raphe nuclei. Kir6.2 was also co-localized with tyrosine hydroxylase (TH), a marker of dopaminergic/noradrenergic neurons, in the ventral tegmental area and locus coeruleus. Next, we checked the protein levels of TH and TPH in the midbrain. Interestingly, TPH expression was significantly elevated in female Kir6.2-/- mice. These results suggest that Kir6.2 in monoamine neurons, especially serotonergic neurons, could play a key role in emotional behavior.
Collapse
|
16
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
17
|
Xiao AJ, He L, Ouyang X, Liu JM, Chen MR. Comparison of the anti-apoptotic effects of 15- and 35-minute suspended moxibustion after focal cerebral ischemia/reperfusion injury. Neural Regen Res 2018; 13:257-264. [PMID: 29557375 PMCID: PMC5879897 DOI: 10.4103/1673-5374.226396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebral ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the injury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expression was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ai-Jiao Xiao
- School of Basic Medical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Lin He
- School of Basic Medical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Xin Ouyang
- School of Moxibustion, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Jie-Min Liu
- School of Basic Medical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Ming-Ren Chen
- School of Moxibustion, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
18
|
Sun HS. Role of TRPM7 in cerebral ischaemia and hypoxia. J Physiol 2017; 595:3077-3083. [PMID: 27891609 DOI: 10.1113/jp273709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) channel, a calcium-permeable non-selective divalent cation channel, is broadly expressed in various cells and tissues, including the brain. TRPM7 is thought to be coupled to the metabolic state and regulate calcium homeostasis in the cell. TRPM7 takes part in a wide range of cell biology processes that affect cell growth and proliferation, as well as in embryonic development and skeleton formation. TRPM7 plays a significant role in ischaemic and hypoxic brain injury and neuronal cell death. TRPM7, as a key non-glutamate mechanism of cerebral ischaemia, also triggers an intracellular ionic imbalance and neuronal cell death in ischaemia and hypoxia. We have reported that TRPM7 is expressed in neurons of the hippocampus and cortex and activation of TRPM7 induced ischaemic neuronal cell death; suppression of TRPM7 with virally mediated gene silencing using siRNA reduced ischaemic neuronal cell death and improved neurobehavioural outcomes in vivo. Recently, we also demonstrated that inhibition of TRPM7 using pharmacological means promoted neuronal outgrowth in vitro and provided neuroprotection against brain injury to hypoxia in vivo. Thus, we have shown the contributions of TRPM7 in many physiological and pathophysiological processes, including hypoxia and ischaemia.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Departments of Surgery, Physiology, and Pharmacology, Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
19
|
Zhang S, Guo Z, Yang S, Ma H, Fu C, Wang S, Zhang Y, Liu Y, Hu J. Chronic intermittent hybobaric hypoxia protects against cerebral ischemia via modulation of mitoK ATP. Neurosci Lett 2016; 635:8-16. [PMID: 27760384 DOI: 10.1016/j.neulet.2016.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Providing adequate protection against cerebral ischemia remains an unrealized goal. The present study was aimed at testing whether chronic intermittent hypobaric hypoxia (CIHH) would have protective effects against cerebral ischemia and investigating the potential role of mitochondrial membrane ATP-sensitive potassium channel (mitoKATP) in this effect. METHODS Ischemia was induced in rats by occlusion of bilateral common carotid arteries for 8min on day 2 after bilateral vertebral arteries were permanently electrocauterized and CIHH was simulated in a hypoxic chamber. Learning and memory impairments were analyzed using the Morris water maze. The delay neuronal death (DND) in the hippocampus CA1 was observed by thionine staining. The expression of the two subunits of mitoKATP, SUR1 and Kir 6.2, and the concentration of cytochrome c (Cyt c) were observed by Western blotting. The mitochondrial membrane potential (Δym) was determined by flow cytometry. Morphological changes of the mitochondria were investigated by electron microscopy. The antagonist of mitoKATP, 5-hydroxydecanoate (5-HD), was used to demonstrate the involvement of mitoKATP. RESULTS CIHH pretreatment ameliorated the learning and memory impairments produced by ischemia, concomitant with reduced DND in the hippocampus CA1 area. Expression levels of SUR1 and Kir6.2 both increased for at least one week after CIHH pretreatment. Levels of the two subunits were higher in the CIHH pretreatment combined with ischemia group than the ischemia only group at 2 d and 7 d after ischemia. Furthermore, the concentration of Cyt c was decreased in mitochondria and increased in the cytoplasm after ischemia which was prevented by CIHH. The decrease of Δψm and the destruction of mitochondrial ultrastructure were both rescued by CIHH pretreatment. The above protective effects of CIHH were blocked by 5-HD intraperitoneal injection 30min before ischemia. CONCLUSION CIHH pretreatment can reduce cerebral ischemic injury, which is mediated by upregulating the expression and activity of mitoKATP.
