1
|
Granado N, Mendieta L, Tizabi Y, Murer MG, Moratalla R. Attenuated neurotoxicity after repeated methamphetamine binges linked to dopamine transporter (DAT) decline. Neurobiol Dis 2025; 207:106839. [PMID: 39947439 DOI: 10.1016/j.nbd.2025.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Methamphetamine (METH) abuse increases worldwide. In addition to its acute life-threatening effects, METH is toxic for dopaminergic neurons, increasing the risk of developing Parkinson's disease. The impact of repeated METH binge consumption on dopaminergic and neurotoxicity markers remains unclear. We exposed mice to a repeated "binge-like" METH regime, consisting of three doses over a 6 h interval, repeated three times with 14-day intervals. After the first binge, spontaneous motor activity decreased markedly but remained normal after subsequent binges. Following the first binge, we observed a 25 % loss of nigral dopaminergic cell bodies and significant axon terminal damage as assessed through striatal silver staining, with minimal further degeneration after additional binges. Dopaminergic markers were substantially depleted after the first and second binges, despite partial recovery between binges, dropping to below 20 % of control levels. By one day after the third binge, tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT2) stabilized at 50-60 % of control levels, but the dopamine transporter (DAT) remained at only 25 %, showing less recovery. These changes were accompanied by an evolving neuroinflammation pattern, with a transient microglial surge after the first binge and persistent astroglial and temperature responses. Overall, our findings indicate partial recovery of dopaminergic markers and the development of tolerance to METH neurotoxicity. The robust reduction of DAT after the first binge may contribute to this tolerance to subsequence binges by limiting METH entry into neurons thereby mitigating its neurotoxic effects.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Mendieta
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, and CONICET, Instituto de Fisiología y Biofísica (IFIBIO), Buenos Aires, Argentina
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Correia SS, Liu G, Jacobson S, Bernier SG, Tobin JV, Schwartzkopf CD, Atwater E, Lonie E, Rivers S, Carvalho A, Germano P, Tang K, Iyengar RR, Currie MG, Hadcock JR, Winrow CJ, Jones JE. The CNS-penetrant soluble guanylate cyclase stimulator CYR119 attenuates markers of inflammation in the central nervous system. J Neuroinflammation 2021; 18:213. [PMID: 34537066 PMCID: PMC8449877 DOI: 10.1186/s12974-021-02275-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation in the central nervous system (CNS) is observed in many neurological disorders. Nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO–sGC–cGMP) signaling plays an essential role in modulating neuroinflammation. CYR119 is a CNS-penetrant sGC stimulator that amplifies endogenous NO–sGC–cGMP signaling. We evaluated target engagement and the effects of CYR119 on markers of neuroinflammation in vitro in mouse microglial cells and in vivo in quinolinic acid (QA)-induced and high-fat diet-induced rodent neuroinflammation models.
Methods Target engagement was verified in human embryonic kidney (HEK) cells, rat primary neurons, mouse SIM-A9 cells, and in rats by measuring changes in cGMP and downstream targets of sGC signaling [phosphorylated vasodilator-stimulated phosphoprotein (pVASP), phosphorylated cAMP-response element binding (pCREB)]. In SIM-A9 cells stimulated with lipopolysaccharides (LPS), markers of inflammation were measured when cells were treated with or without CYR119. In rats, microinjections of QA and vehicle were administered into the right and left hemispheres of striatum, respectively, and then rats were dosed daily with either CYR119 (10 mg/kg) or vehicle for 7 days. The activation of microglia [ionized calcium binding adaptor molecule 1 (Iba1)] and astrocytes [glial fibrillary acidic protein (GFAP)] was measured by immunohistochemistry. Diet-induced obese (DIO) mice were treated daily with CYR119 (10 mg/kg) for 6 weeks, after which inflammatory genetic markers were analyzed in the prefrontal cortex. Results In vitro, CYR119 synergized with exogenous NO to increase the production of cGMP in HEK cells and in primary rat neuronal cell cultures. In primary neurons, CYR119 stimulated sGC, resulting in accumulation of cGMP and phosphorylation of CREB, likely through the activation of protein kinase G (PKG). CYR119 attenuated LPS-induced elevation of interleukin 6 (IL-6) and tumor necrosis factor (TNF) in mouse microglial cells. Following oral dosing in rats, CYR119 crossed the blood–brain barrier (BBB) and stimulated an increase in cGMP levels in the cerebral spinal fluid (CSF). In addition, levels of proinflammatory markers associated with QA administration or high-fat diet feeding were lower in rodents treated with CYR119 than in those treated with vehicle. Conclusions These data suggest that sGC stimulation could provide neuroprotective effects by attenuating inflammatory responses in nonclinical models of neuroinflammation.
