1
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Shoemaker PA, Bekkouche BMB. Modeling traveling calcium waves in cellular structures. J Comput Neurosci 2025:10.1007/s10827-025-00898-2. [PMID: 40172607 DOI: 10.1007/s10827-025-00898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
We report a parametric simulation study of traveling calcium waves in two classes of cellular structures: dendrite-like processes and an idealized cell body. It is motivated by the hypothesis that calcium waves may participate in spatiotemporal sensory processing; accordingly, its objective is to elucidate the dependence of traveling wave characteristics (e.g., propagation speed and amplitude) on various anatomical and physiological parameters. The models include representations of inositol trisphosphate and ryanodine receptors (which mediate transient calcium entry into the cytoplasm from the endoplasmic reticulum), as well as other entities involved in calcium transport or reactions. These support traveling cytoplasmic calcium waves, which are fully regenerative for significant ranges of model parameters. We also observe Hopf bifurcations between stable and unstable regimes, the latter being characterized by periodic calcium spikes. Traveling waves are possible in unstable processes during phases with sufficiently high calcium levels in the endoplasmic reticulum. Damped and abortive waves are observed for some parameter values. When both receptor types are present and functional, we find wave speeds on the order of 100 to several hundred micrometers per second and cytosolic calcium transients with amplitudes of tens of micromolar; when ryanodine receptors are absent, these values are on the order of tens of micrometers per second and 1-6 micromolar. Even with significantly downgraded channel conductance, ryanodine receptors can significantly impact wave speeds and amplitudes. Receptor areal densities and the diffusion coefficient for cytoplasmic calcium are the parameters to which wave characteristics are most sensitive.
Collapse
Affiliation(s)
- Patrick A Shoemaker
- Computational Science Research Center, San Diego State University, San Diego, CA, USA.
| | - Bo M B Bekkouche
- , Nevrobo AB (5593306664), Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Musotto R, Wanderlingh U, Pioggia G. Ca 2+ waves in astrocytes: computational modeling and experimental data. Front Cell Neurosci 2025; 19:1536096. [PMID: 40226297 PMCID: PMC11985530 DOI: 10.3389/fncel.2025.1536096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
This paper examines different computational models for Calcium wave propagation in astrocytes. Through a comparative analysis of models by Goldbeter, De Young-Keizer, Atri, Li-Rinzel, and De Pittà and of experimental data, the study highlights the model contributions for the understanding of Calcium dynamics. Tracing the evolution from simple to complex models, this work emphasizes the importance of integrating experimental data in order to further refine these models. The results allow to improve our understanding of the physiological functions of astrocytes, suggesting the importance of more accurate astrocyte models.
Collapse
Affiliation(s)
- Rosa Musotto
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| | - Ulderico Wanderlingh
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- National Research Council, IRIB-CNR, Institute for Biomedical Research and Innovation, Messina, Italy
| |
Collapse
|
4
|
Li S, Cai Y, Xia Z. Editorial: Function and regulation of non-neuronal cells in the nervous system. Front Cell Neurosci 2025; 19:1550903. [PMID: 39990969 PMCID: PMC11842420 DOI: 10.3389/fncel.2025.1550903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Affiliation(s)
- Sisi Li
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, Shuanghe, Hubei, China
| |
Collapse
|
5
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
6
|
Yoon S, Lee S, Joo Y, Ha E, Hong H, Song Y, Lee H, Kim S, Suh C, Lee CJ, Lyoo IK. Variations in Brain Glutamate and Glutamine Levels Throughout the Sleep-Wake Cycle. Biol Psychiatry 2024:S0006-3223(24)01785-2. [PMID: 39643103 DOI: 10.1016/j.biopsych.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Glutamatergic signaling is essential for modulating synaptic plasticity and cognition. However, the dynamics of glutamatergic activity over the 24-hour sleep-wake cycle, particularly in relation to sleep, remain poorly understood. In this study, we aimed to investigate diurnal variations in brain Glx levels-representing the combined concentrations of glutamate and glutamine-in humans and to explore their implications for cognitive performance and sleep pressure. METHODS We conducted 2 independent experiments to measure Glx levels across the sleep-wake cycle using proton magnetic resonance spectroscopy. In experiment 1, 14 participants underwent 13 hours of Glx measurements during a typical sleep-wake cycle. Experiment 2 extended these measurements to an around-the-clock observation over a 6-day period. This period included 2 days of normal sleep-wake cycles, 24 hours of enforced wakefulness, and a 3-day recovery phase. Seven participants took part in experiment 2. RESULTS The study observed that brain Glx levels increased during wakefulness and decreased during sleep. Notably, Glx levels were lower during enforced wakefulness than during normal wakefulness. Reduced Glx levels were associated with diminished cognitive performance, while greater Glx exposure over the preceding 24 hours correlated with increased sleep pressure. CONCLUSIONS These findings suggest that Glx accumulation may contribute to increased sleep pressure, while its reduction appears to support wakefulness. These observations, together with the diurnal variations in Glx levels, underscore the dynamic nature of glutamatergic activity across the daily cycle. Further research is warranted to explore the potential role of sleep in regulating glutamatergic homeostasis.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Division of Psychology and Cognitive Science, Seoul Women's University, Seoul, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Chaewon Suh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
7
|
Garcia DW, Jacquir S. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse. BIOLOGICAL CYBERNETICS 2024; 118:249-266. [PMID: 39276225 DOI: 10.1007/s00422-024-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/16/2024]
Abstract
Despite significant advancements in recent decades, gaining a comprehensive understanding of brain computations remains a significant challenge in neuroscience. Using computational models is crucial for unraveling this complex phenomenon and is equally indispensable for studying neurological disorders. This endeavor has created many neuronal models that capture brain dynamics at various scales and complexities. However, most existing models do not account for the potential influence of glial cells, particularly astrocytes, on neuronal physiology. This gap persists even with the emerging evidence indicating their critical role in regulating neural network activity, plasticity, and even neurological pathologies. To address this gap, some works proposed models that include neuron-glia interactions. Also, while some literature focuses on sophisticated models of neuron-glia interactions that mimic the complexity of physiological phenomena, there are also existing works that propose simplified models of neural-glial ensembles. Building upon these efforts, we aimed to contribute further to the field by proposing a simplified tripartite synapse model that encompasses the presynaptic neuron, postsynaptic neuron, and astrocyte. We defined the tripartite synapse model based on the Adaptive Exponential Integrate-and-Fire neuron model and a simplified scheme of the astrocyte model previously proposed by Postnov. Through our simulations, we demonstrated how astrocytes can influence neuronal firing behavior by sequentially activating and deactivating different pathways within the tripartite synapse. This modulation by astrocytes can shape neuronal behavior and introduce irregularities in the firing patterns of both presynaptic and postsynaptic neurons through the introduction of new pathways and configurations of relevant parameters.