Collapse
Affiliation(s)
- Shixiao Zhang
- Department of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China.
| | - Zan Guo
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Shijie Yang
- Department of Urology, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Huijuan Ma
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Congrui Fu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China.
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Yixian Liu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Jie Hu
- Department of Nursing, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China.
| |
Collapse
|
20
|
Mehrjerdi FZ, Aboutaleb N, Pazoki-Toroudi H, Soleimani M, Ajami M, Khaksari M, Safari F, Habibey R. The Protective Effect of Remote Renal Preconditioning Against Hippocampal Ischemia Reperfusion Injury: Role of KATP Channels. J Mol Neurosci 2015; 57:554-60. [DOI: 10.1007/s12031-015-0636-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022]
|
21
|
Lund TM, Ploug KB, Iversen A, Jensen AA, Jansen-Olesen I. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity. J Neurochem 2015; 132:520-31. [PMID: 25330271 DOI: 10.1111/jnc.12975] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022]
Abstract
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release.
Collapse
Affiliation(s)
- Trine M Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth B Ploug
- Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Anne Iversen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
22
|
Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CYJ, Quan Y, Liu B, Pei L, Sun CLF, Deurloo M, Feng ZP. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 2014; 263:161-71. [PMID: 25448006 DOI: 10.1016/j.expneurol.2014.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/23/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
Neonatal hypoxic-ischemic brain injury and its related illness hypoxic-ischemic encephalopathy (HIE) are major causes of nervous system damage and neurological morbidity in children. Hypoxic preconditioning (HPC) is known to be neuroprotective in cerebral ischemic brain injury. K(ATP) channels are involved in ischemic preconditioning in the heart; however the involvement of neuronal K(ATP) channels in HPC in the brain has not been fully investigated. In this study, we investigated the role of HPC in hypoxia-ischemia (HI)-induced brain injury in postnatal seven-day-old (P7) CD1 mouse pups. Specifically, TTC (2,3,5-triphenyltetrazolium chloride) staining was used to assess the infarct volume, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling) to detect apoptotic cells, Western blots to evaluate protein level, and patch-clamp recordings to measure K(ATP) channel current activities. Behavioral tests were performed to assess the functional recovery after hypoxic-ischemic insults. We found that hypoxic preconditioning reduced infarct volume, decreased the number of TUNEL-positive cells, and improved neurobehavioral functional recovery in neonatal mice following hypoxic-ischemic insults. Pre-treatment with a K(ATP) channel blocker, tolbutamide, inhibited hypoxic preconditioning-induced neuroprotection and augmented neurodegeneration following hypoxic-ischemic injury. Pre-treatment with a K(ATP) channel opener, diazoxide, reduced infarct volume and mimicked hypoxic preconditioning-induced neuroprotection. Hypoxic preconditioning induced upregulation of the protein level of the Kir6.2 isoform and enhanced current activities of K(ATP) channels. Hypoxic preconditioning restored the HI-reduced PKC and pAkt levels, and reduced caspase-3 level, while tolbutamide inhibited the effects of hypoxic preconditioning. We conclude that K(ATP) channels are involved in hypoxic preconditioning-induced neuroprotection in neonatal hypoxic-ischemic brain injury. K(ATP) channel openers may therefore have therapeutic effects in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aijiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ammar Alibraham
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christine Y J Bae
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yi Quan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Baosong Liu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lin Pei
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Marielle Deurloo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
23
|
Lemak MS, Voloshanenko O, Draguhn A, Egorov AV. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons. Front Cell Neurosci 2014; 8:255. [PMID: 25221474 PMCID: PMC4145353 DOI: 10.3389/fncel.2014.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels) which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC) of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel) confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp) and whole-cell recordings from layer III (LIII) of the mEC in horizontal brain slices obtained at postnatal day (P) 6–13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.
