1
|
Sack AS, Samera GJ, Hissen A, Wester RJ, Garcia E, Adams PJ, Snutch TP. A structural analysis of the splice-specific functional impact of the pathogenic familial hemiplegic migraine type 1 S218L mutation on Ca v2.1 P/Q-type channel gating. Mol Brain 2024; 17:82. [PMID: 39568055 PMCID: PMC11580629 DOI: 10.1186/s13041-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
P/Q-type (Cav2.1) calcium channels mediate Ca2+ influx essential for neuronal excitability and synaptic transmission. The CACNA1A gene, encoding the Cav2.1 pore forming subunit, is highly expressed throughout the mammalian central nervous system. Alternative splicing of Cav2.1 pre-mRNA generates diverse channel isoforms with distinct biophysical properties and drug affinities, which are differentially expressed in nerve tissues. Splicing variants can also affect channel function under pathological conditions although their phenotypic implication concerning inherited neurological disorders linked to CACNA1A mutations remains unknown. Here, we quantified the expression of Cav2.1 exon 24 (e24) spliced transcripts in human nervous system samples, finding different levels of expression within discrete regions. The corresponding Cav2.1 variants, differing by the presence (+) or absence (Δ) of Ser-Ser-Thr-Arg residues (SSTR) in the domain III S3-S4 linker, were functionally characterized using patch clamp recordings. Further, the + /ΔSSTR isoforms were used to demonstrate the differential impact of the Familial Hemiplegic Migraine Type 1 (FHM-1) S218L mutation, located in the domain I S4-S5 linker, on the molecular structure and electrophysiological properties of Cav2.1 isoforms. S218L has a prominent effect on the voltage-dependence of activation of +SSTR channels when compared to ΔSSTR, indicating a differential effect of the mutation depending on splice-variant context. Structural modeling based upon Cav2.1 cryo-EM data provided further insight reflecting independent contributions of amino acids in distant regions of the channel on gating properties. Our modelling indicates that by increasing hydrophobicity the Leu218 mutation contributes to stabilizing a structural conformation in which the domain I S4-S5 linker is oriented alongside the inner plasma membrane, similar to that occurring when S4 is translocated upon activation.The SSTR insertion appears to exert an influence in the local electric field of domain III due to an change in the distribution of positively charged regions surrounding the voltage sensing domain, which we hypothesize impacts its movement during the transition to the open state. In summary, we reveal molecular changes correlated with distinct functional effects provoked by S218L FHM-1 mutation in hCav2.1 splice isoforms whose differential expression could impact the manifestation of the neurological disorder.
Collapse
Affiliation(s)
- Anne-Sophie Sack
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Gennerick J Samera
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Anna Hissen
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Robert J Wester
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Paul J Adams
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
van Melis LVJ, Peerdeman AM, González CA, van Kleef RGDM, Wopken JP, Westerink RHS. Effects of chronic insecticide exposure on neuronal network development in vitro in rat cortical cultures. Arch Toxicol 2024; 98:3837-3857. [PMID: 39162819 PMCID: PMC11489184 DOI: 10.1007/s00204-024-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Developmental exposure to carbamates, organophosphates, and pyrethroids has been associated with impaired neurodevelopmental outcomes. Sex-specific differences following chronic insecticide exposure are rather common in vivo. Therefore, we assessed the chronic effects of in vitro exposure to different carbamates (carbaryl, methomyl and aldicarb), organophosphates [chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), and 3,5,6,trichloropyridinol (TCP)], and pyrethroids [permethrin, alpha-cypermethrin and 3-phenoxy benzoic acid (3-PBA)] on neuronal network development in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure for 1 week to carbaryl inhibited neurodevelopment in male cultures, while a hyperexcitation was observed in female cultures. Methomyl and aldicarb evoked a hyperexcitation after 2 weeks of exposure, which was more pronounced in female cultures. In contrast to acute MEA results, exposure to ≥ 10 µM CPF caused hyperexcitation in both sexes after 10 days. Interestingly, exposure to 10 µM CPO induced a clear hyperexcitation after 10 days of exposure in male but not female cultures. Exposure to 100 µM CPO strongly inhibited neuronal development. Exposure to the type I pyrethroid permethrin resulted in a hyperexcitation at 10 µM and a decrease in neuronal development at 100 µM. In comparison, exposure to ≥ 10 µM of the type II pyrethroid alpha-cypermethrin decreased neuronal development. In female but not in male cultures, exposure to 1 and 10 µM permethrin changed (network) burst patterns, with female cultures having shorter (network) bursts with fewer spikes per (network) burst. Together, these results show that MEA recordings are suitable for measuring sex-specific developmental neurotoxicity in vitro. Additionally, pyrethroid exposure induced effects on neuronal network development at human-relevant concentrations. Finally, chronic exposure has different effects on neuronal functioning compared to acute exposure, highlighting the value of both exposure paradigms.