Collapse
Affiliation(s)
- Den Whilrex Garcia
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, 91400, France.
- Department of Engineering, Lyceum of the Philippines University, Cavite, Philippines.
| | - Sabir Jacquir
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, 91400, France.
| |
Collapse
|
8
|
Ororbia AG. Contrastive signal-dependent plasticity: Self-supervised learning in spiking neural circuits. SCIENCE ADVANCES 2024; 10:eadn6076. [PMID: 39441920 PMCID: PMC11639678 DOI: 10.1126/sciadv.adn6076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.
Collapse
Affiliation(s)
- Alexander G. Ororbia
- Department of Computer Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| |
Collapse
|
9
|
Amato S, Averna M, Farsetti E, Guidolin D, Pedrazzi M, Gatta E, Candiani S, Maura G, Agnati LF, Cervetto C, Marcoli M. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int J Mol Sci 2024; 25:8610. [PMID: 39201299 PMCID: PMC11354247 DOI: 10.3390/ijms25168610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
| | - Guido Maura
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
10
|
Faysal M, Dehbia Z, Zehravi M, Sweilam SH, Haque MA, Kumar KP, Chakole RD, Shelke SP, Sirikonda S, Nafady MH, Khan SL, Nainu F, Ahmad I, Emran TB. Flavonoids as Potential Therapeutics Against Neurodegenerative Disorders: Unlocking the Prospects. Neurochem Res 2024; 49:1926-1944. [PMID: 38822985 DOI: 10.1007/s11064-024-04177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Neurodegeneration, the decline of nerve cells in the brain, is a common feature of neurodegenerative disorders (NDDs). Oxidative stress, a key factor in NDDs such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease can lead to neuronal cell death, mitochondria impairment, excitotoxicity, and Ca2+ stress. Environmental factors compromising stress response lead to cell damage, necessitating novel therapeutics for preventing or treating brain disorders in older individuals and an aging population. Synthetic medications offer symptomatic benefits but can have adverse effects. This research explores the potential of flavonoids derived from plants in treating NDDs. Flavonoids compounds, have been studied for their potential to enter the brain and treat NDDs. These compounds have diverse biological effects and are currently being explored for their potential in the treatment of central nervous system disorders. Flavonoids have various beneficial effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic, and antioxidant properties. Their potential to alleviate symptoms of NDDs is significant.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Ghatkesar, Hyderabad, 500088, India
| | - Kusuma Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Govt. of N.C.T. of Delhi, Pushpvihar, New Delhi, 110017, India
| | - Rita D Chakole
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, 415124, Maharashtra, India
| | - Satish P Shelke
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, 443001, Maharashtra, India
| | - Swapna Sirikonda
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Ghatkesar, 500088, Hyderabad, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
11
|
Bougea A, Angelopoulou E, Vasilopoulos E, Gourzis P, Papageorgiou S. Emerging Therapeutic Potential of Fluoxetine on Cognitive Decline in Alzheimer's Disease: Systematic Review. Int J Mol Sci 2024; 25:6542. [PMID: 38928248 PMCID: PMC11203451 DOI: 10.3390/ijms25126542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoxetine, a commonly prescribed medication for depression, has been studied in Alzheimer's disease (AD) patients for its effectiveness on cognitive symptoms. The aim of this systematic review is to investigate the therapeutic potential of fluoxetine in cognitive decline in AD, focusing on its anti-degenerative mechanisms of action and clinical implications. According to PRISMA, we searched MEDLINE, up to 1 April 2024, for animal and human studies examining the efficacy of fluoxetine with regard to the recovery of cognitive function in AD. Methodological quality was evaluated using the ARRIVE tool for animal AD studies and the Cochrane tool for clinical trials. In total, 22 studies were analyzed (19 animal AD studies and 3 clinical studies). Fluoxetine promoted neurogenesis and enhanced synaptic plasticity in preclinical models of AD, through a decrease in Aβ pathology and increase in BDNF, by activating diverse pathways (such as the DAF-16-mediated, TGF-beta1, ILK-AKT-GSK3beta, and CREB/p-CREB/BDNF). In addition, fluoxetine has anti-inflammatory properties/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome. Only three clinical studies showed that fluoxetine ameliorated the cognitive performance of people with AD; however, several methodological issues limited the generalizability of these results. Overall, the high-quality preclinical evidence suggests that fluoxetine may have neuroprotective, antioxidant, and anti-inflammatory effects in AD animal models. While more high-quality clinical research is needed to fully understand the mechanisms underlying these effects, fluoxetine is a promising potential treatment for AD patients. If future clinical trials confirm its anti-degenerative and neuroprotective effects, fluoxetine could offer a new therapeutic approach for slowing down the progression of AD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
| | - Philippos Gourzis
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
- Department of Psychiatry, University of Patras, 26504 Patras, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| |
Collapse
|
12
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Wang Y, Wang L, Fan H, Ma J, Cao H, Wang X. Breathing cluster in complex neuron-astrocyte networks. CHAOS (WOODBURY, N.Y.) 2023; 33:113118. [PMID: 37967261 DOI: 10.1063/5.0146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Brain activities are featured by spatially distributed neural clusters of coherent firings and a spontaneous slow switching of the clusters between the coherent and incoherent states. Evidences from recent in vivo experiments suggest that astrocytes, a type of glial cell regarded previously as providing only structural and metabolic supports to neurons, participate actively in brain functions by regulating the neural firing activities, yet the underlying mechanism remains unknown. Here, introducing astrocyte as a reservoir of the glutamate released from the neuron synapses, we propose the model of the complex neuron-astrocyte network, and investigate the roles of astrocytes in regulating the cluster synchronization behaviors of networked chaotic neurons. It is found that a specific set of neurons on the network are synchronized and form a cluster, while the remaining neurons are kept as desynchronized. Moreover, during the course of network evolution, the cluster is switching between the synchrony and asynchrony states in an intermittent fashion, henceforth the phenomenon of "breathing cluster." By the method of symmetry-based analysis, we conduct a theoretical investigation on the synchronizability of the cluster. It is revealed that the contents of the cluster are determined by the network symmetry, while the breathing of the cluster is attributed to the interplay between the neural network and the astrocyte. The phenomenon of breathing cluster is demonstrated in different network models, including networks with different sizes, nodal dynamics, and coupling functions. The findings shed light on the cellular mechanism of astrocytes in regulating neural activities and give insights into the state-switching of the neocortex.