Collapse
Affiliation(s)
- Maria S Lemak
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Oksana Voloshanenko
- Division of Signalling and Functional Genomics, German Cancer Research Center Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
25
|
Li C, Wei L, Jiang H, Shan L, Li X, Lu N, Wang G, Li D. Stable Cell Line of Human SH-SY5Y Uniformly Expressing TWIK-Related Acid-Sensitive Potassium Channel and eGFP Fusion. Appl Biochem Biotechnol 2014; 172:3253-62. [DOI: 10.1007/s12010-014-0768-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/29/2014] [Indexed: 11/30/2022]
|
26
|
Yang Z, Chen Y, Zhang Y, Jiang Y, Fang X, Xu J. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels. Mol Med Rep 2014; 9:843-50. [PMID: 24452205 DOI: 10.3892/mmr.2014.1912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain mitoKATP channel.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yunbo Chen
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhang
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yi Jiang
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xuedong Fang
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingwei Xu
- Department of Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
27
|
Li D, Huang B, Liu J, Li L, Li X. Decreased brain K(ATP) channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats. PLoS One 2013; 8:e73334. [PMID: 23991188 PMCID: PMC3753248 DOI: 10.1371/journal.pone.0073334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Diabetes leads to exacerbating brain injury after ischemic stroke, but the underlying mechanisms and whether therapeutic intervention with anesthetic post-conditioning can induce neuroprotection in this population are not known. We tested the hypothesis that alteration of brain mitochondrial (mito) KATP channels might cause exacerbating brain injury after ischemic stroke and attenuate anesthetic post-conditioning induced neuroprotection in diabetes. We also examined whether hyperglycemic correction with insulin would restore anesthetic post-conditioning in diabetes. Non-diabetic rats and diabetic rats treated with or without insulin were subjected to focal cerebral ischemia for 2 h followed by 24 h of reperfusion. Post-conditioning was performed by exposure to sevoflurane for 15 min, immediately at the onset of reperfusion. The role of the mitoKATP channel was assessed by administration of a selective blocker 5-hydroxydecanoate (5-HD) before sevoflurane post-conditioning or by diazoxide (DZX), a mitoKATP channel opener, given in place of sevoflurane. Compared with non-diabetic rats, diabetic rats had larger infarct volume and worse neurological outcome at 24 h after ischemia. Sevoflurane or DZX reduced the infarct volume and improved neurological outcome in non-diabetic rats but not in diabetic rats, and the protective effects of sevoflurane in non-diabetic rats were inhibited by pretreatment with 5-HD. Molecular studies revealed that expression of Kir6.2, an important mitoKATP channel component, was decreased in the brain of diabetic rats as compared to non-diabetic rats. In contrast, hyperglycemic correction with insulin in diabetic rats normalized expression of brain Kir6.2, reduced ischemic brain damage and restored neuroprotective effects of sevoflurane post-conditioning. Our findings suggest that decreased brain mitoKATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by anesthetic post-conditioning in diabetes. Insulin glycemic control in diabetes may restore the neuroprotective effects of anesthetic post-conditioning by modulation of brain mitoKATP channel.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan City, Shandong Province, China
| | | | | | | | | |
Collapse
|
28
|
Abstract
The initial excitement and countless efforts to find a pharmacological agent that disrupts the excitotoxic pathway of ischemic neuronal death have only led to disappointing clinical trials. Currently, a thrombolytic agent called recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment available for patients with acute ischemic stroke in most countries. Even though its efficacy has been confirmed repeatedly, rt-PA is considerably underused due to reasons including a short therapeutic window and repeated complications associated with its use. A search for alternative mechanisms that may operate dependently or independently with the well-established excitotoxic mechanism has led researchers to the discovery of newly described non-glutamate mechanisms. Among the latter, transient receptor potential melastatin 7 (TRPM7) is one of the important nonglutamate mechanisms in stroke, which has been evaluated in both in-vitro and in-vivo. In this review, we will discuss the current state of pharmacological treatments of ischemic stroke and provide evidence that TRPM7 is a promising therapeutic target of stroke.