Collapse
Affiliation(s)
- Lennart V J van Melis
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Anneloes M Peerdeman
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Celia Arenas González
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - J Pepijn Wopken
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
4
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
5
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Heck J, Palmeira Do Amaral AC, Weißbach S, El Khallouqi A, Bikbaev A, Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels (Austin) 2021; 15:322-338. [PMID: 34107849 PMCID: PMC8205089 DOI: 10.1080/19336950.2021.1900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners and recent progress in omics technologies have extended the actual concept of these molecules. With this review, we want to illustrate some new perspectives of VGCCs reaching beyond their function as calcium-permeable pores in the plasma membrane. Therefore, we will discuss the relevance of VGCCs as voltage sensors in functional complexes with ryanodine receptors, channel-independent actions of auxiliary VGCC subunits, and provide an insight into how VGCCs even directly participate in gene regulation. Furthermore, we will illustrate how structural changes in the intracellular C-terminus of VGCCs generated by alternative splicing events might not only affect the biophysical channel characteristics but rather determine their molecular environment and downstream signaling pathways.
Collapse
Affiliation(s)
- Jennifer Heck
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Ana Carolina Palmeira Do Amaral
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Stephan Weißbach
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
- Computational Genomics and Bioinformatics, Johannes Gutenberg-University Mainz, University Medical Center Mainz, Institute for Human Genetics, Mainz, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Arthur Bikbaev
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Martin Heine
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| |
Collapse
|
7
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
8
|
Yeow SQZ, Loh KWZ, Soong TW. Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:67-86. [DOI: 10.1007/978-981-16-4254-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Nardello R, Plicato G, Mangano GD, Gennaro E, Mangano S, Brighina F, Raieli V, Fontana A. Two distinct phenotypes, hemiplegic migraine and episodic Ataxia type 2, caused by a novel common CACNA1A variant. BMC Neurol 2020; 20:155. [PMID: 32336275 PMCID: PMC7183684 DOI: 10.1186/s12883-020-01704-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To investigate the genetic and environmental factors responsible for phenotype variability in a family carrying a novel CACNA1A missense mutation. Mutations in the CACNA1A gene were identified as responsible for at least three autosomal dominant disorders: FHM1 (Familial Hemiplegic Migraine), EA2 (Episodic Ataxia type 2), and SCA6 (Spinocerebellar Ataxia type 6). Overlapping clinical features within individuals of some families sharing the same CACNA1A mutation are not infrequent. Conversely, reports with distinct phenotypes within the same family associated with a common CACNA1A mutation are very rare. CASE PRESENTATION A clinical, molecular, neuroradiological, neuropsychological, and neurophysiological study was carried out in proband and his carrier mother. The new heterozygous missense variant c.4262G > A (p.Arg1421Gln) in the CACNA1A gene was detected in the two affected family members. The proband showed a complex clinical presentation characterized by developmental delay, poor motor coordination, hemiplegic migraine attacks, behavioral dysregulation, and EEG abnormalities. The mother showed typical episodic ataxia attacks during infancy with no other comorbidities and mild cerebellar signs at present neurological evaluation. CONCLUSIONS The proband and his mother exhibit two distinct clinical phenotypes. It can be hypothesized that other unknown modifying genes and/or environmental factors may cooperate to generate the wide intrafamilial variability.