Collapse
Affiliation(s)
- Ya Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Liang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Huawei Fan
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Ma
- Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hui Cao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
14
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
15
|
Napier M, Reynolds K, Scott AL. Glial-mediated dysregulation of neurodevelopment in Fragile X Syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:187-215. [PMID: 37993178 DOI: 10.1016/bs.irn.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.
Collapse
Affiliation(s)
- M Napier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - K Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - A L Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
16
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
17
|
Brewton HW, Robinson SL, Thiele TE. Astrocyte expression in the extended amygdala of C57BL/6J mice is sex-dependently affected by chronic intermittent and binge-like ethanol exposure. Alcohol 2023; 108:55-64. [PMID: 36539069 PMCID: PMC10033386 DOI: 10.1016/j.alcohol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption. The basolateral amygdala (BLA), central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are brain regions that process stress, anxiety, and reward; they are also implicated in modulating ethanol intake. Little is understood, however, about how astrocyte expression in each region is modulated by chronic and binge-like ethanol drinking patterns. In the present report, we utilized two separate animal models of excessive drinking: chronic intermittent ethanol (CIE) and "Drinking-in-the-dark" (DID). Following these paradigms, animal brains were processed through immunohistochemistry (IHC) and stained for glial fibrillary acidic protein (GFAP). Collected data illustrated a sex-dependent relationship between ethanol intake and GFAP immunoreactivity (IR) in the BLA and BNST, but not in the CeA. Specifically, CIE and DID ethanol drinking resulted in blunted GFAP-IR (specifically via GFAP-positive cell count) in the BLA and BNST, particularly in males. These findings may implicate sex-dependent ethanol-induced changes in BLA and BNST astrocytes, providing a potential therapeutic target for anxiety and stress disorders.
Collapse
Affiliation(s)
- Honoreé W Brewton
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States
| | - Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States.
| |
Collapse
|
18
|
Schmithorst VJ, Adams PS, Badaly D, Lee VK, Wallace J, Beluk N, Votava-Smith JK, Weinberg JG, Beers SR, Detterich J, Wood JC, Lo CW, Panigrahy A. Impaired Neurovascular Function Underlies Poor Neurocognitive Outcomes and Is Associated with Nitric Oxide Bioavailability in Congenital Heart Disease. Metabolites 2022; 12:metabo12090882. [PMID: 36144286 PMCID: PMC9504090 DOI: 10.3390/metabo12090882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
We use a non-invasive MRI proxy of neurovascular function (pnvf) to assess the ability of the vasculature to supply baseline metabolic demand, to compare pediatric and young adult congenital heart disease (CHD) patients to normal referents and relate the proxy to neurocognitive outcomes and nitric oxide bioavailability. In a prospective single-center study, resting-state blood-oxygen-level-dependent (BOLD) and arterial spin labeling (ASL) MRI scans were successfully obtained from 24 CHD patients (age = 15.4 ± 4.06 years) and 63 normal referents (age = 14.1 ± 3.49) years. Pnvf was computed on a voxelwise basis as the negative of the ratio of functional connectivity strength (FCS) estimated from the resting-state BOLD acquisition to regional cerebral blood flow (rCBF) as estimated from the ASL acquisition. Pnvf was used to predict end-tidal CO2 (PETCO2) levels and compared to those estimated from the BOLD data. Nitric oxide availability was obtained via nasal measurements (nNO). Pnvf was compared on a voxelwise basis between CHD patients and normal referents and correlated with nitric oxide availability and neurocognitive outcomes as assessed via the NIH Toolbox. Pnvf was shown as highly predictive of PETCO2 using theoretical modeling. Pnvf was found to be significantly reduced in CHD patients in default mode network (DMN, comprising the ventromedial prefrontal cortex and posterior cingulate/precuneus), salience network (SN, comprising the insula and dorsal anterior cingulate), and central executive network (CEN, comprising posterior parietal and dorsolateral prefrontal cortex) regions with similar findings noted in single cardiac ventricle patients. Positive correlations of Pnvf in these brain regions, as well as the hippocampus, were found with neurocognitive outcomes. Similarly, positive correlations between Pnvf and nitric oxide availability were found in frontal DMN and CEN regions, with particularly strong correlations in subcortical regions (putamen). Reduced Pnvf in CHD patients was found to be mediated by nNO. Mediation analyses further supported that reduced Pnvf in these regions underlies worse neurocognitive outcome in CHD patients and is associated with nitric oxide bioavailability. Impaired neuro-vascular function, which may be non-invasively estimated via combined arterial-spin label and BOLD MR imaging, is a nitric oxide bioavailability dependent factor implicated in adverse neurocognitive outcomes in pediatric and young adult CHD.
