1
|
Cai H, Lee SM, Choi Y, Lee B, Im SJ, Kim DH, Choi HJ, Kim JH, Kim Y, Shin BA, Jeon S. Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice. Psychiatry Investig 2025; 22:10-25. [PMID: 39885788 PMCID: PMC11788833 DOI: 10.30773/pi.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity. METHODS Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO. RESULTS Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO. CONCLUSION Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
Collapse
Affiliation(s)
- Hua Cai
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Seong Mi Lee
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
| | - Bomlee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Soo Jung Im
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong Hyeon Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
3
|
Sóki N, Richter Z, Karádi K, Lőrincz K, Horváth R, Gyimesi C, Szekeres-Paraczky C, Horváth Z, Janszky J, Dóczi T, Seress L, Ábrahám H. Investigation of synapses in the cortical white matter in human temporal lobe epilepsy. Brain Res 2022; 1779:147787. [PMID: 35041843 DOI: 10.1016/j.brainres.2022.147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common focal pharmacotherapy-resistant epilepsy in adults. Previous studies have shown significantly higher numbers of neurons in the neocortical white matter in TLE patients than in controls. The aim of this work was to investigate whether white matter neurons are part of the neuronal circuitry. Therefore, we studied the distribution and density of synapses in surgically resected neocortical tissue of pharmacotherapy-resistant TLE patients. Neocortical white matter of temporal lobe from non-epileptic patients were used as controls. Synapses and neurons were visualized with immunohistochemistry using antibodies against synaptophysin and NeuN, respectively. The presence of synaptophysin in presynaptic terminals was verified by electron microscopy. Quantification of immunostaining was performed and the data of the patients' cognitive tests as well as clinical records were compared to the density of neurons and synapses. Synaptophysin density in the white matter of TLE patients was significantly higher than in controls. In TLE, a significant correlation was found between synaptophysin immunodensity and density of white matter neurons. Neuronal as well as synaptophysin density significantly correlated with scores of verbal memory of TLE patients. Neurosurgical outcome of TLE patients did not significantly correlate with histological data, although, higher neuronal and synaptophysin densities were observed in patients with favorable post-surgical outcome. Our results suggest that white matter neurons in TLE patients receive substantial synaptic input and indicate that white matter neurons may be integrated in epileptic neuronal networks responsible for the development or maintenance of seizures.
Collapse
Affiliation(s)
- Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Zsófia Richter
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, University of Pécs Medical School Szigeti u. 12. Pécs, 7624, Hungary
| | - Katalin Lőrincz
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Réka Horváth
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Cecília Szekeres-Paraczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH Szigony u. 43. Budapest, 1083, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary.
| |
Collapse
|
4
|
Moschetta M, Ravasenga T, De Fusco A, Maragliano L, Aprile D, Orlando M, Sacchetti S, Casagrande S, Lignani G, Fassio A, Baldelli P, Benfenati F. Ca 2+ binding to synapsin I regulates resting Ca 2+ and recovery from synaptic depression in nerve terminals. Cell Mol Life Sci 2022; 79:600. [PMID: 36409372 PMCID: PMC9678998 DOI: 10.1007/s00018-022-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Tiziana Ravasenga
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,Present Address: High-Definition Disease Modelling Lab, Campus IFOM-IEO, Milan, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Charitè Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Queens Square Institute of Neurology, University College London, London, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
5
|
Cousin MA. Synaptophysin-dependent synaptobrevin-2 trafficking at the presynapse-Mechanism and function. J Neurochem 2021; 159:78-89. [PMID: 34468992 DOI: 10.1111/jnc.15499] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Synaptobrevin-2 (Syb2) is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) that is essential for neurotransmitter release. It is the most numerous protein on a synaptic vesicle (SV) and drives SV fusion via interactions with its cognate SNARE partners on the presynaptic plasma membrane. Synaptophysin (Syp) is the second most abundant protein on SVs; however, in contrast to Syb2, it has no obligatory role in neurotransmission. Syp interacts with Syb2 on SVs, and the molecular nature of its interaction with Syb2 and its physiological role has been debated for decades. However, recent studies have revealed that the sole physiological role of Syp at the presynapse is to ensure the efficient retrieval of Syb2 during SV endocytosis. In this review, current theories surrounding the role of Syp in Syb2 trafficking will be discussed, in addition to the debate regarding the molecular nature of their interaction. A unifying model is presented that describes how Syp controls Syb2 function as part of an integrated mechanism involving key molecular players such as intersectin-1 and AP180/CALM. Finally, key future questions surrounding the role of Syp-dependent Syb2 trafficking will be posed, with respect to brain function in health and disease.
Collapse
Affiliation(s)
- Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
6
|
Synaptic Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221810058. [PMID: 34576223 PMCID: PMC8466868 DOI: 10.3390/ijms221810058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.
Collapse
|
7
|
Villalba RM, Behnke JA, Pare JF, Smith Y. Comparative Ultrastructural Analysis of Thalamocortical Innervation of the Primary Motor Cortex and Supplementary Motor Area in Control and MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 31:3408-3425. [PMID: 33676368 PMCID: PMC8599722 DOI: 10.1093/cercor/bhab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
The synaptic organization of thalamic inputs to motor cortices remains poorly understood in primates. Thus, we compared the regional and synaptic connections of vGluT2-positive thalamocortical glutamatergic terminals in the supplementary motor area (SMA) and the primary motor cortex (M1) between control and MPTP-treated parkinsonian monkeys. In controls, vGluT2-containing fibers and terminal-like profiles invaded layer II-III and Vb of M1 and SMA. A significant reduction of vGluT2 labeling was found in layer Vb, but not in layer II-III, of parkinsonian animals, suggesting a potential thalamic denervation of deep cortical layers in parkinsonism. There was a significant difference in the pattern of synaptic connectivity in layers II-III, but not in layer Vb, between M1 and SMA of control monkeys. However, this difference was abolished in parkinsonian animals. No major difference was found in the proportion of perforated versus macular post-synaptic densities at thalamocortical synapses between control and parkinsonian monkeys in both cortical regions, except for a slight increase in the prevalence of perforated axo-dendritic synapses in the SMA of parkinsonian monkeys. Our findings suggest that disruption of the thalamic innervation of M1 and SMA may underlie pathophysiological changes of the motor thalamocortical loop in the state of parkinsonism.
Collapse
Affiliation(s)
- Rosa M Villalba
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Joseph A Behnke
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Jean-Francois Pare
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
8
|
Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110135. [PMID: 33058959 DOI: 10.1016/j.pnpbp.2020.110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.