Collapse
Affiliation(s)
- Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, Specialities “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Giorgia Plicato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, Specialities “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, Specialities “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Elena Gennaro
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Salvatore Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, Specialities “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, Di Cristina - ARNAS Civico Hospital, Palermo, Italy
| | - Antonina Fontana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, Specialities “G. D’Alessandro,” University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Bunda A, LaCarubba B, Bertolino M, Akiki M, Bath K, Lopez-Soto J, Lipscombe D, Andrade A. Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol Brain 2019; 12:81. [PMID: 31630675 PMCID: PMC6802325 DOI: 10.1186/s13041-019-0500-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Presynaptic CaV2.2 channels control calcium entry that triggers neurotransmitter release at both central and peripheral synapses. The Cacna1b gene encodes the α1-pore forming subunit of CaV2.2 channels. Distinct subsets of splice variants of CaV2.2 derived from cell-specific alternative splicing of the Cacna1b pre-mRNA are expressed in specific subpopulations of neurons. Four cell-specific sites of alternative splicing in Cacna1b that alter CaV2.2 channel function have been described in detail: three cassette exons (e18a, e24a, and e31a) and a pair of mutually exclusive exons (e37a/e37b). Cacna1b mRNAs containing e37a are highly enriched in a subpopulation of nociceptors where they influence nociception and morphine analgesia. E37a-Cacna1b mRNAs are also expressed in brain, but their cell-specific expression in this part of the nervous system, their functional consequences in central synapses and their role on complex behavior have not been studied. In this report, we show that e37a-Cacna1b mRNAs are expressed in excitatory projection neurons where CaV2.2 channels are known to influence transmitter release at excitatory inputs from entorhinal cortex (EC) to dentate gyrus (DG). By comparing behaviors of WT mice to those that only express e37b-CaV2.2 channels, we found evidence that e37a-CaV2.2 enhances behavioral responses to aversive stimuli. Our results suggest that alternative splicing of Cacna1b e37a influences excitatory transmitter release and couples to complex behaviors.
Collapse
Affiliation(s)
- Alexandra Bunda
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Brianna LaCarubba
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Melanie Bertolino
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Marie Akiki
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Kevin Bath
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912 USA
| | - Javier Lopez-Soto
- Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Diane Lipscombe
- Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Arturo Andrade
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| |
Collapse
|
11
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
12
|
Narasimhan A, Greiner R, Bathe OF, Baracos V, Damaraju S. Differentially expressed alternatively spliced genes in skeletal muscle from cancer patients with cachexia. J Cachexia Sarcopenia Muscle 2018; 9:60-70. [PMID: 28984045 PMCID: PMC5803615 DOI: 10.1002/jcsm.12235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional gene regulatory mechanism that contributes to proteome diversity. Aberrant splicing mechanisms contribute to various cancers and muscle-related conditions such as Duchenne muscular dystrophy. However, dysregulation of AS in cancer cachexia (CC) remains unexplored. Our objectives were (i) to profile alternatively spliced genes (ASGs) on a genome-wide scale and (ii) to identify differentially expressed alternatively spliced genes (DASGs) associated with CC. METHODS Rectus abdominis muscle biopsies obtained from cancer patients were stratified into cachectic cases (n = 21, classified based on International consensus diagnostic framework for CC) and non-cachectic controls (n = 19, weight stable cancer patients). Human transcriptome array 2.0 was used for profiling ASGs using the total RNA isolated from muscle biopsies. Representative DASG signatures were validated using semi-quantitative RT-PCR. RESULTS We identified 8960 ASGs, of which 922 DASGs (772 up-regulated and 150 down-regulated) were identified at ≥1.4 fold-change and P < 0.05. Representative DASGs validated by semi-quantitative RT-PCR confirmed the primary findings from the human transcriptome arrays. Identified DASGs were associated with myogenesis, adipogenesis, protein ubiquitination, and inflammation. Up to 10% of the DASGs exhibited cassette exon (exon included or skipped) as a predominant form of AS event. We also observed other forms of AS events such as intron retention, alternate promoters. CONCLUSIONS Overall, we have, for the first time, conducted global profiling of muscle tissue to identify DASGs associated with CC. The mechanistic roles of the identified DASGs in CC pathophysiology using model systems is warranted, as well as replication of findings in independent cohorts.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