Collapse
Affiliation(s)
- Susana S Correia
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Guang Liu
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Sarah Jacobson
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Sylvie G Bernier
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Jenny V Tobin
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Chad D Schwartzkopf
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Emily Atwater
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | | | - Sam Rivers
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Andrew Carvalho
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Peter Germano
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Kim Tang
- Ironwood Pharmaceuticals, Cambridge, MA, 02142, USA
| | - Rajesh R Iyengar
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Mark G Currie
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - John R Hadcock
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Christopher J Winrow
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA
| | - Juli E Jones
- Cyclerion Therapeutics, 245 First St., Riverview II, 18th Floor, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Li HM, Shi YL, Wen D, Luo HM, Lin X, Xiao F. A novel effective chemical hemin for the treatment of acute carbon monoxide poisoning in mice. Exp Ther Med 2017; 14:5186-5192. [PMID: 29201235 PMCID: PMC5704266 DOI: 10.3892/etm.2017.5157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
There is no effective drug for the therapy of acute carbon monoxide (CO) poisoning. The purpose of the present study was to investigate the potential preventive and therapeutic effects of hemin on an animal model of acute CO poisoning and to provide a potential therapeutic candidate drug. A total of 80 Kunming mice were randomly divided into four groups, namely the air control, acute CO poisoning, hemin-treatment + CO and hemin-pretreatment + CO groups (n=20 each). Furthermore, the mortality rate of mice, blood carboxyhaemoglobin (HbCO) concentration and serum malondialdehyde (MDA) concentration were measured, and pathological changes of the hippocampal area were determined using histochemical staining. The mice with acute CO poisoning had a 50% mortality rate at 1 h, with an increase in blood HbCO, serum MDA levels and pathological impairments of the hippocampus. Furthermore, the mortality rate, blood HbCO and serum MDA levels of mice with pretreatment and treatment of hemin were decreased. Additionally, the pathological changes of the hippocampal area were improved in the hemin-treatment and hemin-pretreatment groups compared with the mice treated with CO. These results suggest that hemin is a novel effective chemical for the prevention and treatment of acute CO poisoning in mice. Therefore, the present study provides a novel method and experimental basis for the application of hemin in treating patients with acute CO poisoning.
Collapse
Affiliation(s)
- Hui-Min Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,The Second Clinical Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ying-Lu Shi
- International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Di Wen
- International School of Clinical Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Huan-Min Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
4
|
Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, Katsuki H. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 2015; 760:129-35. [PMID: 25917324 DOI: 10.1016/j.ejphar.2015.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022]
Abstract
Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner.