Collapse
|
9
|
Mertens R, Melchert S, Gitler D, Schou MB, Saether SG, Vaaler A, Piepgras J, Kochova E, Benfenati F, Ahnert-Hilger G, Ruprecht K, Höltje M. Epitope specificity of anti-synapsin autoantibodies: Differential targeting of synapsin I domains. PLoS One 2018; 13:e0208636. [PMID: 30543686 PMCID: PMC6292584 DOI: 10.1371/journal.pone.0208636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/20/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To identify the specific domains of the presynaptic protein synapsin targeted by recently described autoantibodies to synapsin. METHODS Sera of 20 and CSF of two patients with different psychiatric and neurological disorders previously tested positive for immunoglobulin (Ig)G antibodies to full-length synapsin were screened for IgG against synapsin I domains using HEK293 cells transfected with constructs encoding different domains of rat synapsin Ia. Additionally, IgG subclasses were determined using full-length synapsin Ia. Serum and CSF from one patient were also screened for IgA autoantibodies to synapsin I domains. Sera from nine and CSF from two healthy subjects were analyzed as controls. RESULTS IgG in serum from 12 of 20 IgG synapsin full-length positive patients, but from none of the healthy controls, bound to synapsin domains. Of these 12 sera, six bound to the A domain, five to the D domain, and one to the B- (and possibly A-), D-, and E-domains of synapsin I. IgG antibodies to the D-domain were also detected in one of the CSF samples. Determination of IgG subclasses detected IgG1 in two sera and one CSF, IgG2 in none of the samples, IgG3 in two sera, and IgG4 in eight sera. One patient known to be positive for IgA antibodies to full-length synapsin had IgA antibodies to the D-domain in serum and CSF. CONCLUSIONS Anti-synapsin autoantibodies preferentially bind to either the A- or the D-domain of synapsin I.
Collapse
Affiliation(s)
- Robert Mertens
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Melchert
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morten Brix Schou
- Department of Psychiatry, St. Olav’s University Hospital, Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre Georg Saether
- Department of Psychiatry, St. Olav’s University Hospital, Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Vaaler
- Department of Psychiatry, St. Olav’s University Hospital, Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes Piepgras
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elena Kochova
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Pozzi D, Corradini I, Matteoli M. The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience 2018; 420:72-78. [PMID: 30476527 DOI: 10.1016/j.neuroscience.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The process of neurotransmitter release is central to the control of cell-to-cell communication in brain. SNAP-25 is a component of the SNARE complex, which, together with syntaxin-1 and synaptobrevin, mediates synaptic vesicle fusion with the plasma membrane. The genetic ablation of the protein or its proteolytic cleavage by botulinum neurotoxins results in a complete block of synaptic transmission. In the last years, several evidences have indicated that SNAP-25 also plays additional modulatory roles in neurotransmission through the control of voltage-gated calcium channels and presynaptic calcium ion concentration. Consistently, reduced levels of the protein affect presynaptic calcium homeostasis and result in pathologically enhanced glutamate exocytosis. The SNAP-25-dependent alterations of synaptic calcium dynamics may have direct impact on the development of neuropsychiatric disorders where the Snap-25 gene has been found to be involved.
Collapse
Affiliation(s)
- Davide Pozzi
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| | - Irene Corradini
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy
| | - Michela Matteoli
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| |
Collapse
|
11
|
Bragina L, Conti F. Expression of Neurofilament Subunits at Neocortical Glutamatergic and GABAergic Synapses. Front Neuroanat 2018; 12:74. [PMID: 30254572 PMCID: PMC6141662 DOI: 10.3389/fnana.2018.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Neurofilaments (NFs) are neuron-specific heteropolymers that have long been considered as structural proteins. However, it has recently been documented that they may play a functional role at synapses. Indeed, the four NF subunits—NFL, NFM, NFH and α-internexin—are integral components of synapses in the striatum and hippocampus, since their elimination disrupts synaptic plasticity and impairs social memory, an observation that might have important implications for some neuropsychiatric diseases. Here, we studied NFs localization in VGLUT1-, VGLUT2-, VGAT-, PSD-95- and gephyrin-positive (+) puncta, and in glutamatergic and GABAergic synapses in the cerebral cortex of adult rats. Synapses were identified by pre- and postsynaptic markers: glutamatergic synapses by VGLUT1+ or VGLUT2+ puncta contacting PSD-95+ puncta; and GABAergic synapses by VGAT+ puncta contacting gephyrin+ puncta. In VGLUT1 glutamatergic synapses NF showed a greater expression in the compartment labeled by postsynaptic markers (20%–30%) than in those labeled by presynaptic markers (10%–20%), whereas in GABAergic synapses a similar expression was detected in both compartments (20%–30%). Moreover, NF expression was higher in the GABAergic (20%–30%) than in the glutamatergic (10%–15%) compartments labeled by presynaptic markers. Finally, a higher colocalization of VGLUT1+, VGLUT2+ and VGAT+ puncta with NFs was seen when presynaptic puncta contacted elements labeled by postsynaptic markers. These findings show that the four NF subunits are expressed at some neocortical synapses, and contribute to glutamatergic and GABAergic synapse heterogeneity.
Collapse
Affiliation(s)
- Luca Bragina
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
12
|
Münster-Wandowski A, Heilmann H, Bolduan F, Trimbuch T, Yanagawa Y, Vida I. Distinct Localization of SNAP47 Protein in GABAergic and Glutamatergic Neurons in the Mouse and the Rat Hippocampus. Front Neuroanat 2017; 11:56. [PMID: 28751858 PMCID: PMC5508021 DOI: 10.3389/fnana.2017.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022] Open
Abstract
Synaptosomal-associated protein of 47 kDa (SNAP47) isoform is an atypical member of the SNAP family, which does not contribute directly to exocytosis and synaptic vesicle (SV) recycling. Initial characterization of SNAP47 revealed a widespread expression in nervous tissue, but little is known about its cellular and subcellular localization in hippocampal neurons. Therefore, in the present study we applied multiple-immunofluorescence labeling, immuno-electron microscopy and in situ hybridization (ISH) and analyzed the localization of SNAP47 in pre- and postsynaptic compartments of glutamatergic and GABAergic neurons in the mouse and rat hippocampus. While the immunofluorescence signal for SNAP47 showed a widespread distribution in both mouse and rat, the labeling pattern was complementary in the two species: in the mouse the immunolabeling was higher over the CA3 stratum radiatum, oriens and cell body layer. In contrast, in the rat the labeling was stronger over the CA1 neuropil and in the CA3 stratum lucidum. Furthermore, in the mouse high somatic labeling for SNAP47 was observed in GABAergic interneurons (INs). On the contrary, in the rat, while most INs were positive, they blended in with the high neuropil labeling. ISH confirmed the high expression of SNAP47 RNA in INs in the mouse. Co-staining for SNAP47 and pre- and postsynaptic markers in the rat revealed a strong co-localization postsynaptically with PSD95 in dendritic spines of pyramidal cells and, to a lesser extent, presynaptically, with ZnT3 and vesicular glutamate transporter 1 (VGLUT1) in glutamatergic terminals such as mossy fiber (MF) boutons. Ultrastructural analysis confirmed the pre- and postsynaptic localization at glutamatergic synapses. Furthermore, in the mouse hippocampus SNAP47 was found to be localized at low levels to dendritic shafts and axon terminals of putative INs forming symmetric synapses, indicating that this protein could be trafficked to both post- and presynaptic sites in both major cell types. These results reveal divergent localization of SNAP47 protein in mouse and rat hippocampus indicating species- and cell type-specific differences. SNAP47 is likely to be involved in unique fusion machinery which is distinct from the one involved in presynaptic neurotransmitter release. Nonetheless, our data suggest that SNAP47 may be involved not only postsynaptic, but also in presynaptic function.
