1
|
Wang H, Zhang M, Gao X, Wang K, Xie G, An S, Chen W, Zhao X. Pharmacological characterization and functional roles of the 5-HT 7 receptor for pheromone sensitivity and mating in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2025. [PMID: 40364570 DOI: 10.1002/ps.8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/21/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) is an important biogenic amine in insects, which regulates and controls many important physiological and behavioral processes by binding to different G protein-coupled receptors. The physiological functions of 5-HT and its receptors in olfactory learning and memory, courtship, and mating behaviors, have been reported in the model insect Drosophila melanogaster. However, little is known about the molecular properties, pharmacological characterization, and physiological functions of 5-HT receptors in the important agricultural pest Helicoverpa armigera. RESULTS In this study, 5-HT7 receptor gene was identified for the first time in H. armigera. Bioinformatics analysis showed that H. armigera 5-HT7 shared a higher homology with 5-HT7 from Spodoptera litura and Mythimna separata. The expression profile showed that Harm5-HT7 receptor gene is highly expressed in the larval and adult developmental stages, and is mainly expressed in the gut of the larva, and is male-biased expressed in antennae and labial palps. Moreover, we investigated the pharmacological characterization of Harm5-HT7 receptor, 5-HT could activate the Harm5-HT7 receptor and increase the production of cyclic adenosine monophosphate (cAMP) in a dose-dependent manner [half maximal effective concentration (EC50) = 0.54 μM]. In addition, we investigated the function of Harm5-HT7 through in vivo pharmacological and RNA interference methodology. The results showed that interference of Harm5-HT7 signaling pathway caused defects in pheromone sensitivity and mating behavior of male H. armigera. CONCLUSION Our results provide the first comprehensive understanding of the pharmacological characterization and functional roles of the Harm5-HT7 receptor in olfactory sensitivity and mating behavior of male H. armigera. Our findings may facilitate the identification of potential target genes or chemical compounds for application in the mating disruption control of H. armigera. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huixin Wang
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengdan Zhang
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyan Gao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kai Wang
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guiying Xie
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xincheng Zhao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Watanabe T, Onuma T, Nishimura M, Morigami A, Ono M, Sasaki K. Activation of mating-related behavior by serotonin in males of the Japanese yellow hornet Vespa simillima. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104796. [PMID: 40157638 DOI: 10.1016/j.jinsphys.2025.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The behavioral physiology of males in social wasps has received little attention, despite the importance of male behavior adapted to complex social environments. To explore the roles of brain biogenic amines in mating-related behavior in male Japanese yellow hornets (Vespa simillima), we first determined the development of mating-related behavior and age-related changes to biogenic amines in the brain. The activities of locomotion, flight, and mating in the males increased with day-age by 1 week after emergence. Testes size decreased within 1 week after adult emergence, suggesting that male sexual maturation may be complete with the development of mating-related behavior. Serotonin levels in the brain increased with age in parallel to the behavioral activities. Dopamine levels in the brain peaked at 2 days of age and then decreased with age, whereas octopamine levels in the brain decreased with age. Thus, serotonin was a candidate compound activating mating-related behavior in males. We then examined the effects of serotonin on the mating-related behavior of males using serotonin injections. Injections of serotonin significantly enhanced activities of locomotion, flight, and mating, depending on serotonin concentration. Those results suggested that serotonin activates mating-related behavior in male hornets.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Takafumi Onuma
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Masakazu Nishimura
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - Ayaka Morigami
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Masato Ono
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan; Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan; Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan.
| |
Collapse
|
3
|
Dong S, Chen T, Chen Y, Wang Y, Yan Y, Liu X, Liu Z, Yu N. Serotonin suppresses intraspecific aggression in an agrobiont spider, Pardosa pseudoannulata, without affecting predation on insects. INSECT SCIENCE 2024. [PMID: 39380412 DOI: 10.1111/1744-7917.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Spiders are an abundant group of natural enemies preying on insect pests in agroecosystem. But their potential in biological control has not been fully realized due to difficult mass production. One hindrance is the intense intraspecific aggression in spiders. Neurotransmitters such as serotonin play important roles in modulating aggression. Here, we investigated the regulatory function of serotonin (5-hydroxytryptamine [5-HT]) signaling in the intraspecific aggression in a wandering spider Pardosa pseudoannulata (Araneae, Lycosidae). The aggression was quantified with 5 escalated aggression behaviors as approach, chasing, lunging, boxing, and biting. Virgin (VG) females exhibited higher aggression levels but less 5-HT content than post-reproductive (PR) females. Systemic increase of 5-HT via 5-HT injection decreased aggression, while decrease of 5-HT via RNA interference (RNAi) of the tryptophan hydroxylase gene, increased aggression. The involvement of the four 5-HT receptors were determined via individual or combined RNAi. Co-RNAi of the three 5-HT1 genes increased overall aggression with decreased incidents of approach, chasing, lunging, and increased biting. RNAi of 5-HT1B decreased approach and increased biting, whereas RNAi of 5-HT1A or 5-HT1C did not affect aggression. RNAi of 5-HT7 decreased approach only. Therefore, different 5-HT receptor types contribute to different aspects of the inhibitory effects of 5-HT on aggression and provide several pharmacological targets for manipulating spider aggression. 5-HT injection did not affect spiders' predation on their insect prey, the brown planthopper Nilaparvata lugens. The findings reveal 1 neuronal mechanism regulating intraspecific aggression in spiders and provide an insight in developing aggression suppression strategies for spider mass rearing.