Collapse
Affiliation(s)
- Kana Kiyofuji
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Mishima
- Department of Food and Nutritional Sciences, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Queiroga CSF, Vercelli A, Vieira HLA. Carbon monoxide and the CNS: challenges and achievements. Br J Pharmacol 2015; 172:1533-45. [PMID: 24758548 PMCID: PMC4369262 DOI: 10.1111/bph.12729] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/12/2023] Open
Abstract
Haem oxygenase (HO) and its product carbon monoxide (CO) are associated with cytoprotection and maintenance of homeostasis in several different organs and tissues. This review focuses upon the role of exogenous and endogenous CO (via HO activity and expression) in various CNS pathologies, based upon data from experimental models, as well as from some clinical data on human patients. The pathophysiological conditions reviewed are cerebral ischaemia, chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases), multiple sclerosis and pain. Among these pathophysiological conditions, a variety of cellular mechanisms and processes are considered, namely cytoprotection, cell death, inflammation, cell metabolism, cellular redox responses and vasomodulation, as well as the different targeted neural cells. Finally, novel potential methods and strategies for delivering exogenous CO as a drug are discussed, particularly approaches based upon CO-releasing molecules, their limitations and challenges. The diagnostic and prognostic value of HO expression in clinical use for brain pathologies is also addressed.
Collapse
Affiliation(s)
- Cláudia S F Queiroga
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
| | - Alessandro Vercelli
- Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of TurinTurin, Italy
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)Oeiras, Portugal
| |
Collapse
|
6
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wang R, Yang J, Liao S, Xiao G, Luo J, Zhang L, Little PJ, Chen H, Zheng W. Stereoselective Reduction of 1-O-Isopropyloxygenipin Enhances Its Neuroprotective Activity in Neuronal Cells from Apoptosis Induced by Sodium Nitroprusside. ChemMedChem 2014; 9:1397-401. [DOI: 10.1002/cmdc.201400051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 02/06/2023]
|
8
|
Lorenc-Koci E, Czarnecka A, Lenda T, Kamińska K, Konieczny J. Molsidomine, a nitric oxide donor, modulates rotational behavior and monoamine metabolism in 6-OHDA lesioned rats treated chronically with L-DOPA. Neurochem Int 2013; 63:790-804. [PMID: 24090640 DOI: 10.1016/j.neuint.2013.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
Abstract
Some biochemical and histological studies of Parkinson's disease patients' brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)- soluble guanylyl cyclase-cyclic GMP signaling is considered to be a new target for the treatment of Parkinson's disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4mg/kg) and L-DOPA (12.5 and 25mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats. Chronic administration of molsidomine at a dose of 2mg/kg jointly with 25mg/kg of L-DOPA significantly decreased the number of contralateral rotations when compared to L-DOPA alone. Other combinations of the examined drug doses were less effective. The tissue DA levels in the ipsilateral STR and SN after the last chronic doses of molsidomine (2mg/kg) and L-DOPA (12.5 or 25mg/kg), were significantly higher than after L-DOPA alone. Chronic L-DOPA treatment alone or jointly with a lower dose of molsidomine decreased 5-HT levels and accelerated its catabolism in the examined structures. However, combination of a higher dose of molsidomine with L-DOPA (25mg/kg) did not reduce 5-HT content while its catabolism was less intensive. The obtained results show that low doses of molsidomine can modulate rotational behavior and tissue DA and 5-HT concentrations in the STR and SN of 6-OHDA-lesioned rats treated chronically with L-DOPA.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., PL-31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
9
|