Collapse
Affiliation(s)
| | - Heike Heilmann
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Felix Bolduan
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yuchio Yanagawa
- Departments of Genetic and Behavioral Neuroscience, Gunma University, Graduate School of MedicineMaebashi City, Japan
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin BerlinBerlin, Germany.,Neurocure Cluster of Excellence, Charité-Universitätsmedizin BerlinBerlin, Germany
| |
Collapse
|
13
|
Ogata K, Kushida M, Miyata K, Sumida K, Takeda S, Izawa T, Kuwamura M, Yamate J. Alteration of microRNA expressions in the pons and medulla in rats after 3,3'-iminodipropionitrile administration. J Toxicol Pathol 2016; 29:229-236. [PMID: 27821907 PMCID: PMC5097965 DOI: 10.1293/tox.2016-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Although 3,3′-iminodipropionitrile (IDPN) is widely used as a neurotoxicant to cause axonopathy due to accumulation of neurofilaments in several rodent models, its mechanism of neurotoxicity has not been fully understood. In particular, no information regarding microRNA (miRNA) alteration associated with IDPN is available. This study was conducted to reveal miRNA alteration related to IDPN-induced neurotoxicity. Rats were administered IDPN (20, 50, or 125 mg/kg/day) orally for 3, 7, and 14 days. Histopathological features were investigated using immunohistochemistry for neurofilaments and glial cells, and miRNA alterations were analyzed by microarray and reverse transcription polymerase chain reaction. Nervous symptoms such as ataxic gait and head bobbing were observed from Day 9 at 125 mg/kg. Axonal swelling due to accumulation of neurofilaments was observed especially in the pons, medulla, and spinal cord on Day 7 at 125 mg/kg and on Day 14 at 50 and 125 mg/kg. Furthermore, significant upregulation of miR-547* was observed in the pons and medulla in treated animals only on Day 14 at 125 mg/kg. This is the first report indicating that miR-547* is associated with IDPN-induced neurotoxicity, especially in an advanced stage of axonopathy.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan; Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Shuji Takeda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|
14
|
Heise C, Schroeder JC, Schoen M, Halbedl S, Reim D, Woelfle S, Kreutz MR, Schmeisser MJ, Boeckers TM. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci 2016; 10:106. [PMID: 27199660 PMCID: PMC4844616 DOI: 10.3389/fncel.2016.00106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.
Collapse
Affiliation(s)
- Christopher Heise
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; RG Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Jan C Schroeder
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Sonja Halbedl
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; Department of Neurology, Ulm UniversityUlm, Germany
| | | |
Collapse
|
15
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
16
|
Terakado M. Adrenergic regulation of GABA release from presynaptic terminals in rat cerebral cortex. J Oral Sci 2016; 56:49-57. [PMID: 24739708 DOI: 10.2334/josnusd.56.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The α1-adrenoceptor agonist phenylephrine and the β-adrenoceptor agonist isoproterenol have opposite effects on evoked EPSPs (eEPSPs) in the cerebral cortex. The suppressive effects of phenylephrine on eEPSPs are mediated by modulation of postsynaptic glutamate receptors, whereas enhancement of eEPSPs by isoproterenol is due to facilitation of glutamate release from presynaptic terminals. The present study used whole-cell patch-clamp recordings from layer V pyramidal neurons in visuocortical slice preparations to assess the effects of phenylephrine and isoproterenol on the release probability of γ-aminobutyric acid (GABA). The present study recorded evoked inhibitory postsynaptic potentials (eIPSCs) by repetitive electrical stimulation (duration, 100 μs; 10 stimuli at 33 Hz) and miniature IPSCs (mIPSCs). The effects of phenylephrine (100 μM) depended on the amplitude of eIPSCs: phenylephrine decreased the paired-pulse ratios (PPRs) of eIPSCs with smaller amplitudes (<~600 pA) but increased PPRs of eIPSCs with larger amplitude. Phenylephrine also exhibited amplitude-dependent modulation of mIPSCs, i.e., an increase in the frequency of smaller mIPSC events (<~20 pA) and a decrease in the frequency of larger events. These findings suggest that α1-adrenoceptor activation facilitates GABA release from a subpopulation of GABAergic terminals that induce smaller-amplitude IPSCs in postsynaptic neurons. In contrast, isoproterenol (100 μM) consistently decreased the PPR of eIPSCs and increased the frequency of mIPSCs, suggesting that presynaptic β-adrenoceptors increase release probability from most GABAergic terminals. The complexity of adrenoceptor modulations in GABAergic synaptic transmission by α1-adrenoceptor and β-adrenoceptor activation may be due to the presence of pleiotropic subtypes of GABAergic interneurons in the cerebral cortex.
Collapse
|
17
|
Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. MOLECULAR NEUROPSYCHIATRY 2015; 1:220-34. [PMID: 27606314 DOI: 10.1159/000441224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.
Collapse
Affiliation(s)
| | - Dianne A Cruz
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Elizabeth A Fucich
- Departments of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Dianna Y Olukotun
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Bragina L, Bonifacino T, Bassi S, Milanese M, Bonanno G, Conti F. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front Cell Neurosci 2015; 9:345. [PMID: 26388733 PMCID: PMC4559644 DOI: 10.3389/fncel.2015.00345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/18/2015] [Indexed: 12/04/2022] Open
Abstract
Metabotropic glutamate (Glu) receptors (mGluRs) and GABAB receptors are highly expressed at presynaptic sites. To verify the possibility that the two classes of metabotropic receptors contribute to axon terminals heterogeneity, we studied the localization of mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 in VGLUT1-, VGLUT2-, and VGAT- positive terminals in the cerebral cortex of adult rats. VGLUT1-positive puncta expressed mGluR1α (∼5%), mGluR5 (∼6%), mGluR2/3 (∼22%), mGluR7 (∼17%), and GABAB1 (∼40%); VGLUT2-positive terminals expressed mGluR1α (∼10%), mGluR5 (∼11%), mGluR2/3 (∼20%), mGluR7 (∼28%), and GABAB1 (∼25%); whereas VGAT-positive puncta expressed mGluR1α (∼27%), mGluR5 (∼24%), mGluR2/3 (∼38%), mGluR7 (∼31%), and GABAB1 (∼19%). Control experiments ruled out the possibility that postsynaptic mGluRs and GABAB1 might have significantly biased our results. We also performed functional assays in synaptosomal preparations, and showed that all agonists modify Glu and GABA levels, which return to baseline upon exposure to antagonists. Overall, these findings indicate that mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 expression differ significantly between glutamatergic and GABAergic axon terminals, and that the robust expression of heteroreceptors may contribute to the homeostatic regulation of the balance between excitation and inhibition.