| | - Russell Greiner
- Department of Computing SciencesUniversity of AlbertaEdmontonABT6G 2E8Canada
| | - Oliver F. Bathe
- Departments of Surgery and OncologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Vickie Baracos
- Department of OncologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| |
Collapse
|
13
|
Pradotto L, Mencarelli M, Bigoni M, Milesi A, Di Blasio A, Mauro A. Episodic ataxia and SCA6 within the same family due to the D302N CACNA1A gene mutation. J Neurol Sci 2016; 371:81-84. [PMID: 27871455 DOI: 10.1016/j.jns.2016.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/16/2023]
Abstract
Several dominant mutations of CACNA1A gene were associated with at least three different allelic disorders: spino-cerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2), and familial hemiplegic migraine-1 (FHM1). It is generally thought that loss-of-function mutations are associated with EA2, gain-of-function missense mutations with FHM1, and abnormal CAG expansions with SCA6. But, overlapping features, atypical symptoms and co-occurrence of distinct phenotypes within the same family were reported. We describe a four generation family showing different phenotypes ranging from EA2 to SCA6 and carrying the p.D302N CACNA1A gene mutation. In our family the phenotypes maintained separate and gender differences corresponding to different phenotypes were observed.
Collapse
Affiliation(s)
- Luca Pradotto
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy.
| | - Monica Mencarelli
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Italy
| | - Matteo Bigoni
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy
| | - Alessandra Milesi
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy
| | - Anna Di Blasio
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Italy
| | - Alessandro Mauro
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy; Department of Neuroscience, University of Turin, Italy
| |
Collapse
|
14
|
Lee SR, Adams PJ, Yue DT. Large Ca²⁺-dependent facilitation of Ca(V)2.1 channels revealed by Ca²⁺ photo-uncaging. J Physiol 2016; 593:2753-78. [PMID: 25809476 DOI: 10.1113/jp270091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS CaV 2.1 channels constitute a dominant Ca(2+) entry pathway into brain neurons, triggering downstream Ca(2+) -dependent processes such as neurotransmitter release. CaV 2.1 is itself modulated by Ca(2+) , resulting in activity-dependent enhancement of channel opening termed Ca(2+) -dependent facilitation (CDF). Real-time Ca(2+) imaging and Ca(2+) uncaging here reveal that CDF turns out to be strikingly faster, more Ca(2+) sensitive, and larger than anticipated on previous grounds. Robust resolution of the quantitative profile of CDF enables deduction of a realistic biophysical model for this process. These results suggest that CaV 2.1 CDF would figure most prominently in short-term synaptic plasticity and cerebellar Purkinje cell rhythmicity. ABSTRACT CaV 2.1 (P-type) voltage-gated Ca(2+) channels constitute a major source of neuronal Ca(2+) current, strongly influencing rhythmicity and triggering neurotransmitter release throughout the central nervous system. Fitting with such stature among Ca(2+) entry pathways, CaV 2.1 is itself feedback regulated by intracellular Ca(2+) , acting through calmodulin to facilitate channel opening. The precise neurophysiological role of this calcium-dependent facilitation (CDF) remains uncertain, however, in large measure because the very magnitude, Ca(2+) dependence and kinetics of CDF have resisted quantification by conventional means. Here, we utilize the photo-uncaging of Ca(2+) with CaV 2.1 channels fluxing Li(+) currents, so that voltage-dependent activation of channel gating is no longer conflated with Ca(2+) entry, and CDF is then driven solely by light-induced increases in Ca(2+) . By using this strategy, we now find that CDF can be unexpectedly large, enhancing currents by as much as twofold at physiological voltages. CDF is steeply Ca(2+) dependent, with a Hill coefficient of approximately two, a half-maximal effect reached by nearly 500 nm Ca(2+) , and Ca(2+) on/off kinetics in the order of milliseconds to tens of milliseconds. These properties were established for both native P-type currents in cerebellar Purkinje neurons, as well as their recombinant channel counterparts under heterologous expression. Such features suggest that CDF of CaV 2.1 channels may substantially enhance the regularity of rhythmic firing in cerebellar Purkinje neurons, where regularity is believed crucial for motor coordination. In addition, this degree of extensive CDF would be poised to exert large order-of-magnitude effects on short-term synaptic plasticity via rapid modulation of presynaptic Ca(2+) entry.