Kurauchi Y, Hisatsune A, Isohama Y, Sawa T, Akaike T, Katsuki H. Nitric oxide/soluble guanylyl cyclase signaling mediates depolarization-induced protection of rat mesencephalic dopaminergic neurons from MPP⁺ cytotoxicity. Neuroscience 2012; 231:206-15. [PMID: 23238575 DOI: 10.1016/j.neuroscience.2012.11.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Neuronal electrical activity has been known to affect the viability of neurons in the central nervous system. Here we show that long-lasting membrane depolarization induced by elevated extracellular K(+) recruits nitric oxide (NO)/soluble guanylyl cyclase/protein kinase G signaling pathway, induces 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-mediated protein S-guanylation, and confers dopaminergic neuroprotection. Treatment of primary mesencephalic cell cultures with 1-methyl-4-phenylpyridinium (MPP(+)) for 72 h decreased the number of dopaminergic neurons, whereas the cell loss was markedly inhibited by elevated extracellular concentration of K(+) (+40 mM). The neuroprotective effect of elevated extracellular K(+) was significantly attenuated by tetrodotoxin (a Na(+) channel blocker), amlodipine (a voltage-dependent Ca(2+) channel blocker), N(ω)-nitro-l-arginine methyl ester (l-NAME) (a nitric oxide synthase inhibitor), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (a soluble guanylyl cyclase inhibitor), and KT5823 or Rp-8-bromo-β-phenyl-1,N(2)-ethenoguanosine 3',5'-cyclic monophosphorothioate (Rp-8-Br-PET-cGMPS) (protein kinase G inhibitors). Elevated extracellular K(+) increased 8-nitro-cGMP production resulting in the induction of protein S-guanylation in cells in mesencephalic cultures including dopaminergic neurons. In addition, exogenous application of 8-nitro-cGMP protected dopaminergic neurons from MPP(+) cytotoxicity, which was prevented by zinc protoporphyrin IX, an inhibitor of heme oxygenase-1 (HO-1). Zinc protoporphyrin IX also inhibited the neuroprotective effect of elevated extracellular K(+). On the other hand, KT5823 or Rp-8-Br-PET-cGMPS did not inhibit the induction of HO-1 protein expression by 8-nitro-cGMP, although these protein kinase G inhibitors abrogated the neuroprotective effect of 8-nitro-cGMP. These results suggest that protein S-guanylation (leading to HO-1 induction) as well as canonical protein kinase G signaling pathway plays an important role in NO-mediated, activity-dependent dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Y Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 2012; 166:1151-68. [PMID: 22224485 DOI: 10.1111/j.1476-5381.2012.01833.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Caffeic acid phenethyl ester (CAPE) is a component of honey bee propolis that can induce expression of haem oxygenase-1 (HO-1). Because HO-1 induction has been suggested to protect dopaminergic neurons in the substantia nigra, we examined the effect of CAPE in experimental models of dopaminergic neurodegeneration. EXPERIMENTAL APPROACH Neuroprotective effect of CAPE was investigated in rat organotypic midbrain slice cultures and in vivo, using a mouse model of dopaminergic neurodegeneration induced by intranigral injection of LPS and intrastriatal injection of 6-hydroxydopamine. KEY RESULTS CAPE protected dopaminergic neurons in slice cultures from IFN-γ/LPS-induced injury. The effect of CAPE was inhibited by zinc protoporphyrin IX, an HO-1 inhibitor, and by neutralizing antibody against brain-derived neurotrophic factor (BDNF). A p38 MAPK inhibitor SB203580 prevented activation of NF-E2-related factor 2, attenuated increased expression of HO-1 and BDNF, and blocked the neuroprotective actions of CAPE. In the LPS-injected mouse model, daily intraperitoneal administration of CAPE protected dopaminergic neurons, up-regulated HO-1 and BDNF, and reduced the increase of activated microglia/macrophages. Neuroprotective effects of CAPE against LPS-induced injury was prevented by zinc protoporphyrin IX or anti-BDNF antibody. CAPE protected dopaminergic neurons and alleviated methamphetamine-induced rotational behaviour also in 6-hydroxydopamine hemiparkinsonian mice. CONCLUSION AND IMPLICATIONS CAPE is a novel type of neuroprotective agent whose actions are mediated by both HO-1 and BDNF. These findings may provide novel clues to develop neuroprotective agents for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Y Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamto, Japan
| | | | | | | | | |
Collapse
|
11
|
Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells. Neurochem Int 2012; 61:1242-53. [PMID: 22995787 DOI: 10.1016/j.neuint.2012.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