Collapse
Affiliation(s)
- Luca Bragina
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani – Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
| | - Silvia Bassi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of GenoaGenoa, Italy
- Center of Excellence for Biomedical Research, University of GenoaGenoa, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani – Istituto di Ricovero e Cura a Carattere ScientificoAncona, Italy
- Fondazione di Medicina Molecolare, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
19
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: Distinct roles of inhibitory and excitatory terminals. Neuroscience 2015; 301:298-311. [PMID: 26086543 DOI: 10.1016/j.neuroscience.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Schizophrenia patients treated with olanzapine, or other second-generation antipsychotics, frequently develop metabolic side-effects, such as glucose intolerance and increased adiposity. We previously observed that modeling these adverse effects in rodents also resulted in hippocampal shrinkage. Here, we investigated the impact of olanzapine treatment, and the beneficial influence of routine exercise, on the neurosecretion machinery of the hippocampus. Immunodensities and interactions of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins (syntaxin-1, synaptosome-associated protein of 25kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)), synaptotagmin and complexins-1/2 were quantified in the hippocampus of sedentary and exercising rats exposed over 9weeks to vehicle (n=28) or olanzapine (10mg/kg/day, n=28). In addition, brain sections from subgroups of sedentary animals (n=8) were co-immunolabeled with antibodies against vesicular GABA (VGAT) and glutamate (VGLUT1) transporters, along with syntaxin-1, and examined by confocal microscopy to detect selective olanzapine effects within inhibitory or excitatory terminals. Following olanzapine treatment, sedentary, but not exercising rats showed downregulated (33-50%) hippocampal densities of SNARE proteins and synaptotagmin, without altering complexin levels. Strikingly, these effects had no consequences on the amount of SNARE protein-protein interactions. Lower immunodensity of presynaptic proteins was associated with reduced CA1 volume and glucose intolerance. Syntaxin-1 depletion appeared more prominent in VGAT-positive terminals within the dentate gyrus, and in non-VGAT/VGLUT1-overlapping areas of CA3. The present findings suggest that chronic exposure to olanzapine may alter hippocampal connectivity, especially in inhibitory terminals within the dentate gyrus, and along the mossy fibers of CA3. Together with previous studies, we propose that exercise-based therapies might be beneficial for patients being treated with olanzapine.
Collapse
|
21
|
Ramirez DMO, Kavalali ET. The role of non-canonical SNAREs in synaptic vesicle recycling. CELLULAR LOGISTICS 2014; 2:20-27. [PMID: 22645707 PMCID: PMC3355972 DOI: 10.4161/cl.20114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25.
Collapse
|
22
|
Silbereis JC, Nobuta H, Tsai HH, Heine VM, McKinsey GL, Meijer DH, Howard MA, Petryniak MA, Potter GB, Alberta JA, Baraban SC, Stiles CD, Rubenstein JLR, Rowitch DH. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 2014; 81:574-87. [PMID: 24507192 DOI: 10.1016/j.neuron.2013.11.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 12/21/2022]
Abstract
Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum, resulting in an ∼30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hiroko Nobuta
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hui-Hsin Tsai
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Vivi M Heine
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabriel L McKinsey
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dimphna H Meijer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mackenzie A Howard
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Magda A Petryniak
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gregory B Potter
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Scott C Baraban
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
23
|
Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience 2014; 266:102-15. [DOI: 10.1016/j.neuroscience.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
|
24
|
Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 2014; 33:157-70. [PMID: 24413018 DOI: 10.1002/embj.201386120] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.
Collapse
Affiliation(s)
- Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bröer S, Zolkowska D, Gernert M, Rogawski MA. Proconvulsant actions of intrahippocampal botulinum neurotoxin B in the rat. Neuroscience 2013; 252:253-61. [PMID: 23906638 PMCID: PMC4530632 DOI: 10.1016/j.neuroscience.2013.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/21/2023]
Abstract
Botulinum neurotoxins (BoNTs) may affect the excitability of brain circuits by inhibiting neurotransmitter release at central synapses. There is evidence that local delivery of BoNT serotypes A and E, which target SNAP-25, a component of the release machinery specific to excitatory synapses, can inhibit seizure generation. BoNT serotype B (BoNT/B) targets VAMP2, which is expressed in both excitatory and inhibitory terminals. Here we assessed the effects of unilateral intrahippocampal infusion of BoNT/B in the rat on intravenous pentylenetetrazol (PTZ) seizure thresholds, and on the expression of spontaneous behavioral and electrographic seizures. Infusion of BoNT/B (500 and 1,000 unit) by convection-enhanced delivery caused a reduction in myoclonic twitch and clonic seizure thresholds in response to intravenous PTZ beginning about 6 days after the infusion. Handling-evoked and spontaneous convulsive seizures were observed in many BoNT/B-treated animals but not in vehicle-treated controls. Spontaneous electrographic seizure discharges were recorded in the dentate gyrus of animals that received local BoNT/B infusion. In addition, there was an increased frequency of interictal epileptiform spikes and sharp waves at the same recording site. BoNT/B-treated animals also exhibited tactile hyperresponsivity in comparison with vehicle-treated controls. This is the first demonstration that BoNT/B causes a delayed proconvulsant action when infused into the hippocampus. Local infusion of BoNT/B could be useful as a focal epilepsy model.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Hannover, Germany
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
26
|
Bragina L, Fattorini G, Giovedì S, Bosco F, Benfenati F, Conti F. Heterogeneity of presynaptic proteins: do not forget isoforms. Front Cell Neurosci 2013; 7:8. [PMID: 23382710 PMCID: PMC3563084 DOI: 10.3389/fncel.2013.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/17/2013] [Indexed: 11/13/2022] Open
Abstract
Analysis of presynaptic protein expression in glutamatergic and GABAergic central synapses performed in several laboratories and with different techniques is unveiling a complex scenario, largely because each presynaptic protein exists in several isoforms. The interpretation of these findings is generally based on the notion that each synapse and each synaptic vesicle contains one of the isoforms of each family of presynaptic proteins. We verified whether this interpretation is tenable by performing triple labeling and immunoisolation studies with the aim of detecting two isoforms of a given presynaptic protein in glutamatergic or GABAergic axon terminals and/or synaptic vesicles (SVs). Here, we show that: (1) the possibility that not all families of presynaptic proteins are expressed in all terminals must be taken into serious account; (2) the expression of a given protein isoform in a terminal does not exclude the expression of other isoforms of the same protein in the same terminal and in the same vesicle. These conclusions open new and interesting problems; their experimental analysis might improve our understanding of the physiology and pathophysiology of central synapses.
Collapse
Affiliation(s)
- Luca Bragina
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy ; Center for Neurobiology of Aging, Istituto Nazionale di Ricovero e Cura per Anziani Ancona, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenati F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 2012; 251:65-74. [PMID: 23280234 PMCID: PMC3730181 DOI: 10.1016/j.bbr.2012.12.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.