Collapse
|
29
|
Abstract
ATP-sensitive potassium (K(ATP)) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens K(ATP) channels, leading to membrane hyperpolarization. K(ATP) channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the K(ATP) channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous K(ATP) channels reduces cellular damage resulting from cerebral ischemic stroke. K(ATP) channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future.
Collapse
|
30
|
|
31
|
Salvinorin A produces cerebrovasodilation through activation of nitric oxide synthase, κ receptor, and adenosine triphosphate-sensitive potassium channel. Anesthesiology 2011; 114:374-9. [PMID: 21245734 DOI: 10.1097/aln.0b013e318204e029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Salvinorin A is a nonopioid, selective κ opioid-receptor agonist. Despite its high potential for clinical application, its pharmacologic profile is not well known. In the current study, we hypothesized that salvinorin A dilates pial arteries via activation of nitric oxide synthase, adenosine triphosphate-sensitive potassium channels, and opioid receptors. METHODS Cerebral artery diameters and cyclic guanosine monophosphate in cortical periarachnoid cerebrospinal fluid were monitored in piglets equipped with closed cranial windows. Observation took place before and after salvinorin A administration in the presence or absence of an opioid antagonist (naloxone), a κ opioid receptor-selective antagonist (norbinaltorphimine), nitric oxide synthase inhibitors (N(G)-nitro-L-arginine and 7-nitroindazole), a dopamine receptor D2 antagonist (sulpiride), and adenosine triphosphate-sensitive potassium and Ca-activated K channel antagonists (glibenclamide and iberiotoxin). The effects of salvinorin A on the constricted cerebral artery induced by hypocarbia and endothelin were investigated. Data were analyzed by repeated measures ANOVA (n = 5) with statistical significance set at a P value of less than 0.05. RESULTS Salvinorin A induced immediate but brief vasodilatation that was sustained for 30 min via continual administration every 2 min. Vasodilatation and the associated cyclic guanosine monophosphate elevation in cerebrospinal fluid were abolished by preadministration N(G)-nitro-L-arginine, but not 7-nitroindazole. Although naloxone, norbinaltorphimine, and glibenclamide abolished salvinorin A-induced cerebrovasodilation, this response was unchanged by iberiotoxin and sulpiride. Hypocarbia and endothelin-constricted pial arteries responded similarly to salvinorin A, to the extent observed under resting tone. CONCLUSIONS Salvinorin A dilates cerebral arteries via activation of nitric oxide synthase, adenosine triphosphate-sensitive potassium channel, and the κ opioid receptor.
Collapse
|
32
|
Misonou H. Homeostatic regulation of neuronal excitability by K(+) channels in normal and diseased brains. Neuroscientist 2010; 16:51-64. [PMID: 20236949 DOI: 10.1177/1073858409341085] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
K(+)-selective ion channels are critical determinants of membrane excitability in neuronal cells. Like many other cells in our body, neuronal cells have a propensity to maintain their homeostasis. Action potential firing is the most important function to maintain in brain neurons, as they are the elements of neural networks. If one element fires action potentials at an abnormally high rate, the entire network could become epileptic. Therefore, brain neurons adjust their intrinsic membrane excitability to maintain the firing rate within their own optimal operational range. When a neuron receives an enormous input, it will reduce the membrane excitability to prevent overshooting. When it is deprived of stimulus, the membrane becomes more excitable to avoid total quiescence. The homeostatic regulation of intrinsic excitability provides stability to the neural network in the face of dynamic and plastic synaptic inputs. In the past decade, we have learned that neurons achieve this type of homeostatic regulation through a variety of ion channels, including K(+) channels. It has also become clear that under certain pathological conditions, these homeostatic mechanisms provide neuroprotection. In this article, I will review recent advances in our understanding of K(+) channel-mediated homeostatic regulation of neuronal excitability and discuss involvement of these channels in hyperexcitable diseases where they provide neuroprotection.