Collapse
Affiliation(s)
| | - Phillip S. Adams
- Department of Pediatric Anesthesiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Daryaneh Badaly
- Learning and Development Center, Child Mind Institute, New York, NY 10022, USA
| | - Vincent K. Lee
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia Wallace
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Nancy Beluk
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | | | | | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jon Detterich
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - John C. Wood
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-692-5510; Fax: +1-412-692-6929
| |
Collapse
|
19
|
Glutamate Uptake Is Not Impaired by Hypoxia in a Culture Model of Human Fetal Neural Stem Cell-Derived Astrocytes. Genes (Basel) 2022; 13:genes13030506. [PMID: 35328060 PMCID: PMC8953426 DOI: 10.3390/genes13030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.
Collapse
|
20
|
Curreli S, Bonato J, Romanzi S, Panzeri S, Fellin T. Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol 2022; 20:e3001530. [PMID: 35239646 PMCID: PMC8893713 DOI: 10.1371/journal.pbio.3001530] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023] Open
Abstract
Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.
Collapse
Affiliation(s)
- Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jacopo Bonato
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara Romanzi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- University of Genova, Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
21
|
Marino M, Mele E, Pastorino GMG, Meccariello R, Operto FF, Santoro A, Viggiano A. Neuroinflammation: Molecular Mechanisms And Therapeutic Perspectives. Cent Nerv Syst Agents Med Chem 2022; 22:160-174. [PMID: 36177627 DOI: 10.2174/1871524922666220929153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neuroinflammation is a key component in the etiopathogenesis of neurological diseases and brain aging. This process involves the brain immune system that modulates synaptic functions and protects neurons from infection or damage. Hence, the knowledge of neuroinflammation related pathways and modulation by drugs or natural compounds is functional to developing therapeutic strategies aimed at preserving, maintaining and restoring brain health. OBJECTIVE This review article summarizes the basics of neuroinflammation and related signaling pathways, the success of the dietary intervention in clinical practice and the possible development of RNA-based strategies for treating neurological diseases. METHODS Pubmed search from 2012 to 2022 with the keywords neuroinflammation and molecular mechanisms in combination with diet, miRNA and non-coding RNA. RESULTS Glial cells-play a crucial role in neuroinflammation, but several pathways can be activated in response to different inflammatory stimuli, inducing cell death by apoptosis, pyroptosis or necroptosis. The dietary intervention has immunomodulatory effects and could limit the inflammatory process induced by microglia and astrocytes. Thus by inhibiting neuroinflammation and improving the symptoms of a variety of neurological diseases, diet exerts pleiotropic neuroprotective effects independently from the spectrum of pathophysiological mechanisms underlying the specific disorder. Furthermore, data from animal models revealed that altered expression of specific noncoding RNAs, in particular microRNAs, contributes to neuroinflammatory diseases; consequently, RNA-based strategies may be promising to alleviate the consequences of neuroinflammation. CONCLUSION Further studies are needed to identify the molecular pathways and the new pharmacological targets in neuroinflammation to lay the basis for more effective and selective therapies to be applied, in parallel to dietary intervention, in the treatment of neuroinflammation-based diseases.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
| | | | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Medical School, University of Salerno, Salerno, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| |
Collapse
|
22
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Ketamine Action on Astrocytes Provides New Insights into Rapid Antidepressant Mechanisms. ADVANCES IN NEUROBIOLOGY 2021; 26:349-365. [PMID: 34888841 DOI: 10.1007/978-3-030-77375-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, exerts rapid, potent and long-lasting antidepressant effect already after a single administration of a low dose into depressed individuals. Apart from targeting neuronal NMDARs essential for synaptic transmission, ketamine also interacts with astrocytes, the principal homoeostatic cells of the central nervous system. The cellular mechanisms underlying astrocyte-based rapid antidepressant effect are incompletely understood. Here we overview recent data that describe ketamine-dependent changes in astrocyte cytosolic cAMP activity ([cAMP]i) and ketamine-induced modifications of stimulus-evoked Ca2+ signalling. The latter regulates exocytotic release of gliosignalling molecules and stabilizes the vesicle fusion pore in a narrow configuration that obstructs cargo discharge or vesicle membrane recycling. Ketamine also instigates rapid redistribution of cholesterol in the astrocyte plasmalemma that may alter flux of cholesterol to neurones, where it is required for changes in synaptic plasticity. Finally, ketamine attenuates mobility of vesicles carrying the inward rectifying potassium channel (Kir4.1) and reduces the surface density of Kir4.1 channels that control extracellular K+ concentration, which tunes the pattern of action potential firing in neurones of lateral habenula as demonstrated in a rat model of depression. Thus, diverse, but not mutually exclusive, mechanisms act synergistically to evoke changes in synaptic plasticity leading to sustained strengthening of excitatory synapses necessary for rapid antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Celica BIOMEDICAL, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Food-Origin Mycotoxin-Induced Neurotoxicity: Intend to Break the Rules of Neuroglia Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9967334. [PMID: 34621467 PMCID: PMC8492254 DOI: 10.1155/2021/9967334] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Mycotoxins are key risk factors in human food and animal feed. Most of food-origin mycotoxins could easily enter the organism and evoke systemic toxic effects, such as aflatoxin B1 (AFB1), ochratoxin A (OTA), T-2 toxin, deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), and 3-nitropropionic acid (3-NPA). For the last decade, the researches have provided much evidences in vivo and in vitro that the brain is an important target organ on mycotoxin-mediated neurotoxic phenomenon and neurodegenerative diseases. As is known to all, glial cells are the best regulator and defender of neurons, and a few evaluations about the effects of mycotoxins on glial cells such as astrocytes or microglia have been conducted. The fact that mycotoxin contamination may be a key factor in neurotoxicity and glial dysfunction is exactly the reason why we reviewed the activation, oxidative stress, and mitochondrial function changes of glial cells under mycotoxin infection and summarized the mycotoxin-mediated glial cell proliferation disorders, death pathways, and inflammatory responses. The purpose of this paper is to analyze various pathways in which common food-derived mycotoxins can induce glial toxicity and provide a novel perspective for future research on the neurodegenerative diseases.