Collapse
Affiliation(s)
- Barbara Greco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Berry CT, Sceniak MP, Zhou L, Sabo SL. Developmental up-regulation of vesicular glutamate transporter-1 promotes neocortical presynaptic terminal development. PLoS One 2012; 7:e50911. [PMID: 23226425 PMCID: PMC3511412 DOI: 10.1371/journal.pone.0050911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.
Collapse
Affiliation(s)
- Corbett T. Berry
- Departments of Pharmacology and Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Michael P. Sceniak
- Departments of Pharmacology and Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Louie Zhou
- Departments of Pharmacology and Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Shasta L. Sabo
- Departments of Pharmacology and Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 2012; 223:269-76. [PMID: 22890079 DOI: 10.1016/j.neuroscience.2012.07.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is synthesized by neurons located in the hypothalamus and projecting to widespread regions of the brain, including the locus coeruleus (LC), through which MCH could modulate sleep-wake states. Yet MCH does not appear to exert direct postsynaptic effects on target neurons, including the noradrenergic LC neurons. Previous studies using in situ hybridization showed that MCH neurons synthesize glutamic acid decarboxylase (GAD) and could thus utilize GABA as a neurotransmitter. To determine whether MCH varicosities can release GABA, we examined by fluorescent microscopy in the LC, whether their terminals also contain the vesicular transporter for GABA (VGAT). In dual-immunostained sections, we found that approximately 6% of MCH varicosities was immunopositive for VGAT and a similar proportion for synaptophysin, the presynaptic marker for small synaptic vesicles, whereas <1% was positive for the vesicular glutamate transporter (VGluT2). Moreover, of the MCH varicosities, ∼5% abutted puncta that were immunostained for gephyrin, the postsynaptic marker for GABAergic synapses. In triple-immunostained sections viewed with confocal laser scanning microscopy, we established that MCH varicosities that also contained VGAT or abutted upon gephyrin puncta contacted the tyrosine hydroxylase-immunostained neurons of the LC. Our results suggest that although MCH neurons can influence noradrenergic LC neurons through paracrine release and indirect effects of their peptide, they can also do so through synaptic release and direct postsynaptic effects of GABA and thus serve to inhibit the LC neurons during sleep, when they are silent, and the MCH neurons discharge.
Collapse
|
30
|
Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, Fujiyama F, Kaneko T. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 2012; 35:838-54. [PMID: 22429243 DOI: 10.1111/j.1460-9568.2012.08027.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.
Collapse
Affiliation(s)
- Hiroshi Kameda
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gatta V, Granzotto A, Fincati K, Drago D, Bolognin S, Zatta P, Sensi SL. Microarray analysis of gene expression profiles in human neuroblastoma cells exposed to Aβ–Zn and Aβ–Cu complexes. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aims: Abnormal metal accumulation is associated with Alzheimer’s disease and plays a relevant role in affecting amyloid-β (Aβ) peptide aggregation and neurotoxicity. Material & Methods: In the present study, employing a microarray analysis of 35,129 genes, we analyzed gene expression profile changes due to exposure to Aβ1-42 –Zn or Aβ1-42 –Cu complexes in neuronal-like cells (SH-SY5Y). Results: Microarray data indicated that Aβ–Zn or Aβ–Cu complexes selectively alter expression of genes mainly related to cell death, inflammatory responses, cytoprotective mechanisms and apoptosis. Conclusions: Taken together, these findings indicate that Aβ1–42 –Zn or Aβ1–42 –Cu show some commonalities in affecting Alzheimer’s disease-related target functions. The overall modulatory activity on these genes supports the idea of a possible net effect resulting in the activation of pathways that counteract toxic effects of Aβ–Zn or Aβ–Cu.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Oral Health & Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, Italy
- Functional Genetics Unit – Center of Excellence in Aging (Ce.S.I.), Chieti, Italy
| | | | | | - Denise Drago
- CNS Repair Unit – INSPE, Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bolognin
- Department of Neurological, Neuropsychological, Morphological & Motor Sciences – Physiology & Psychology Unit, Verona, Italy
| | - Paolo Zatta
- National Research Council, Biomedical Technology Institute (CNR-ITB), Metalloproteins Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L Sensi
- Department of Neuroscience & Imaging, “G. D’Annunzio” University, Chieti, Italy
| |
Collapse
|
32
|
O'Rourke NA, Weiler NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 2012; 13:365-79. [PMID: 22573027 DOI: 10.1038/nrn3170] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pioneering studies in the middle of the twentieth century revealed substantial diversity among mammalian chemical synapses and led to a widely accepted classification of synapse type on the basis of neurotransmitter molecule identity. Subsequently, powerful new physiological, genetic and structural methods have enabled the discovery of much deeper functional and molecular diversity within each traditional neurotransmitter type. Today, this deep diversity continues to pose both daunting challenges and exciting new opportunities for neuroscience. Our growing understanding of deep synapse diversity may transform how we think about and study neural circuit development, structure and function.
Collapse
Affiliation(s)
- Nancy A O'Rourke
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
33
|
Bragina L, Fattorini G, Giovedí S, Melone M, Bosco F, Benfenati F, Conti F. Analysis of Synaptotagmin, SV2, and Rab3 Expression in Cortical Glutamatergic and GABAergic Axon Terminals. Front Cell Neurosci 2012; 5:32. [PMID: 22275882 PMCID: PMC3254050 DOI: 10.3389/fncel.2011.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/25/2011] [Indexed: 11/13/2022] Open
Abstract
We investigated whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, by performing a quantitative analysis of the degree of co-localization of synaptotagmin (SYT) 1 and 2, synaptic vesicle protein 2 (SV2) A and B, and Rab3a and c in VGLUT1+, VGLUT2+, and VGAT+ terminals and synaptic vesicles (SVs) in rat cerebral cortex. Co-localization studies showed that VGLUT1 puncta had high levels of SV2A and B and of Rab3c, intermediate levels of SYT1, and low levels of SYT2 and Rab3c; VGLUT2 puncta exhibited intermediate levels of all presynaptic proteins studied; whereas vesicular GABA transporter (VGAT) puncta had high levels of SV2A and SYT2, intermediate levels of SYT1, Rab3a, and Rab3c, and low levels of SV2B. Since SV2B is reportedly expressed by glutamatergic neurons and we observed SV2B expression in VGAT puncta, we performed electron microscopic studies and found SV2B positive axon terminals forming symmetric synapses. Immunoisolation studies showed that the expression levels of the protein isoforms varied in the three populations of SVs. Expression of SYT1 was highest in VGLUT1–SVs, while SYT2 expression was similar in the three SV groups. Expression of SV2A was similarly high in all three SV populations, except for SV2B levels that were very low in VGAT SVs. Finally, Rab3a levels were similar in the three SV groups, while Rab3c levels were highest in VGLUT1–SVs. These quantitative results extend our previous studies on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of the respective release machineries can be generated by the differential complement of SV proteins involved in distinct stages of the release process.