Collapse
Affiliation(s)
- Hiroaki Misonou
- Department of Neural and Pain Sciences, Program in Neuroscience, Dental School, University of Maryland, Baltimore, Maryland 21201, USA.
| |
Collapse
|
33
|
Multifaceted role of heat shock protein 70 in neurons. Mol Neurobiol 2010; 42:114-23. [PMID: 20354811 DOI: 10.1007/s12035-010-8116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays important roles in neural protection from stress by assisting cellular protein folding. In this review we discuss the current understanding of inducible and constitutive Hsp70 in maintaining and protecting neuronal synaptic function under normal and stressed conditions.
Collapse
|
34
|
Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W. Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 2010; 167:758-64. [PMID: 20167264 DOI: 10.1016/j.neuroscience.2010.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/27/2023]
Abstract
We examined the possible protective effect of TASK-1 (TWIK-related acid-sensitive potassium channel-1, kcnk3) and -3 potassium channels during stroke. TASK-1 and TASK-3, members of the two pore domain (K2P or kcnk) potassium channel family, form hetero or homodimers and help set the resting membrane potential. We used male TASK-1 and TASK-3 knockout mice in a model of focal cerebral ischemia, permanent middle cerebral artery occlusion (pMCAO). Infarct volume was measured 48 h after pMCAO. The TASK-1 knockout brains had larger infarct volumes (P=0.004), and those in TASK-3 knockouts were unchanged. As the TASK-1 gene is expressed in adrenal gland, heart and possibly blood vessels, the higher infarct volumes in the TASK-1 knockout mice could be due to TASK-1 regulating blood vessel tone and hence blood pressure or influencing blood vessel microarchitecture and blood flow rate. Indeed, we found that male TASK-1 knockout mice had reduced blood pressure, likely explaining the increased brain injury seen after pMCAO. Thus to make precise conclusions about how TASK-1 protects neurons, neural- or organ-specific deletions of the gene will be needed. Nevertheless, a consequence of having TASK-1 channels expressed (in various non-neuronal tissues and organs) is that neuronal damage is lessened when stroke occurs.
Collapse
Affiliation(s)
- S Muhammad
- Department of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Sun XL, Hu G. ATP-sensitive potassium channels: A promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol 2010; 37:243-52. [DOI: 10.1111/j.1440-1681.2009.05190.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
37
|
Chou CH, Gong CL, Chao CC, Lin CH, Kwan CY, Hsieh CL, Leung YM. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels. JOURNAL OF NATURAL PRODUCTS 2009; 72:830-834. [PMID: 19331340 DOI: 10.1021/np800729q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.
Collapse
Affiliation(s)
- Chun-Hsiao Chou
- Department of Physiology, Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res 2009; 1270:131-9. [PMID: 19306849 DOI: 10.1016/j.brainres.2009.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/26/2022]
Abstract
Recent studies demonstrated that sulfonylurea receptor 1 (SUR 1) regulated nonselective cation channel, the NC(Ca-ATP) channel, is involved in brain injury in rodent models of stroke. Block of SUR 1 with sulfonylurea such as glibenclamide has been shown to be highly effective in reducing cerebral edema, infarct volume and mortality in adult rat models of ischemic stroke. In this study, we tested glibenclamide in both severe and moderate models of neonatal hypoxia-ischemia (HI) in postnatal day 10 Sprague-Dawley rat pups. A total of 150 pups were used in the present study. Pups were subjected to unilateral carotid artery ligation followed by 2.5 or 2 h of hypoxia in the severe and moderate HI models, respectively. In the severe HI model, glibenclamide, administered immediately after HI and on postoperative Day 1, was not effective in attenuating short-term effects (brain edema and infarct volume) or long-term effects (brain weight and neurological function) of neonatal HI. In the moderate HI model, when injected immediately after HI and on postoperative Day 1, glibenclamide at 0.01 mg/kg improved several neurological parameters at 3 weeks after HI. We conclude that glibenclamide provided some long-term neuroprotective effect after neonatal HI.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Anesthesiology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