Collapse
|
24
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
25
|
Nanclares C, Baraibar AM, Araque A, Kofuji P. Dysregulation of Astrocyte-Neuronal Communication in Alzheimer's Disease. Int J Mol Sci 2021; 22:7887. [PMID: 34360652 PMCID: PMC8346080 DOI: 10.3390/ijms22157887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies implicate astrocytes in Alzheimer's disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this "active" role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.
Collapse
Affiliation(s)
| | | | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.N.); (A.M.B.); (A.A.)
| |
Collapse
|
26
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
27
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
The Effect of Ulinastatin to the Learning and Memory in Zebrafish. Neuromolecular Med 2021; 23:511-520. [PMID: 33772390 DOI: 10.1007/s12017-021-08653-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Previous study indicated that Ulinastatin (UTI) increased glutamine uptake by upregulation of glutamate transporters in astrocytes. These glutamate transporters have important role to improve cognitive function in hippocampus. In this study, we wanted to demonstrate whether UTI could improve learning and memory by using zebrafish behavior model and bio-markers. Zebrafish were 6-8 months of age and were 2.5-3.5 cm long. They were divided into four groups by control, 1X PBS-injected control, UTI 10,000, and 50,000 injected group. All PBS and UTI injected zebrafish were anesthetized by Tricainemethanesulphonate. We measured total time, distance moved, and frequency in each compartment of T-maze. We also measured the expression levels of glutamate transporter levels and cognitive bio-markers such as c-fos, c-jun, BDNF. UTI affected the learning and memory in zebrafish in a dose-dependent manner. In 50,000 unit/kg UTI-treated zebrafish, there were increases of time, distance, and frequency in target compartment. In 50,000 unit/kg UTI-treated zebrafish, there was an increase of time in target compartment. There was no difference among control, PBS-injected, and UTI 10,000 unit/kg-treated groups. EAAT4 glutamate transporter, c-fos and BDNF were significantly increased in 50,000 unit/kg UTI-treated group. UTI-enhanced learning and memory in zebrafish. The expressions of EAAT4 glutamate transporter, c- fos and BDNF in zebrafish were highly correlated may play a role.
Collapse
|
29
|
Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:509. [PMID: 33850906 PMCID: PMC8039675 DOI: 10.21037/atm-21-273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) has been studied for many years since its discovery. Although many functions and characteristics of brain α7nAChR are widely understood, much remains to be elucidated. The α7nAChR is widely expressed in the central nervous system, not only in neurons but also in astrocytes, microglia, and endothelial cells. α7nAChR can be activated by endogenous agonist like acetylcholine or exogenous agonists like nicotine and PNU282987. Its agonists can be divided into selective agonists and non-selective agonists. The activation of α7nAChR results in a series of physiological processes which have both short-term and long-term effects on cells, for example, calcium influx, neurotransmitter release, synaptic plasticity, and excitatory transmission. It also induces other downstream events, such as inflammation, autophagy, necrosis, transcription, and apoptosis. The cellular responses to α7nAChR activation vary according to cell types and conditions. For example, α7nAChR activation in pyramidal neurons leads to long-term potentiation, while α7nAChR activation in GABAergic interneurons leads to long-term depression. Studies have also shown some contradictory phenomena, which requires further study for clarification. Herein, the cellular responses of α7nAChR activation are summarized, and the functions of α7nAChR in neurons and non-neuronal cells are discussed. We also summarized contradictory conclusions to show where we stand and where to go for future studies.
Collapse
Affiliation(s)
- Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.,Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Wen-Jun Zhang
- Department of Neurology, Dongying People's Hospital, Dongying, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Prakriya M. Calcium and cell function. J Physiol 2021; 598:1647-1648. [PMID: 32350889 DOI: 10.1113/jp279541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
31
|
Activation of Astrocytes in the Dorsomedial Striatum Facilitates Transition From Habitual to Goal-Directed Reward-Seeking Behavior. Biol Psychiatry 2020; 88:797-808. [PMID: 32564901 PMCID: PMC7584758 DOI: 10.1016/j.biopsych.2020.04.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Habitual reward-seeking behavior is a hallmark of addictive behavior. The role of the dorsomedial striatum (DMS) in regulating goal-directed reward-seeking behavior has been long appreciated. However, it remains unclear how the astrocytic activities in the DMS differentially affect the behavioral shift. METHODS To investigate the astrocytic activity-driven neuronal synaptic events and behavioral consequences, we chemogenetically activated astrocytes in the DMS using GFAP promoter-driven expression of hM3Dq, the excitatory DREADDs (designer receptors exclusively activated by designer drugs). First, we confirmed the chemogenetically induced cellular activity in the DMS astrocytes using calcium imaging. Then, we recorded electrophysiological changes in the synaptic activity of the two types of medium spiny neurons (MSNs): direct and indirect pathway MSNs. To evaluate the behavioral consequences, we trained mice in nose-poking operant chambers that developed either habitual or goal-directed reward-seeking behaviors. RESULTS The activation of DMS astrocytes reduced the frequency of spontaneous excitatory postsynaptic currents in the direct pathway MSNs, whereas it increased the amplitude of the spontaneous excitatory postsynaptic currents and decreased the frequency of spontaneous inhibitory postsynaptic currents in the indirect pathway MSNs. Interestingly, astrocyte-induced DMS neuronal activities are regulated by adenosine metabolism, receptor signaling, and transport. Importantly, mice lacking an astrocytic adenosine transporter, ENT1 (equilibrative nucleoside transporter 1; Slc29a1), show no transition from habitual to goal-directed reward-seeking behaviors upon astrocyte activation, while restoring ENT1 expression in the DMS facilitated this transition. CONCLUSIONS Our findings reveal that DMS astrocyte activation differentially regulates MSNs' activity and facilitates shifting from habitual to goal-directed reward-seeking behavior.