Abstract
Nipradilol (Nip), which has α1- and β-adrenoceptor antagonist and nitric oxide (NO)-donating properties, has clinically been used as an anti-glaucomatous agent in Japan. NO mediates cellular signaling pathways that regulate physiological functions. The major signaling mechanisms mediated by NO are cGMP-dependent signaling and protein S-nitrosylation-dependent signalings. Nip has been described as having neuroprotective effects through cGMP-dependent pathway in retinal ganglion cells (RGCs). However, the effect seems to be partial. On the other hand, whether Nip can prevent cell death through S-nitrosylation is not yet clarified. In this study, we therefore focused on the neuroprotective mechanism of Nip through S-nitrosylation. Nip showed a dramatic neuroprotective effect against oxidative stress-induced death of RGC-5 cells. However, denitro-nipradilol, which does not have NO-donating properties, was not protective against oxidative stress. Furthermore, an NO scavenger significantly reversed the protective action of Nip against oxidative stress. In addition, we demonstrated that α1- or β-adrenoceptor antagonists (prazosin or timolol) did not show any neuroprotective effect against oxidative stress in RGC-5 cells. We also demonstrated that Nip induced the expression of the NO-dependent antioxidant enzyme, heme oxygenase-1 (HO-1). S-nitrosylation of Kelch-like ECH-associated protein by Nip was shown to contribute to the translocation of NF-E2-related factor 2 to the nucleus, and triggered transcriptional activation of HO-1. Furthermore, RGC death and levels of 4-hydroxy-2-nonenal (4HNE) were increased after optic nerve injury in vivo. Pretreatment with Nip significantly suppressed RGC death and accumulation of 4HNE after injury through an HO-1 activity-dependent mechanism. These data demonstrate a novel neuroprotective action of Nip against oxidative stress-induced RGC death in vitro and in vivo.
Collapse
|
12
|
Soriano R, Kwiatkoski M, Batalhao M, Branco L, Carnio E. Interaction between the carbon monoxide and nitric oxide pathways in the locus coeruleus during fever. Neuroscience 2012; 206:69-80. [DOI: 10.1016/j.neuroscience.2012.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/06/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
|
13
|
Dodd CA, Filipov NM. Manganese potentiates LPS-induced heme-oxygenase 1 in microglia but not dopaminergic cells: role in controlling microglial hydrogen peroxide and inflammatory cytokine output. Neurotoxicology 2011; 32:683-92. [PMID: 21963524 DOI: 10.1016/j.neuro.2011.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 01/21/2023]
Abstract
Excessive manganese (Mn) exposure increases output of glial-derived inflammatory products, which may indirectly contribute to the neurotoxic effects of this essential metal. In microglia, Mn increases hydrogen peroxide (H(2)O(2)) release and potentiates lipopolysaccharide (LPS)-induced cytokines (TNF-α, IL-6) and nitric oxide (NO). Inducible heme-oxygenase (HO-1) plays a role in the regulation of inflammation and its expression is upregulated in response to oxidative stressors, including metals and LPS. Because Mn can oxidatively affect neurons both directly and indirectly, we investigated the effect of Mn exposure on the induction of HO-1 in resting and LPS-activated microglia (N9) and dopaminergic neurons (N27). In microglia, 24h exposure to Mn (up to 250 μM) had minimal effects on its own, but it markedly potentiated LPS (100 ng/ml)-induced HO-1 protein and mRNA. Inhibition of microglial HO-1 activity with two different inhibitors indicated that HO-1 is a positive regulator of the Mn-potentiated cytokine output and a negative regulator of the Mn-induced H(2)O(2) output. Mn enhancement of LPS-induced HO-1 does not appear to be dependent on H(2)O(2) or NO, as Mn+LPS-induced H(2)O(2) release was not greater than the increase induced by Mn alone and inhibition of iNOS did not change Mn potentiation of HO-1. However, because Mn exposure potentiated the LPS-induced nuclear expression of small Maf proteins, this may be one mechanism Mn uses to affect the expression of HO-1 in activated microglia. Finally, the potentiating effects of Mn on HO-1 appear to be glia-specific for Mn, LPS, or Mn+LPS did not induce HO-1 in N27 neuronal cells.