39
|
Wang J, Cottrell JE, Kass IS. Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience 2009; 160:140-8. [PMID: 19236906 DOI: 10.1016/j.neuroscience.2009.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/28/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
Cerebral ischemia is a major cause of death and disability and may be a complication of neurosurgery. Certain anesthetics may improve recovery after ischemia and hypoxia by altering electrophysiological changes during the insult. Intracellular recordings were made from CA1 pyramidal cells in hippocampal slices from adult rats. Desflurane or propofol was applied 10 min before and during 10 min of hypoxia (95% nitrogen, 5% carbon dioxide). None of the untreated CA1 pyramidal neurons, 46% of the 6% desflurane- and 38% of the 12% desflurane-treated neurons recovered their resting and action potentials 1 h after hypoxia (P<0.05). Desflurane (6% or 12%) enhanced the hypoxic hyperpolarization (4.9 or 4.7 vs. 2.6 mV), increased the time until the rapid depolarization (441 or 390 vs. 217 s) and reduced the level of depolarization at 10 min of hypoxia (-13.5 or -13.0 vs. -0.6 mV); these changes may be part of the mechanism of its protective effect. Either chelerythrine (5 microM), a protein kinase C inhibitor, or glybenclamide (5 microM), a K(ATP) channel blocker, prevented the protective effect and the electrophysiological changes with 6% desflurane. Propofol (33 or 120 microM) did not improve recovery (0 or 0% vs. 0%) 1 h after 10 min of hypoxia; it did not significantly enhance the hypoxic hyperpolarization (3.6 or 3.1 vs. 2.6 mV) or increase the latency of the rapid depolarization (282 or 257 vs. 217 s). The average depolarization at 10 m of hypoxia with 33 microM propofol (-4.1 mV) was slightly but significantly different from that in untreated hypoxic tissue (-0.6 mV). Desflurane but not propofol improved recovery of the resting and action potentials in hippocampal slices after hypoxia, this improvement correlated with enhanced hyperpolarization and attenuated depolarization of the membrane potential during hypoxia. Our results demonstrate differential effects of anesthetics on electrophysiological changes during hypoxia.
Collapse
Affiliation(s)
- J Wang
- Department of Anesthesiology, Box 6, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
40
|
Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK, Gerzanich V. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 2007; 117:2105-13. [PMID: 17657312 PMCID: PMC1924498 DOI: 10.1172/jci32041] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/09/2007] [Indexed: 11/17/2022] Open
Abstract
Acute spinal cord injury (SCI) causes progressive hemorrhagic necrosis (PHN), a poorly understood pathological process characterized by hemorrhage and necrosis that leads to devastating loss of spinal cord tissue, cystic cavitation of the cord, and debilitating neurological dysfunction. Using a rodent model of severe cervical SCI, we tested the hypothesis that sulfonylurea receptor 1-regulated (SUR1-regulated) Ca(2+)-activated, [ATP](i)-sensitive nonspecific cation (NC(Ca-ATP)) channels are involved in PHN. In control rats, SCI caused a progressively expansive lesion with fragmentation of capillaries, hemorrhage that doubled in volume over 12 hours, tissue necrosis, and severe neurological dysfunction. SUR1 expression was upregulated in capillaries and neurons surrounding necrotic lesions. Patch clamp of cultured endothelial cells exposed to hypoxia showed that upregulation of SUR1 was associated with expression of functional SUR1-regulated NC(Ca-ATP) channels. Following SCI, block of SUR1 by glibenclamide or repaglinide or suppression of Abcc8, which encodes for SUR1 by phosphorothioated antisense oligodeoxynucleotide essentially eliminated capillary fragmentation and progressive accumulation of blood, was associated with significant sparing of white matter tracts and a 3-fold reduction in lesion volume, and resulted in marked neurobehavioral functional improvement compared with controls. We conclude that SUR1-regulated NC(Ca-ATP) channels in capillary endothelium are critical to development of PHN and constitute a major target for therapy in SCI.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland 21201-1595, USA.
| | | | | | | | | | | | | | | |
Collapse
|