Collapse
|
32
|
Schwabe MR, Taxier LR, Frick KM. It takes a neural village: Circuit-based approaches for estrogenic regulation of episodic memory. Front Neuroendocrinol 2020; 59:100860. [PMID: 32781195 PMCID: PMC7669700 DOI: 10.1016/j.yfrne.2020.100860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17β-estradiol can alter circuit activity, and current knowledge about 17β-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
33
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020; 108:608-622. [PMID: 32898475 DOI: 10.1016/j.neuron.2020.08.012] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Astrocytes control multiple processes in the nervous system in health and disease. It is now clear that specific astrocyte subsets or activation states are associated with specific genomic programs and functions. The advent of novel genomic technologies has enabled rapid progress in the characterization of astrocyte heterogeneity and its control by astrocyte interactions with other cells in the central nervous system (CNS). In this review, we provide an overview of the multifaceted roles of astrocytes in the context of CNS inflammation, highlighting recent discoveries on astrocyte subsets and their regulation. We explore mechanisms of crosstalk between astrocytes and other cells in the CNS in the context of neuroinflammation and neurodegeneration and discuss how these interactions shape pathological outcomes.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
Martinez-Lozada Z, Robinson MB. Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 2020; 139:104787. [PMID: 32650029 DOI: 10.1016/j.neuint.2020.104787] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have diverse functions that are supported by their anatomic localization between neurons and blood vessels. One of these functions is the clearance of extracellular glutamate. Astrocytes clear glutamate using two Na+-dependent glutamate transporters, GLT-1 (also called EAAT2) and GLAST (also called EAAT1). GLT-1 expression increases during synaptogenesis and is a marker of astrocyte maturation. Over 20 years ago, several groups demonstrated that astrocytes in culture express little or no GLT-1 and that neurons induce expression. We recently demonstrated that co-culturing endothelia with mouse astrocytes also induced expression of GLT-1 and GLAST. These increases were blocked by an inhibitor of γ-secretase. This and other observations are consistent with the hypothesis that Notch signaling is required, but the ligands involved were not identified. In the present study, we used rat astrocyte cultures to further define the mechanisms by which endothelia induce expression of GLT-1 and GLAST. We found that co-cultures of astrocytes and endothelia express higher levels of GLT-1 and GLAST protein and mRNA. That endothelia activate Hes5, a transcription factor target of Notch, in astrocytes. Using recombinant Notch ligands, anti-Notch ligand neutralizing antibodies, and shRNAs, we provide evidence that both Dll1 and Dll4 contribute to endothelia-dependent regulation of GLT-1. We also provide evidence that astrocytes secrete a factor(s) that induces expression of Dll4 in endothelia and that this effect is required for Notch-dependent induction of GLT-1. Together these studies indicate that reciprocal communication between astrocytes and endothelia is required for appropriate astrocyte maturation and that endothelia likely deploy additional non-Notch signals to induce GLT-1.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318; Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
37
|
Kim YS, Won YJ, Lim BG, Min TJ, Kim YH, Lee IO. Neuroprotective effects of magnesium L-threonate in a hypoxic zebrafish model. BMC Neurosci 2020; 21:29. [PMID: 32590943 PMCID: PMC7318545 DOI: 10.1186/s12868-020-00580-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypoxia inhibits the uptake of glutamate (a major neurotransmitter in the brain closely related to cognitive function) into brain cells, and the initial response of cells to cortical hypoxia depends on glutamate. Previous studies have suggested that magnesium may have protective effects against hypoxic injuries. In particular, magnesium L-threonate (MgT) may increase magnesium ion concentrations in the brain better than MgSO4 and improve cognitive function. METHODS We evaluated cell viability under hypoxic conditions in the MgT- and MgSO4-treated human SH-SY5Y neurons, in vivo behavior using the T-maze test following hypoxia in MgT-treated zebrafish, activity of brain mitochondrial dehydrogenase by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and protein expression of the excitatory amino acid transporter (EAAT) 4 glutamate transporter by western blotting. RESULTS Among the groups treated with hypoxia, cell viability significantly increased when pre-treated with 1 or 10 mM MgT (p = 0.009 and 0.026, respectively). Despite hypoxic insult, MgT-treated zebrafish showed preferences for the red compartment (p = 0.025 for distance and p = 0.007 for frequency of entries), suggesting memory preservation. TTC staining showed reduced cerebral infarction and preserved absorbance in the MgT-treated zebrafish brain after hypoxia (p = 0.010 compared to the hypoxia group). In addition, western blot showed upregulation of EAAT4 protein in the MgT treated group. CONCLUSIONS Pre-treatment with MgT attenuated cell death and cerebral infarction due to hypoxia and protected cognitive function in zebrafish. In addition, MgT appeared to modulate expression of the glutamate transporter, EAAT4.