Collapse
Affiliation(s)
- Shin-Rong Lee
- Calcium Signals Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul J Adams
- Department of Biology, Kwantlen Polytechnic University, Surrey, BC, Canada, V3W 2M8
| | - David T Yue
- Calcium Signals Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
15
|
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2015; 15:19-34. [DOI: 10.1038/nrd.2015.5] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
17
|
Soong TW, Mori MX. Post-transcriptional modifications and "Calmodulation" of voltage-gated calcium channel function: Reflections by two collaborators of David T Yue. Channels (Austin) 2015; 10:14-9. [PMID: 26054929 DOI: 10.1080/19336950.2015.1051271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This review article is written to specially pay tribute to David T. Yue who was an outstanding human being and an excellent scientist who exuded passion and creativity. He exemplified an inter-disciplinary scientist who was able to cross scientific boundaries effortlessly in order to provide amazing understanding on how calcium channels work. This article provides a glimpse of some of the research the authors have the privilege to collaborate with David and it attempts to provide the thinking behind some of the research done. In a wider context, we highlight that calcium channel function could be exquisitely modulated by interaction with a tethered calmodulin. Post-transcriptional modifications such as alternative splicing and RNA editing further influence the Ca(2+)-CaM mediated processes such as calcium dependent inhibition and/or facilitation. Besides modifications of electrophysiological and pharmacological properties, protein interactions with the channels could also be influenced in a splice-variant dependent manner.
Collapse
Affiliation(s)
- Tuck Wah Soong
- a Department of Physiology ; Yong Loo Lin School of Medicine; National University of Singapore ; Singapore.,b NUS Graduate School for Integrative Science and Engineering, and Neurobiology/Aging Program ; Singapore.,c National Neuroscience Institute ; Singapore
| | - Masayuki X Mori
- d Kyoto University Department of Synthetic Chemistry and Biological Chemistry ; Graduate School of Engineering, Kyoto University ; Kyoto , Japan
| |
Collapse
|
18
|
Molina-Campos E, Xu Y, Atchison WD. Age-dependent contribution of P/Q- and R-type Ca2+ channels to neuromuscular transmission in lethargic mice. J Pharmacol Exp Ther 2015; 352:395-404. [PMID: 25472955 PMCID: PMC4293435 DOI: 10.1124/jpet.114.216143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/28/2014] [Indexed: 01/12/2023] Open
Abstract
β-Subunits of voltage-gated calcium channels (VGCCs) regulate assembly and membrane localization of the pore-forming α1-subunit and strongly influence channel function. β4-Subunits normally coassociate with α1A-subunits which comprise P/Q-type (Cav2.1) VGCCs. These control acetylcholine (ACh) release at adult mammalian neuromuscular junctions (NMJs). The naturally occurring lethargic (lh) mutation of the β4-subunit in mice causes loss of the α1-binding site, possibly affecting P/Q-type channel expression or function, and thereby ACh release. End-plate potentials and miniature end-plate potentials were recorded at hemidiaphragm NMJs of 5-7-week and 3-5-month-old lh and wild-type (wt) mice. Sensitivity to antagonists of P/Q- [ω-agatoxin IVA (ω-Aga-IVA)], L- (nimodipine), N- (ω-conotoxin GVIA), and R-type [C192H274N52O60S7 (SNX-482)] VGCCs was compared in juvenile and adult lh and wt mice. Quantal content (m) of adult, but not juvenile, lh mice was reduced compared to wt. ω-Aga-IVA (~60%) and SNX-482 (~ 45%) significantly reduced m in adult lh mice. Only Aga-IVA affected wt adults. In juvenile lh mice, ω-Aga-IVA and SNX-482 decreased m by >75% and ~20%, respectively. Neither ω-conotoxin GVIA nor nimodipine affected ACh release in any group. Immunolabeling revealed α1E and α1A, β1, and β3 staining at adult lh, but not wt NMJs. Therefore, in lh mice, when the β-subunit that normally coassociates with α1A to form P/Q channels is missing, P/Q-type channels partner with other β-subunits. However, overall participation of P/Q-type channels is reduced and compensated for by R-type channels. R-type VGCC participation is age-dependent, but is less effective than P/Q-type at sustaining NMJ function.