Collapse
Affiliation(s)
- Luca Bragina
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Epilepsy is characterized by spontaneous recurrent seizures and comprises a diverse group of syndromes with different etiologies. Epileptogenesis refers to the process whereby the brain becomes epileptic and can be related to several factors, such as acquired structural brain lesions, inborn brain malformations, alterations in neuronal signaling, and defects in maturation and plasticity of neuronal networks. In this review, we will focus on alterations of brain development that lead to an hyperexcitability phenotype in adulthood, providing examples from both animal and human studies. Malformations of cortical development (including focal cortical dysplasia, lissencephaly, heterotopia, and polymicrogyria) are frequently epileptogenic and result from defects in cell proliferation in the germinal zone and/or impaired neuronal migration and differentiation. Delayed or reduced arrival of inhibitory interneurons into the cortical plate is another possible cause of epileptogenesis. GABAergic neurons are generated during early development in the ganglionic eminences, and failure to pursue migration toward the cortex alters the excitatory/inhibitory balance resulting in aberrant network hyperexcitability. More subtle defects in the developmental assembly of excitatory and inhibitory synapses are also involved in epilepsy. For example, mutations in the presynaptic proteins synapsins and SNAP-25 cause derangements of synaptic transmission and plasticity which underlie appearance of an epileptic phenotype. Finally, there is evidence that defects in synapse elimination and remodeling during early "critical periods" can trigger hyperexcitability later in life. Further clarification of the developmental pathways to epilepsy has important implications for disease prevention and therapy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
35
|
Synaptic Vesicle Proteins: Targets and Routes for Botulinum Neurotoxins. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
VAMP-2, SNAP-25A/B and syntaxin-1 in glutamatergic and GABAergic synapses of the rat cerebellar cortex. BMC Neurosci 2011; 12:118. [PMID: 22094010 PMCID: PMC3228762 DOI: 10.1186/1471-2202-12-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the distribution of key SNARE proteins in glutamatergic and GABAergic synapses of the adult rat cerebellar cortex using light microscopy immunohistochemical techniques. Analysis was made of co-localizations of vGluT-1 and vGluT-2, vesicular transporters of glutamate and markers of glutamatergic synapses, or GAD, the GABA synthetic enzyme and marker of GABAergic synapses, with VAMP-2, SNAP-25A/B and syntaxin-1. RESULTS The examined SNARE proteins were found to be diffusely expressed in glutamatergic synapses, whereas they were rarely observed in GABAergic synapses. However, among glutamatergic synapses, subpopulations which did not contain VAMP-2, SNAP-25A/B and syntaxin-1 were detected. They included virtually all the synapses established by terminals of climbing fibres (immunoreactive for vGluT-2) and some synapses established by terminals of parallel and mossy fibres (immunoreactive for vGluT-1, and for vGluT-1 and 2, respectively). The only GABA synapses expressing the SNARE proteins studied were the synapses established by axon terminals of basket neurons. CONCLUSION The present study supplies a detailed morphological description of VAMP-2, SNAP-25A/B and syntaxin-1 in the different types of glutamatergic and GABAergic synapses of the rat cerebellar cortex. The examined SNARE proteins characterize most of glutamatergic synapses and only one type of GABAergic synapses. In the subpopulations of glutamatergic and GABAergic synapses lacking the SNARE protein isoforms examined, alternative mechanisms for regulating trafficking of synaptic vesicles may be hypothesized, possibly mediated by different isoforms or homologous proteins.
Collapse
|
37
|
Ganzella M, Moreira JD, Almeida RF, Böhmer AE, Saute JAM, Holmseth S, Souza DO. Effects of 3 weeks GMP oral administration on glutamatergic parameters in mice neocortex. Purinergic Signal 2011; 8:49-58. [PMID: 21881961 DOI: 10.1007/s11302-011-9258-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022] Open
Abstract
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.
Collapse
Affiliation(s)
- Marcelo Ganzella
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil,
| | | | | | | | | | | | | |
Collapse
|
38
|
Fassio A, Raimondi A, Lignani G, Benfenati F, Baldelli P. Synapsins: from synapse to network hyperexcitability and epilepsy. Semin Cell Dev Biol 2011; 22:408-15. [PMID: 21816229 DOI: 10.1016/j.semcdb.2011.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023]
Abstract
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity. Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, Section of Physiology and National Institute of Neuroscience, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
39
|
Hirano AA, Brandstätter JH, Morgans CW, Brecha NC. SNAP25 expression in mammalian retinal horizontal cells. J Comp Neurol 2011; 519:972-88. [PMID: 21280047 DOI: 10.1002/cne.22562] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Horizontal cells mediate inhibitory feedforward and feedback lateral interactions in the outer retina at photoreceptor terminals and bipolar cell dendrites; however, the mechanisms that underlie synaptic transmission from mammalian horizontal cells are poorly understood. The localization of a vesicular γ-aminobutyric acid (GABA) transporter (VGAT) to horizontal cell processes in primate and rodent retinae suggested that mammalian horizontal cells release transmitter in a vesicular manner. Toward determining whether the molecular machinery for vesicular transmitter release is present in horizontal cells, we investigated the expression of SNAP25 (synaptosomal-associated protein of 25 kDa), a key SNARE protein, by immunocytochemistry with cell type-specific markers in the retinae of mouse, rat, rabbit, and monkey. Different commercial antibodies to SNAP25 were tested on vertical sections of retina. We report the robust expression of SNAP25 in both plexiform layers. Double labeling with SNAP25 and calbindin antibodies demonstrated that horizontal cell processes and their endings in photoreceptor triad synapses were strongly labeled for both proteins in mouse, rat, rabbit, and monkey retinae. Double labeling with parvalbumin antibodies in monkey retina verified SNAP25 immunoreactivity in all horizontal cells. Pre-embedding immunoelectron microscopy in rabbit retina confirmed expression of SNAP25 in lateral elements within photoreceptor triad synapses. The SNAP25 immunoreactivity in the plexiform layers and outer nuclear layer fell into at least three patterns depending on the antibody, suggesting a differential distribution of SNAP25 isoforms. The presence of SNAP25a and SNAP25b isoforms in mouse retina was established by reverse transcriptase-polymerase chain reaction. SNAP25 expression in mammalian horizontal cells along with other SNARE proteins is consistent with vesicular exocytosis.