Collapse
Affiliation(s)
- Young-Sung Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Young Ju Won
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Byung Gun Lim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Too Jae Min
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Yeon-Hwa Kim
- Institute of Medical Science, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Il Ok Lee
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Seoul, Korea.
| |
Collapse
|
38
|
Todd N, Angolano C, Ferran C, Devor A, Borsook D, McDannold N. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier. J Control Release 2020; 324:450-459. [PMID: 32470359 DOI: 10.1016/j.jconrel.2020.05.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Focused ultrasound (FUS) combined with microbubbles is a non-invasive method for targeted, reversible disruption of the blood-brain barrier (FUS-BBB opening). This approach holds great promise for improving delivery of therapeutics to the brain. In order to achieve this clinically important goal, the approach necessarily breaks a protective barrier, temporarily, which plays a fundamental role in maintaining a homeostatic environment in the brain. Preclinical and clinical research has identified a set of treatment parameters under which this can be performed safely, whereby the BBB is disrupted to the point of being permeable to normally non-penetrant agents without causing significant acute damage to endothelial or neuronal cells. Much of the early work in this field focused on engineering questions around how to achieve optimal delivery of therapeutics via BBB disruption. However, there is increasing interest in addressing biological questions related to whether and how various aspects of neurophysiology might be affected when this fundamental protective barrier is compromised by the specific mechanisms of FUS-BBB opening. Improving our understanding of these secondary effects is becoming vital now that FUS-BBB opening treatments have entered clinical trials. Such information would help to safely expand FUS-BBB opening protocols into a wider range of drug delivery applications and may even lead to new types of treatments. In this paper, we will critically review our current knowledge of the secondary effects caused by FUS-BBB opening on brain physiology, identify areas that remain understudied, and discuss how a better understanding of these processes can be used to safely advance FUS-BBB opening into a wider range of clinical applications.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Cleide Angolano
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Park S, Lee JY, You S, Song G, Lim W. Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121639. [PMID: 31787402 DOI: 10.1016/j.jhazmat.2019.121639] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 is one of the well-known mycotoxins and mainly found in contaminated animal feed and various agricultural products inducing acute and chronic toxicology, tumor, and abnormal neural development. However, the effects of aflatoxin B1 on the human brain, especially on astrocytes, have not been studied in depth. In the present study, we studied the neurotoxic effects of aflatoxin B1, in vitro and in vivo. Aflatoxin B1 decreased the proliferation and stopped cell cycle progression at the sub G0/G1 stage with an increase in BAX, BAK, and cytochrome c proteins in human astrocytes. In addition, it increased the mitochondrial depolarization, oxidative stress, and calcium influx in both the cytosol and mitochondria. Surprisingly, inhibition of calcium overload in the cytosol and mitochondria, using calcium chelators and an inhibitor, partially rescued the proliferation of aflatoxin B1-treated astrocytes. Based on the toxicity assays using zebrafish models, aflatoxin B1 decreased the embryo survival rate with physiological changes and an increase in the caspase and tp53 genes. It also decreased the expression of gfap, mbp, and olig2 in the transgenic zebrafish embryo's brain and axon. Our results revealed the specific mechanism of the neurotoxic effects of aflatoxin B1 on human astrocytes and zebrafish glial cells.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
41
|
Human GNPTAB stuttering mutations engineered into mice cause vocalization deficits and astrocyte pathology in the corpus callosum. Proc Natl Acad Sci U S A 2019; 116:17515-17524. [PMID: 31405983 DOI: 10.1073/pnas.1901480116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stuttering is a common neurodevelopmental disorder that has been associated with mutations in genes involved in intracellular trafficking. However, the cellular mechanisms leading to stuttering remain unknown. Engineering a mutation in N-acetylglucosamine-1-phosphate transferase subunits α and β (GNPTAB) found in humans who stutter into the mouse Gnptab gene resulted in deficits in the flow of ultrasonic vocalizations similar to speech deficits of humans who stutter. Here we show that other human stuttering mutations introduced into this mouse gene, Gnptab Ser321Gly and Ala455Ser, produce the same vocalization deficit in 8-day-old pup isolation calls and do not affect other nonvocal behaviors. Immunohistochemistry showed a marked decrease in staining of astrocytes, particularly in the corpus callosum of the Gnptab Ser321Gly homozygote mice compared to wild-type littermates, while the staining of cerebellar Purkinje cells, oligodendrocytes, microglial cells, and dopaminergic neurons was not significantly different. Diffusion tensor imaging also detected deficits in the corpus callosum of the Gnptab Ser321Gly mice. Using a range of cell type-specific Cre-drivers and a Gnptab conditional knockout line, we found that only astrocyte-specific Gnptab-deficient mice displayed a similar vocalization deficit. These data suggest that vocalization defects in mice carrying human stuttering mutations in Gnptab derive from abnormalities in astrocytes, particularly in the corpus callosum, and provide support for hypotheses that focus on deficits in interhemispheric communication in stuttering.
Collapse
|
42
|
Empowering the impaired astrocytes in the tripartite synapses to improve accuracy of pattern recognition. Soft comput 2018. [DOI: 10.1007/s00500-018-03671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
New Roles for Old Glue: Astrocyte Function in Synaptic Plasticity and Neurological Disorders. Int Neurourol J 2018; 22:S106-114. [PMID: 30396259 PMCID: PMC6234728 DOI: 10.5213/inj.1836214.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
Previously believed to solely play a supportive role in the central nervous system, astrocytes are now considered active players in normal brain function. Evidence in recent decades extends their contributions beyond the classically held brain glue role; it's now known that astrocytes act as a unique excitable component with functions extending into local network modulation, synaptic plasticity, and memory formation, and postinjury repair. In this review article, we highlight our growing understanding of astrocyte function and physiology, the increasing role of gliotransmitters in neuron-glia communication, and the role of astrocytes in modulating synaptic plasticity and cognitive function. Owing to the duality of both beneficial and deleterious roles attributed to astrocytes, we also discuss the implications of this new knowledge as it applies to neurological disorders including Alzheimer disease, epilepsy, and schizophrenia.