Collapse
Affiliation(s)
- Elizabeth Molina-Campos
- Department of Pharmacology and Toxicology (Y.X., W.D.A.) and Genetics Program (E.M.-C, W.D.A.), Michigan State University, East Lansing, Michigan
| | - Youfen Xu
- Department of Pharmacology and Toxicology (Y.X., W.D.A.) and Genetics Program (E.M.-C, W.D.A.), Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology (Y.X., W.D.A.) and Genetics Program (E.M.-C, W.D.A.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1522-9. [PMID: 23022282 DOI: 10.1016/j.bbamem.2012.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022]
Abstract
Neuronal voltage-gated calcium channels generate rapid, transient intracellular calcium signals in response to membrane depolarization. Neuronal Ca(V) channels regulate a range of cellular functions and are implicated in a variety of neurological and psychiatric diseases including epilepsy, Parkinson's disease, chronic pain, schizophrenia, and bipolar disorder. Each mammalian Cacna1 gene has the potential to generate tens to thousands of Ca(V) channels by alternative pre-mRNA splicing, a process that adds fine granulation to the pool of Ca(V) channel structures and functions. The precise composition of Ca(V) channel splice isoform mRNAs expressed in each cell are controlled by cell-specific splicing factors. The activity of splicing factors are in turn regulated by molecules that encode various cellular features, including cell-type, activity, metabolic states, developmental state, and other factors. The cellular and behavioral consequences of individual sites of Ca(V) splice isoforms are being elucidated, as are the cell-specific splicing factors that control splice isoform selection. Altered patterns of alternative splicing of Ca(V) pre-mRNAs can alter behavior in subtle but measurable ways, with the potential to influence drug efficacy and disease severity. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
20
|
Butte MJ, Lee SJ, Jesneck J, Keir ME, Haining WN, Sharpe AH. CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One 2012; 7:e40032. [PMID: 22768209 PMCID: PMC3386953 DOI: 10.1371/journal.pone.0040032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/03/2012] [Indexed: 12/31/2022] Open
Abstract
CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses.
Collapse
Affiliation(s)
- Manish J. Butte
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sun Jung Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Jesneck
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America and Division of Pediatric Hematology/Oncology, Children’s Hospital, Boston, Massachusetts, United States of America
| | - Mary E. Keir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. Nicholas Haining
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America and Division of Pediatric Hematology/Oncology, Children’s Hospital, Boston, Massachusetts, United States of America
| | - Arlene H. Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
CaV2.1 voltage activated calcium channels and synaptic transmission in familial hemiplegic migraine pathogenesis. ACTA ACUST UNITED AC 2011; 106:12-22. [PMID: 22074995 DOI: 10.1016/j.jphysparis.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 12/28/2022]
Abstract
Studies on the genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. In this review we focus on the role of mutated CaV2.1 (i.e., P/Q-type) voltage-activated Ca2+ channels, and on the ultimate consequences that mutations causing familial hemiplegic migraine type-1 (FHM1) have in neurotransmitter release. Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of CaV2.1 channels. Mutated CaV2.1 channels activate at more hyperpolarizing potentials and lead to a gain-of-function in synaptic transmission. This gain-of-function might underlie alterations in the excitatory/ inhibitory balance of synaptic transmission, favoring a persistent state of hyperexcitability in cortical neurons that would increase the susceptibility for cortical spreading depression (CSD), a mechanism believed to initiate the attacks of migraine with aura.