Collapse
Affiliation(s)
- Shuchen Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tao Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yunru Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yilin Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihao Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuerui Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
7
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566121. [PMID: 37986873 PMCID: PMC10659355 DOI: 10.1101/2023.11.07.566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
8
|
Long DR, Kinser A, Olalde-Welling A, Brewer L, Lim J, Matheny D, Long B, Roossien DH. 5-HT1A regulates axon outgrowth in a subpopulation of Drosophila serotonergic neurons. Dev Neurobiol 2023; 83:268-281. [PMID: 37714743 DOI: 10.1002/dneu.22928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5-HT1A plays a role in serotonergic axon outgrowth and branching. Using cultured Drosophila serotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5-HT1A. Pharmacological activation of 5-HT1A led to reduced axon length and branching, whereas the disruption of 5-HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5-HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching during Drosophila development.
Collapse
Affiliation(s)
- Delaney R Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Ava Kinser
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Luke Brewer
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Juri Lim
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Dayle Matheny
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Breanna Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | |
Collapse
|
9
|
Wyszkowska J, Kobak J, Aonuma H. Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93255-93268. [PMID: 37507567 PMCID: PMC10447283 DOI: 10.1007/s11356-023-28981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The electromagnetic field (EMF) is ubiquitous in the environment, constituting a well-known but poorly understood stressor. Few studies have been conducted on insect responses to EMF, although they are an excellent experimental model and are of great ecological importance. In our work, we tested the effects of EMF (50 Hz, 7 mT) on the cricket Gryllus bimaculatus: the male calling song pattern, female mate choice, and levels of biogenic amines in the brain. Exposure of males to EMF increased the number and shortened the period of chips in their calling song (by 2.7% and 5% relative to the control song, respectively), but not the sound frequency. Aged (3-week-old) females were attracted to both natural and EMF-modified male signals, whereas young (1-week-old, virgin) females responded only to the modified signal, suggesting its higher attractance. Stress response of males to EMF may be responsible for the change in the calling song, as suggested by the changes in the amine levels in their brains: an increase in dopamine (by 50% relative to the control value), tyramine (65%), and serotonin (25%) concentration and a decrease in octopamine level (by 25%). These findings indicate that G. bimaculatus responds to EMF, like stressful conditions, which may change the condition and fitness of exposed individuals, disrupt mate selection, and, in consequence, affect the species' existence.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
10
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Baxter CM, Shams I, Dworkin I, Dukas R. Genetic correlation between aggressive signals and fighting. Biol Lett 2023; 19:20220616. [PMID: 37073527 PMCID: PMC10114015 DOI: 10.1098/rsbl.2022.0616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Theoretical analyses indicate that aggressive signals should positively correlate with the signallers' willingness and abilities to fight. Few experimental studies, however, have tested this prediction. In two experiments employing distinct, ecologically realistic protocols, we quantified the association between aggressive signals and fighting in fruit fly genotypes and found high positive genetic correlations between threat and fighting (rG = 0.80 and 0.74). Our results add to the growing body of experimental work indicating that aggressive signals have relatively high informational value.
Collapse
Affiliation(s)
- Carling M. Baxter
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Ieta Shams
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Reuven Dukas
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
12
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|
13
|
Schraft HA, Bilbrey C, Olenski M, DiRienzo N, Montiglio PO, Dornhaus A. Injected serotonin decreases foraging aggression in black widow spiders (Latrodectus hesperus), but dopamine has no effect. Behav Processes 2023; 204:104802. [PMID: 36509355 DOI: 10.1016/j.beproc.2022.104802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
A fundamental goal of animal behavior research is to discover the proximate mechanisms driving individual behavioral differences. Biogenic amines are known to mediate various aspects of behavior across many species, including aggression, one of the most commonly measured behavioral traits in animals. Arthropods provide an excellent system to manipulate biogenic amines and quantify subsequent behavioral changes. Here, we investigated the role of dopamine (DA) and serotonin (5-HT) on foraging aggression in western black widow spiders (Latrodectus hesperus), as measured by the number of attacks on a simulated prey animal in the web. We injected spiders with DA or 5-HT and then quantified subsequent changes in behavior over 48 h. Based on previous work on insects and spiders, we hypothesized that increasing DA levels would increase aggression, while increasing 5-HT would decrease aggression. We found that injection of 5-HT did decrease black widow foraging aggression, but DA had no effect. This could indicate that the relationship between DA and aggression is complex, or that DA may not play as important a role in driving aggressive behavior as previously thought, at least in black widow spiders. Aggressive behavior is likely also influenced by other factors, such as inter-individual differences in genetics, metabolic rates, environment, and other neurohormonal controls.