Collapse
Affiliation(s)
- Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
40
|
Hvalby O, Jensen V, Kao HT, Walaas SI. Synapsin-dependent vesicle recruitment modulated by forskolin, phorbol ester and ca in mouse excitatory hippocampal synapses. Front Synaptic Neurosci 2010; 2:152. [PMID: 21423538 PMCID: PMC3059703 DOI: 10.3389/fnsyn.2010.00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/09/2010] [Indexed: 12/03/2022] Open
Abstract
Repeated release of transmitter from presynaptic elements depends on stimulus-induced Ca2+ influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.1 Hz) were significantly enhanced by both the adenylate cyclase activator forskolin, the priming activator β-phorbol-12,13-dibutyrate (PDBu) and 4 mM [Ca2+]o′ whereas during 20 Hz stimulation, the same manipulations reduced the time needed to reach the peak and increased the magnitude of the resulting frequency facilitation. In contrast, paired-pulse facilitations were unchanged in the presence of forskolin, decreased by 4 mM [Ca2+]o and essentially abolished by PDBu. The subsequent delayed response enhancement (DRE) responses, elicited during continuous 20 Hz stimulations and mediated by recruited vesicles, were enhanced by forskolin, essentially unchanged by PDBu and slightly decreased by 4 mM [Ca2+]o· Similar experiments done on slices devoid of the vesicle-associated synapsin I and II proteins indicated that synapsin I/II-induced enhancements of vesicle recruitment were restricted to Ca2+-induced frequency facilitations and forskolin-induced enhancements of the early DRE phase, whereas the proteins had minor effects during PDBu-treatment and represented constraints on late Ca2+-induced responses. The data indicate that in these glutamatergic synapses, the comparable enhancements of single synaptic responses induced by these biochemical mechanisms can be transformed during prolonged synaptic stimulation into highly distinct short-term plasticity patterns, which are partly dependent on synapsins I/II.
Collapse
Affiliation(s)
- Oivind Hvalby
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Peng B, Lin JY, Shang Y, Yang ZW, Wang YP. Plasticity in the synaptic number associated with neuropathic pain in the rat spinal dorsal horn: A stereological study. Neurosci Lett 2010; 486:24-8. [DOI: 10.1016/j.neulet.2010.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 11/17/2022]
|
42
|
Micheva KD, Busse B, Weiler NC, O'Rourke N, Smith SJ. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 2010; 68:639-53. [PMID: 21092855 PMCID: PMC2995697 DOI: 10.1016/j.neuron.2010.09.024] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2010] [Indexed: 12/23/2022]
Abstract
A lack of methods for measuring the protein compositions of individual synapses in situ has so far hindered the exploration and exploitation of synapse molecular diversity. Here, we describe the use of array tomography, a new high-resolution proteomic imaging method, to determine the composition of glutamate and GABA synapses in somatosensory cortex of Line-H-YFP Thy-1 transgenic mice. We find that virtually all synapses are recognized by antibodies to the presynaptic phosphoprotein synapsin I, while antibodies to 16 other synaptic proteins discriminate among 4 subtypes of glutamatergic synapses and GABAergic synapses. Cell-specific YFP expression in the YFP-H mouse line allows synapses to be assigned to specific presynaptic and postsynaptic partners and reveals that a subpopulation of spines on layer 5 pyramidal cells receives both VGluT1-subtype glutamatergic and GABAergic synaptic inputs. These results establish a means for the high-throughput acquisition of proteomic data from individual cortical synapses in situ.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
43
|
Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience 2010; 169:1150-7. [PMID: 20540992 DOI: 10.1016/j.neuroscience.2010.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/21/2022]
Abstract
Orexin (Orx or hypocretin) is critically important for maintaining wakefulness, since in its absence, narcolepsy with cataplexy occurs. In this role, Orx-containing neurons can exert their influence upon multiple targets through the brain by release of Orx but possibly also by release of other neurotransmitters. Indeed, evidence was previously presented to suggest that Orx terminals could utilize glutamate (Glu) in addition to Orx as a neurotransmitter. Using fluorescence and confocal laser scanning microscopy, we investigated whether Orx varicosities contain the presynaptic markers for synaptic release of Glu or GABA and come into contact with postsynaptic markers for excitatory synapses within the locus coeruleus of the rat brain. We found that a proportion of the Orx+ varicosities were immunostained for the vesicular transporter for Glu, VGluT2. None were immunostained for vesicular glutamate transporter 1 (VGluT1) or VGluT3 or for the vesicular transporter for GABA, vesicular GABA transporter (VGAT). Among the Orx+ varicosities, 4% of all and 28% of large varicosities contained VGluT2. A similar proportion of the large Orx+ varicosities contained synaptophysin (Syp), a presynaptic marker for synaptic vesicles. Orx+ varicosities also contacted elements immunostained for postsynaptic density protein-95 (PSD)-95, a postsynaptic marker for glutamatergic synapses. We thus conclude that synaptic release of Glu occurs from Orx terminals within the locus coeruleus and can thus be important for the engagement of noradrenergic neurons in stimulating and maintaining arousal.
Collapse
|
44
|
Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Presynaptic Interneuron Subtype- and Age-Dependent Modulation of GABAergic Synaptic Transmission by β-Adrenoceptors in Rat Insular Cortex. J Neurophysiol 2010; 103:2876-88. [DOI: 10.1152/jn.00972.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-Adrenoceptors play a crucial role in the regulation of taste aversion learning in the insular cortex (IC). However, β-adrenergic effects on inhibitory synaptic transmission mediated by γ-aminobutyric acid (GABA) remain unknown. To elucidate the mechanisms of β-adrenergic modulation of inhibitory synaptic transmission, we performed paired whole cell patch-clamp recordings from layer V GABAergic interneurons and pyramidal cells of rat IC aged from postnatal day 17 (PD17) to PD46 and examined the effects of isoproterenol, a β-adrenoceptor agonist, on unitary inhibitory postsynaptic currents (uIPSCs). Isoproterenol (100 μM) induced facilitating effects on uIPSCs in 33.3% of cell pairs accompanied by decreases in coefficient of variation (CV) of the first uIPSC amplitude and paired-pulse ratio (PPR) of the second to first uIPSC amplitude, whereas 35.9% of pairs showed suppressive effects of isoproterenol on uIPSC amplitude obtained from fast spiking (FS) to pyramidal cell pairs. Facilitatory effects of isoproterenol were frequently observed in FS–pyramidal cell pairs at ≥PD24. On the other hand, isoproterenol suppressed uIPSC amplitude by 52.3 and 39.8% in low-threshold spike (LTS)–pyramidal and late spiking (LS)–pyramidal cell pairs, respectively, with increases in CV and PPR. The isoproterenol-induced suppressive effects were blocked by preapplication of 100 μM propranolol, a β-adrenoceptor antagonist. There was no significant correlation between age and changes of uIPSCs in LTS–/LS–pyramidal cell pairs. These results suggest the presence of differential mechanisms in presynaptic GABA release and/or postsynaptic GABAA receptor-related assemblies among interneuron subtypes. Age- and interneuron subtype-specific β-adrenergic modulation of IPSCs may contribute to experience-dependent plasticity in the IC.
Collapse
Affiliation(s)
- Yuko Koyanagi
- Department of Pharmacology,
- Department of Anesthesiology, and
| | | | | | - Noriaki Koshikawa
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
| | - Masayuki Kobayashi
- Department of Pharmacology,
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo; and
- Functional Probe Research Laboratory, Molecular Imaging Research Program, The Institute of Physical and Chemical Research, Kobe, Japan
| |
Collapse
|
45
|
Grumelli C, Corradini I, Matteoli M, Verderio C. Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations. Cell Calcium 2010; 47:419-24. [DOI: 10.1016/j.ceca.2010.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/23/2010] [Accepted: 03/01/2010] [Indexed: 11/25/2022]
|
46
|
Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 2010; 30:2-12. [PMID: 20053882 DOI: 10.1523/jneurosci.4074-09.2010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, approximately 50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.