Collapse
|
22
|
Allen SE, Darnell RB, Lipscombe D. The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels (Austin) 2010; 4:483-9. [PMID: 21150296 DOI: 10.4161/chan.4.6.12868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many cellular processes are involved in optimizing protein function for specific neuronal tasks; here we focus on alternative pre-mRNA splicing. Alternative pre-mRNA splicing gives cells the capacity to modify and selectively re-balance their existing pool of transcripts in a coordinated way across multiple mRNAs, thereby effecting relatively rapid and relatively stable changes in protein activity. Here we report on and discuss the coordinated regulation of two sites of alternative splicing, e24a and e31a, in P-type CaV2.1 and N-type CaV2.2 channels. These two exons encode 4 and 2 amino acids, respectively, in the extracellular linker regions between transmembrane spanning segments S3 and S4 in domains III and IV of each CaV2 subunit. Recent genome-wide screens of splicing factor-RNA binding events by Darnell and colleagues show that Nova-2 promotes inclusion of e24a in CaV2.2 mRNAs in brain. We review these studies and show that a homologous e24a is present in theCaV2 .1 gene, Cacna1a, and that it is expressed in different regions of the nervous system. Nova-2 enhances inclusion of e24a but represses e31a inclusion in CaV2.1 and CaV2.2 mRNAs in brain. It is likely that coordinated alternative pre-mRNA splicing across related CaV2 genes by common splicing factors, allows neurons to orchestrate changes in synaptic protein function while maintaining a balanced and functioning system.
Collapse
Affiliation(s)
- Summer E Allen
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
23
|
David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP. Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 2010; 4:375-89. [PMID: 20699644 DOI: 10.4161/chan.4.5.12874] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (Ca(V)3.1, Ca(V)3.2,Ca(V)3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize Ca(V)3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length Ca(V)3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac Ca(V)3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of Ca(V)3.2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overall Ca(V)3.2 expression and a shift towards expression of Ca(V)3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of Ca(V)3.2 channels. We conclude that Ca(V)3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.
Collapse
|
24
|
Abstract
Mutations in the CACNA1A gene that encodes the pore-forming alpha1 subunit of human voltage-gated CaV2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2, and spinocerebellar ataxia type 6 (SCA6). For each channelopathy, the review describes the disease phenotype as well as the functional consequences of the disease-causing mutations on recombinant human CaV2.1 channels and, in the case of FHM1 and SCA6, on neuronal CaV2.1 channels expressed at the endogenous physiological level in knockin mouse models. The effects of FHM1 mutations on cortical spreading depression, the phenomenon underlying migraine aura, and on cortical excitatory and inhibitory synaptic transmission in FHM1 knockin mice are also described, and their implications for the disease mechanism discussed. Moreover, the review describes different ataxic spontaneous cacna1a mouse mutants and the important insights into the cerebellar mechanisms underlying motor dysfunction caused by mutant CaV2.1 channels that were obtained from their functional characterization.