Collapse
Affiliation(s)
- Celia A Dodd
- Department of Physiology and Pharmacology, 501 D.W. Brooks Drive, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
14
|
Li F, Lu S, Zhu R, Zhou Z, Ma L, Cai L, Liu Z. Heme oxygenase-1 is induced by thyroid hormone and involved in thyroid hormone preconditioning-induced protection against renal warm ischemia in rat. Mol Cell Endocrinol 2011; 339:54-62. [PMID: 21458530 DOI: 10.1016/j.mce.2011.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/13/2011] [Accepted: 03/24/2011] [Indexed: 01/05/2023]
Abstract
Thyroid hormone pretreatment was indicated to increase tissue tolerance to ischemia-reperfusion injury (IRI) in various organs, but the underlying molecular mechanisms remains largely unknown. Induction of heme oxygenase-1 (HO-1) protects organs against IRI. The present study investigated the effect of thyroid hormone on HO-1 expression and the possible relation between HO-1 and the thyroid hormone induced renal protection. T(3) administration in rat kidneys induced HO-1 expression in a time-dependent and dose-dependent way, and its expression was accompanied with significant depletion of reduced glutathione and increase in malondialdehyde content, showing a moderate oxidative stress that turns to normal level 48 h after drug injection. Thyroid hormone pretreatment (10 μg/100g body weight) 48 h before IR procedure significantly decreased serum creatinine and urea nitrogen and preserved renal histology, with significant reduction of parameters about oxidative stress and over-expression of HO-1 compared with that of IR group. In conclusion, T(3) administration involving oxidative stress in kidney exerts significant enhancement of HO-1 expression which may, at least in part, account for the renal preconditioning induced by T(3).
Collapse
Affiliation(s)
- Fei Li
- Central Laboratory, Changzhou NO.2 hospital affiliated to Nanjing Medical University, Changzhou 213000, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Kwon KJ, Kim JN, Kim MK, Lee J, Ignarro LJ, Kim HJ, Shin CY, Han SH. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 2011; 50:110-23. [PMID: 21073519 DOI: 10.1111/j.1600-079x.2010.00820.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin is an indoleamine secreted by the pineal gland as well as a plant-derived product, and resveratrol (RSV) is a naturally occurring polyphenol synthesized by a variety of plant species; both molecules act as a neuroprotector and antioxidant. Recent studies have demonstrated that RSV reduced the incidence of Alzheimer's disease and stroke, while melatonin supplementation was found to reduce the progression of the cognitive impairment in AD. The heme oxygenase-1 (HO-1) is an inducible and redox-regulated enzyme that provides tissue-specific antioxidant effects. We assessed whether the co-administration of melatonin and RSV shows synergistic effects in terms of their neuroprotective properties through HO-1. RSV significantly increased the expression levels of HO-1 protein in a concentration-dependent manner both in primary cortical neurons and in astrocytes, while melatonin per se did not. Melatonin + RSV showed a synergistic increase in the expression levels of HO-1 protein but not in the HO-1 mRNA level compared to either melatonin or RSV alone, which is mediated by the activation of PI3K-Akt pathway. Treatment of melatonin + RSV significantly attenuated the neurotoxicity induced by H(2) O(2) in primary cortical neurons and also in organotypic hippocampal slice culture. The blockade of HO-1 induction by shRNA attenuated HO-1 induction by melatonin + RSV and hindered the neuroprotective effects against oxidative stress induced by H(2) O(2) . The treatment of MG132 + RSV mimicked the effects of melatonin + RSV, and melatonin + RSV inhibited ubiquitination of HO-1. These data suggest that melatonin potentiates the neuroprotective effect of RSV against oxidative injury, by enhancing HO-1 induction through inhibiting ubiquitination-dependent proteasome pathway, which may provide an effective means to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Departments of Neurology Pharmacology Rehabilitation, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kurauchi Y, Hisatsune A, Isohama Y, Sawa T, Akaike T, Shudo K, Katsuki H. Midbrain dopaminergic neurons utilize nitric oxide/cyclic GMP signaling to recruit ERK that links retinoic acid receptor stimulation to up-regulation of BDNF. J Neurochem 2011; 116:323-33. [PMID: 20649843 DOI: 10.1111/j.1471-4159.2010.06916.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stimulation of retinoic acid receptors (RARs) protects midbrain dopaminergic neurons, presumably via up-regulation of brain-derived neurotrophic factor (BDNF) expression. The present study was focused on unexplored signaling mechanisms linking RAR stimulation to BDNF expression. Rat midbrain slice cultures treated with an RAR agonist Am80 showed increased tissue levels of BDNF mRNA and protein as compared to cultures without treatment. Am80-induced increase in BDNF expression was observed in dopaminergic neurons, which was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation. We also found that Am80 increased neuronal nitric oxide synthase expression in dopaminergic neurons even during ERK inhibition, and this increase was accompanied by 8-nitro-cyclic GMP formation. Notably, the effect of Am80 on BDNF expression was attenuated by inhibitors of nitric oxide synthase, soluble guanylyl cyclase and cyclic GMP-dependent protein kinase (PKG). Am80-induced ERK phosphorylation in dopaminergic neurons was also attenuated by inhibition of soluble guanylyl cyclase and PKG. Moreover, 8-Br-cyclic GMP induced ERK phosphorylation and BDNF expression in dopaminergic neurons. These results suggest that, by recruiting cyclic GMP and PKG, neuronal nitric oxide synthase-derived nitric oxide plays a novel and essential role in RAR signaling leading to ERK-dependent BDNF up-regulation in midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Cywinski PJ, Moro AJ, Ritschel T, Hildebrandt N, Löhmannsröben HG. Sensitive and selective fluorescence detection of guanosine nucleotides by nanoparticles conjugated with a naphthyridine receptor. Anal Bioanal Chem 2010; 399:1215-22. [PMID: 21110010 DOI: 10.1007/s00216-010-4420-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 02/02/2023]
Abstract
Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl)ethynyl)-1,8-naphthyridin-2-yl)acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides. Upon interaction with nucleotides, the fluorescence of the nanosensor is gradually quenched yielding Stern-Volmer constants in the range of 2.1 to 35.9 mM(-1). For all the studied quenchers, limits of detection (LOD) and tolerance levels for the nanosensors were also determined. The lowest (3σ) LOD was found for guanosine 3',5'-cyclic monophosphate (cGMP) and it was as low as 150 ng/ml. In addition, we demonstrated that the spatial arrangement of bound analytes on the nanosensors' surfaces is what is responsible for their selectivity to different guanosine nucleotides. We found a correlation between the changes of the fluorescence signal and the number of phosphate groups of a nucleotide. Results of molecular modeling and ζ-potential measurements confirm that the arrangement of analytes on the surface provides for the selectivity of the nanosensors. These fluorescent nanosensors have the potential to be applied in multi-analyte, array-based detection platforms, as well as in multiplexed microfluidic systems.