Collapse
|
47
|
Suh YH, Terashima A, Petralia RS, Wenthold RJ, Isaac JTR, Roche KW, Roche PA. A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking. Nat Neurosci 2010; 13:338-43. [PMID: 20118925 PMCID: PMC2861127 DOI: 10.1038/nn.2488] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/21/2009] [Indexed: 02/06/2023]
Abstract
Regulated exocytosis is essential for many biological processes and many components of the protein trafficking machinery are ubiquitous. However, there are also exceptions, such as SNAP-25, a neuron-specific SNARE protein that is essential for synaptic vesicle release from presynaptic nerve terminals. In contrast, SNAP-23 is a ubiquitously expressed SNAP-25 homolog that is critical for regulated exocytosis in non-neuronal cells. However, the role of SNAP-23 in neurons has not been elucidated. We found that SNAP-23 was enriched in dendritic spines and colocalized with constituents of the postsynaptic density, whereas SNAP-25 was restricted to axons. In addition, loss of SNAP-23 using genetically altered mice or shRNA targeted to SNAP-23 led to a marked decrease in NMDA receptor surface expression and NMDA receptor currents, whereas loss of SNAP-25 did not. SNAP-23 is therefore important for the functional regulation of postsynaptic glutamate receptors.
Collapse
Affiliation(s)
- Young Ho Suh
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
McKee AG, Loscher JS, O'Sullivan NC, Chadderton N, Palfi A, Batti L, Sheridan GK, O'Shea S, Moran M, McCabe O, Fernández AB, Pangalos MN, O'Connor JJ, Regan CM, O'Connor WT, Humphries P, Farrar GJ, Murphy KJ. AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. J Neurochem 2009; 112:991-1004. [PMID: 20002519 DOI: 10.1111/j.1471-4159.2009.06516.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-term memory is formed by alterations in glutamate-dependent excitatory synaptic transmission, which is in turn regulated by synaptosomal protein of 25 kDa (SNAP-25), a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex essential for exocytosis of neurotransmitter-filled synaptic vesicles. Both reduced and excessive SNAP-25 activity has been implicated in various disease states that involve cognitive dysfunctions such as attention deficit hyperactivity disorder, schizophrenia and Alzheimer's disease. Here, we over-express SNAP-25 in the adult rat dorsal hippocampus by infusion of a recombinant adeno-associated virus vector, to evaluate the consequence of late adolescent-adult dysfunction of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein in the absence of developmental disruption. We report a specific and significant increase in the levels of extracellular glutamate detectable by microdialysis and a reduction in paired-pulse facilitation in the hippocampus. In addition, SNAP-25 over-expression produced cognitive deficits, delaying acquisition of a spatial map in the water maze and impairing contextual fear conditioning, both tasks known to be dorsal hippocampal dependent. The high background transmission state and pre-synaptic dysfunction likely result in interference with requisite synapse selection during spatial and fear memory consolidation. Together these studies provide the first evidence that excess SNAP-25 activity, restricted to the adult period, is sufficient to mediate significant deficits in the memory formation process.
Collapse
Affiliation(s)
- Alex G McKee
- Applied Neurotherapeutics Research Group, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin. Neuroscience 2009; 165:934-43. [PMID: 19909789 DOI: 10.1016/j.neuroscience.2009.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
To define whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, we studied the degree of co-localization of synaptogyrin (SGYR) 1 and 3, vesicle-associated membrane protein (VAMP) 1 and 2, syntaxin (STX) 1A and 1B in vesicular glutamate transporter (VGLUT)1-, VGLUT2- and vesicular GABA transporter (VGAT)-positive (+) puncta and synaptic vesicles in the rat cerebral cortex. Co-localization studies showed that SGYR1 and 3 were expressed in about 90% of VGLUT1+, 70% of VGLUT2+ and 80% of VGAT+ puncta; VAMP1 was expressed in approximately 45% of VGLUT1+, 55% of VGLUT2+, and 80% of VGAT+ puncta; VAMP2 in about 95% of VGLUT1+, 75% of VGLUT2+, and 80% of VGAT+ puncta; STX1A in about 65% of VGLUT1+, 30% of VGLUT2+, and 3% of VGAT+ puncta, and STX1B in approximately 45% of VGLUT1+, 35% of VGLUT2+, and 70% of VGAT+ puncta. Immunoisolation studies showed that while STX1A was completely segregated and virtually absent from VGAT synaptic vesicles, STX1B, VAMP1/VAMP2, SGYR1/SGYR3 showed a similar pattern with the highest expression in VGLUT1 immunoisolated vesicles and the lowest in VGAT immunoisolated vesicles. Moreover, we studied the localization of STX1B at the electron microscope and found that a population of axon terminals forming symmetric synapses were STX1B-positive.These results extend our previous observations on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of glutamatergic and GABAergic release machinery can be contributed by both the presence or absence of a given protein in a nerve terminal and the amount of protein expressed by synaptic vesicles.
Collapse
|
50
|
Distribution of the SNAP25 and SNAP23 synaptosomal-associated protein isoforms in rat cerebellar cortex. Neuroscience 2009; 164:1084-96. [PMID: 19735702 DOI: 10.1016/j.neuroscience.2009.08.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
Synaptosome-associated protein of 25 kDa (SNAP25) is a component of the fusion complex that mediates synaptic vesicle exocytosis, regulates calcium dynamics and neuronal plasticity. Despite its crucial role in vesicle release, SNAP25 is not distributed homogenously within the brain. It seems to be virtually absent in mature inhibitory terminals and is observed in a subtype of excitatory neurons defined by the expression of vesicular glutamate transporter 1 (VGluT1). Since a complementary distribution of VGluT1 and VGluT2 in excitatory synapses is correlated with different probabilities of release (Pr), we evaluated whether SNAP25 localization is associated with specific synaptic properties. In the cerebellum, climbing fiber (CF) and parallel fiber (PF) inputs, which impinge onto the same Purkinje cell (PC), have very different functional properties. In the cerebellum of adult rats, using confocal and electron microscopy, we observed that VGluT2-positive CFs, characterized by a high Pr, only weakly express SNAP25, while VGluT1-positive PFs that show a low Pr abundantly express SNAP25. Moreover, SNAP25 was less profuse in the VGluT2-positive rosettes of mossy fibers (MFs) and was almost absent in inhibitory terminals. We extended our analysis to the SNAP23 homolog; this is expressed at different levels in both gamma-aminobutyric acid-containing terminals (GABAergic) and glutamatergic terminals of the cerebellar cortex. In conclusion, the preferential localization of SNAP25 in specific synaptic boutons suggests a correlation between SNAP25 and the Pr. This evidence supports the hypothesis that SNAP25 has a modulatory role in shaping synaptic responses.
Collapse
|