Collapse
|
44
|
Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions. Brain Res Bull 2018; 136:17-25. [DOI: 10.1016/j.brainresbull.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/03/2023]
|
45
|
Haydon PG. Astrocytes and the modulation of sleep. Curr Opin Neurobiol 2017; 44:28-33. [PMID: 28284099 DOI: 10.1016/j.conb.2017.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
Astrocytes are being identified as having multiple roles in sleep. Initially they were shown to modulate the process of sleep homeostasis through the release of adenosine which acts on adenosine A1 receptors (A1R) to promote sleep drive. More recent studies indicate that the astrocyte also plays pivotal, sleep-dependent roles in 'cleaning the brain' during sleep. This work indicates that a glymphatic pathway that critically relies on astrocytic aquaporin 4, is able to flush solutes from the brain and that deficits in this pathway may contribute to Alzheimer's disease. Finally, astrocytes are known to play important metabolic roles and provide energy on demand to neurons through an astrocyte-neuron shuttle. Given that the time course of astrocytic function is orders of magnitude slower than that of the neuron, this non-neuronal cell is perfectly tuned to modulating slow, state-dependent changes in the brain.
Collapse
Affiliation(s)
- Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
46
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
47
|
Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P, Woods A, Maura G, Marcoli M, Agnati LF. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 2016; 140:268-279. [PMID: 27896809 DOI: 10.1111/jnc.13885] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023]
Abstract
Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, and Italian Institute of Biostructures and Biosystems, University of Genova, Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Susanna Genedani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences DIBINEM, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Amina Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Zagoura D, Canovas-Jorda D, Pistollato F, Bremer-Hoffmann S, Bal-Price A. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem Int 2016; 106:62-73. [PMID: 27615060 DOI: 10.1016/j.neuint.2016.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology, including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore, in the current study, we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM), as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes, NQO1 and SRXN1. Interestingly, exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover, rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH+) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - David Canovas-Jorda
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Susanne Bremer-Hoffmann
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Anna Bal-Price
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
49
|
Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, Schwartz JB, Miller BL. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. FASEB J 2016; 30:3853-3859. [PMID: 27511944 DOI: 10.1096/fj.201600756r] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
Efficient intercellular transfer of RNAs, proteins, and lipids as protected exosomal cargo has been demonstrated in the CNS, but distinct physiologic and pathologic roles have not been well defined for this pathway. The capacity to isolate immunochemically human plasma neuron-derived exosomes (NDEs), containing neuron-specific cargo, has permitted characterization of CNS-derived exosomes in living humans. Constituents of the amyloid β-peptide (Aβ)42-generating system now are examined in 2 distinct sets of human neural cells by quantification in astrocyte-derived exosomes (ADEs) and NDEs, enriched separately from plasmas of patients with Alzheimer's disease (AD) or frontotemporal dementia (FTD) and matched cognitively normal controls. ADE levels of β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), γ-secretase, soluble Aβ42, soluble amyloid precursor protein (sAPP)β, sAPPα, glial-derived neurotrophic factor (GDNF), P-T181-tau, and P-S396-tau were significantly (3- to 20-fold) higher than levels in NDEs for patients and controls. BACE-1 levels also were a mean of 7-fold higher in ADEs than in NDEs from cultured rat type-specific neural cells. Levels of BACE-1 and sAPPβ were significantly higher and of GDNF significantly lower in ADEs of patients with AD than in those of controls, but not significantly different in patients with FTD than in controls. Abundant proteins of the Aβ42 peptide-generating system in ADEs may sustain levels in neurons. ADE cargo proteins may be useful for studies of mechanisms of cellular interactions and effects of BACE-1 inhibitors in AD.-Goetzl, E. J., Mustapic, M., Kapogiannis, D., Eitan, E., Lobach, I. V., Goetzl, L., Schwartz, J. B., Miller, B. L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California, San Francisco, California, USA; .,Jewish Home of San Francisco, Geriatric Research Center, San Francisco, California, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Erez Eitan
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Irina V Lobach
- Clinical Translational Science Institute, University of California, San Francisco, California, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Janice B Schwartz
- Department of Medicine, University of California, San Francisco, California, USA.,Jewish Home of San Francisco, Geriatric Research Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA; and
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
50
|
Rudolph R, Jahn HM, Courjaret R, Messemer N, Kirchhoff F, Deitmer JW. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 2016; 64:1265-80. [PMID: 27144942 DOI: 10.1002/glia.22999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
Synaptic transmission has been shown to be modulated by glial functions, but the modes of specific glial action may vary in different neural circuits. We have tested the hypothesis, if Bergmann GLIA (BG) are involved in shaping neuronal communication in the mouse cerebellar cortex, using acutely isolated cerebellar slices of wild-type (WT) and of glia-specific receptor knockout mice. Activation of P2Y1 receptors by ADP (100 µM) or glutamatergic receptors by AMPA (0.3 µM) resulted in a robust, reversible and repeatable rise of evoked inhibitory input in Purkinje cells by 80% and 150%, respectively. The ADP-induced response was suppressed by prior application of AMPA, and the AMPA-induced response was suppressed by prior application of ADP. Genetic deletion or pharmacological blockade of either receptor restored the response to the other receptor agonist. Both ADP and AMPA responses were sensitive to Rose Bengal, which blocks vesicular glutamate uptake, and to the NMDA receptor antagonist D-AP5. Our results provide strong evidence that activation of both ADP and AMPA receptors, located on BGs, results in the release of glutamate, which in turn activates inhibitory interneurons via NMDA-type glutamate receptors. This infers that BG cells, by means of metabotropic signaling via their AMPA and P2Y1 receptors, which mutually suppress each other, would interdependently contribute to the fine-tuning of Purkinje cell activity in the cerebellar cortex. GLIA 2016. GLIA 2016;64:1265-1280.
Collapse
Affiliation(s)
- Ramona Rudolph
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Hannah M Jahn
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Raphael Courjaret
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany.,Weill Cornell Medical College, Doha, Qatar
| | - Nanette Messemer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|