Collapse
Affiliation(s)
- Piotr J Cywinski
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Golm, 14476 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
18
|
Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 2010; 16:435-52. [PMID: 20817920 DOI: 10.1177/1073858410366481] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools have been used to explore the physiology and pathological consequences for nitrergic signaling. In this review, the authors summarize the current understanding of this subtle signaling pathway, discuss the evidence for nitrergic modulation of ion channels and homeostatic modulation of intrinsic excitability, and speculate about the pathological consequences of spillover between different nitrergic compartments in contributing to aberrant signaling in neurodegenerative disorders. Accumulating evidence points to various ion channels and particularly voltage-gated potassium channels as signaling targets, whereby NO mediates activity-dependent control of intrinsic neuronal excitability; such changes could underlie broader mechanisms of synaptic plasticity across neuronal networks. In addition, the inability to constrain NO diffusion suggests that spillover from endothelium (eNOS) and/or immune compartments (iNOS) into the nervous system provides potential pathological sources of NO and where control failure in these other systems could have broader neurological implications. Abnormal NO signaling could therefore contribute to a variety of neurodegenerative pathologies such as stroke/excitotoxicity, Alzheimer's disease, multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Joern R Steinert
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
19
|
Koriyama Y, Chiba K, Yamazaki M, Suzuki H, Ichiro Muramoto K, Kato S. Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J Neurochem 2010; 115:79-91. [DOI: 10.1111/j.1471-4159.2010.06903.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Induction of heme oxygenase-1 with hemin attenuates hippocampal injury in rats after acute carbon monoxide poisoning. Toxicology 2009; 262:146-52. [PMID: 19520142 DOI: 10.1016/j.tox.2009.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/19/2009] [Accepted: 06/01/2009] [Indexed: 11/20/2022]
Abstract
Carbon monoxide (CO) poisoning is a major cause of brain injury and mortality; delayed neurological syndrome (DNS) is encountered in survivors of acute CO exposure. The toxic effects of CO have been attributed to oxidative stress induced by hypoxia. Heme oxygenase-1 (HO-1) is the inducible heme oxygenase isoform, and its induction acts as an important cellular defense mechanism against oxidative stress, cellular injury and disease. In this study, we examined the functional roles of HO-1 induction in a rat model of CO-exposured hippocampal injury. We report that acute CO exposure produces severe hippocampal injury in rats. However, hemin pretreatment reduced both the CO-induced rise in hippocampal water content and levels of neuronal damage in the hippocampus; survival rates at 24 h were significantly improved. Upregulation of HO-1 by hemin pretreatment resulted in a significant decrease in hippocampal levels of malondialdehyde (MDA), a marker of oxidative stress; levels of pro-apoptotic caspase-3 were also reduced. In contrast, inhibition of HO activity by administration of tin protoporphyrin IX (SnPP, a specific inhibitor of HO) abolished the neuroprotective effects of HO-1 induction. These data suggested that the upregulation of endogenous HO-1 expression therefore plays a pivotal protective role in CO neurotoxicity. Though the precise mechanisms underlying hemin-mediated HO-1 induction and neuroprotection are not known, these may involve the anti-oxidant and anti-apoptotic effects of HO-1 enzyme activity.
Collapse
|
21
|
Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 2009; 110:707-18. [PMID: 19457078 DOI: 10.1111/j.1471-4159.2009.06171.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functions of retinoic acid receptors (RARs) in adult CNS have been poorly characterized. Here we investigated potential neuroprotective action of tamibarotene (Am80), an RARalpha/beta agonist available for the treatment of acute promyelocytic leukemia, on midbrain dopaminergic neurons. Am80 protected dopaminergic neurons in rat midbrain slice culture from injury mediated by lipopolysaccharide-activated microglia, without affecting production of nitric oxide, a key mediator of cell injury. The effect of Am80 was mimicked by another RAR agonist, TAC-101, but not by a retinoid X receptor agonist, HX630, and HX630 did not synergize with Am80. We observed neuronal expression of RARalpha and RARbeta in midbrain slice culture and also found that Am80 increased tissue level of brain-derived neurotrophic factor (BDNF) mRNA. Exogenous BDNF prevented dopaminergic neurodegeneration, and the neuroprotective effect of Am80 was suppressed by a TrkB inhibitor, K252a, or by anti-BDNF neutralizing antibody. These results reveal a novel action of RARs mediated by enhancement of BDNF expression. Finally, oral administration of Am80 prevented dopaminergic cell loss in the substantia nigra induced by local injection of lipopolysaccharide in mice, indicating that RARs are a promising target of therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Kumamoto University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|