Collapse
|
25
|
Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 2010; 11:9-17. [DOI: 10.1038/nrn2754] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
27
|
Serra SA, Fernàndez-Castillo N, Macaya A, Cormand B, Valverde MA, Fernández-Fernández JM. The hemiplegic migraine-associated Y1245C mutation in CACNA1A results in a gain of channel function due to its effect on the voltage sensor and G-protein-mediated inhibition. Pflugers Arch 2009; 458:489-502. [PMID: 19189122 DOI: 10.1007/s00424-009-0637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/10/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Selma A Serra
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Edifici PRBB, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Eikermann-Haerter K, Dileköz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 2009; 119:99-109. [PMID: 19104150 PMCID: PMC2613474 DOI: 10.1172/jci36059] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022] Open
Abstract
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Ergin Dileköz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Chiho Kudo
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Sean I. Savitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Christian Waeber
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael J. Baum
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michel D. Ferrari
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Arn M.J.M. van den Maagdenberg
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael A. Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
29
|
Graves TD, Imbrici P, Kors EE, Terwindt GM, Eunson LH, Frants RR, Haan J, Ferrari MD, Goadsby PJ, Hanna MG, van den Maagdenberg AMJM, Kullmann DM. Premature stop codons in a facilitating EF-hand splice variant of CaV2.1 cause episodic ataxia type 2. Neurobiol Dis 2008; 32:10-5. [PMID: 18606230 DOI: 10.1016/j.nbd.2008.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022] Open
Abstract
Premature stop codons in CACNA1A, which encodes the alpha(1A) subunit of neuronal P/Q-type (Ca(V)2.1) Ca(2+) channels, cause episodic ataxia type 2 (EA2). CACNA1A undergoes extensive alternative splicing, which contributes to the pharmacological and kinetic heterogeneity of Ca(V)2.1-mediated Ca(2+) currents. We identified three novel heterozygous stop codon mutations associated with EA2 in an alternately spliced exon (37A), which encodes part of an EF-hand motif required for Ca(2+)-dependent facilitation. One family had a C to G transversion (Y1854X). A dinucleotide deletion results in the same premature stop codon in a second family, and a further single nucleotide change leads to a different truncation (R1858X) in a de novo case of EA2. Expression studies of the Y1854X mutation revealed loss of Ca(V)2.1-mediated current. Because these mutations do not affect the alternate exon 37B, these findings reveal unexpected dependence of cerebellar function on intact exon 37A-containing Ca(V)2.1 channels.
Collapse
Affiliation(s)
- Tracey D Graves
- Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
He C, Zuo Z, Chen H, Zhang L, Zhou F, Cheng H, Zhou R. Genome-wide detection of testis- and testicular cancer-specific alternative splicing. Carcinogenesis 2007; 28:2484-90. [PMID: 17724370 DOI: 10.1093/carcin/bgm194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-messenger RNA (mRNA) splicing is a key molecular event that allows for protein diversity and plays important roles in development and disease. Alternative pre-mRNA splicing regulations during spermatogenesis and alternative pre-mRNA splicing etiology in testicular tumorigenesis are yet to be characterized. By genome-wide analysis, here we describe alternative splicing features that distinguish distinctive patterns of alternative pre-mRNA splicing among human testis, testicular cancer and mouse testis. Through computationally subtractive analysis, we detected 80 testis-specific transcript candidates in human testis, 175 in human testicular cancer and 262 in mouse testis, which were integrated into a database. Reverse transcription-polymerase chain reaction confirmed that most of these transcript candidates from mouse testis were testis specific. Around 40% of the transcripts were from unknown/hypothetical genes, which were useful for further functional analysis. These transcripts were not overlapped, indicating lack of evolutionary conservation. Further chromosome mapping showed distinct chromosomal preference of alternative pre-mRNA splicing events. Comparison analysis indicated that alternative pre-mRNA splicing in human testicular tumor shared some characters/trends with those in mouse testis. Moreover, human testicular tumor tended to use rare splice sites and there were also distinct sequences adjacent dominant splice sites between normal testis and testicular tumor. These special features of alternative pre-mRNA splicing in human testicular tumor suggested that testicular tumorigenesis was involved in multiple steps/levels of alternative splicing events. Using alternative splicing as a potential source for new clinical diagnostic, prognostic and therapeutic strategies for treatment of testicular tumors seems to have a bright prospect.
Collapse
Affiliation(s)
- Chunjiang He
- Department of Genetics and Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|