Collapse
Affiliation(s)
- Hannes A Schraft
- Université du Québec à Montréal, Département des sciences biologiques, Montréal, QC H2X 1Y4, Canada.
| | - Chasity Bilbrey
- University of Arizona, Department of Ecology and Evolutionary Biology, PO Box 210088, Tucson, AZ 85721, United States
| | - Matt Olenski
- University of Arizona, Department of Ecology and Evolutionary Biology, PO Box 210088, Tucson, AZ 85721, United States
| | - Nicholas DiRienzo
- University of Arizona, Department of Ecology and Evolutionary Biology, PO Box 210088, Tucson, AZ 85721, United States
| | - Pierre-Olivier Montiglio
- Université du Québec à Montréal, Département des sciences biologiques, Montréal, QC H2X 1Y4, Canada
| | - Anna Dornhaus
- University of Arizona, Department of Ecology and Evolutionary Biology, PO Box 210088, Tucson, AZ 85721, United States
| |
Collapse
|
14
|
Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol 2022; 32:2754-2764.e5. [PMID: 35584698 PMCID: PMC9233014 DOI: 10.1016/j.cub.2022.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Social isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee. We find that when alone, individuals of each rearing condition show distinct behavioral signatures. When paired with a conspecific, bees reared in small groups or in the natal colony express similar behavioral profiles. Isolated bees, however, showed increased social interactions. To identify the neurobiological correlates of these differences, we quantified brain gene expression and measured the volumes of key brain regions for a subset of individuals from each rearing condition. Overall, we find that isolation increases social interactions and disrupts gene expression and brain development. Limited social experience in small groups is sufficient to preserve typical patterns of brain development and social behavior.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Grace C McKenzie-Smith
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Hyo Jin Cho
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zahra Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Shaevitz
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Hibicke M, Nichols CD. Validation of the forced swim test in Drosophila, and its use to demonstrate psilocybin has long-lasting antidepressant-like effects in flies. Sci Rep 2022; 12:10019. [PMID: 35705666 PMCID: PMC9200711 DOI: 10.1038/s41598-022-14165-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Psilocybin has been shown to be a powerful, long-lasting antidepressant in human clinical trials and in rodent models. Although rodents have commonly been used to model psychiatric disorders, Drosophila have neurotransmitter systems similar to mammals and many comparable brain structures involved in similar behaviors. The forced swim test (FST), which has been used extensively to evaluate compounds for antidepressant efficacy, has recently been adapted for Drosophila. The fly FST has potential to be a cost-effective, high-throughput assay for evaluating potential antidepressants. For this study we pharmacologically validated the fly FST using methamphetamine, DL-α-methyltyrosine, and the antidepressant citalopram. While methamphetamine and DL-α-methyltyrosine altered overall locomotor activity in the Drosophila Activity Monitor System (DAMS), they had no significant impact on measures of immobility in the FST. Conversely, chronic citalopram decreased measures of immobility in the FST in both sexes without increasing DAMS activity. We used the validated FST to evaluate the antidepressant-like effects of high (3.5 mM) and low (0.03 mM) doses of psilocybin. Both doses of psilocybin significantly reduced measures of immobility in male flies, but not females. 0.03 mM had an effect size comparable to chronic citalopram, and 3.5 mM had an effect size approximately twice that of chronic citalopram.
Collapse
Affiliation(s)
- M Hibicke
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - C D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
16
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
17
|
Cunningham CB, Khana D, Carter A, McKinney EC, Moore AJ. Survey of neurotransmitter receptor gene expression into and out of parental care in the burying beetle Nicrophorus vespilloides. Ecol Evol 2021; 11:14282-14292. [PMID: 34707854 PMCID: PMC8525115 DOI: 10.1002/ece3.8144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this "precursor hypothesis" for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co-opted during the evolution of parent-offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.
Collapse
Affiliation(s)
| | - Daven Khana
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Annika Carter
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
18
|
Ibuchi K, Nagayama T. Opposing effects of dopamine on agonistic behaviour in crayfish. J Exp Biol 2021; 224:269155. [PMID: 34128529 DOI: 10.1242/jeb.242057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The effects of dopamine on the agonistic behaviour of crayfish were analysed. When dopamine concentrations of 1 μmol l-1 were injected into large crayfish, individuals were beaten by smaller opponents, despite their physical advantage. Injection of 10 μmol l-1 dopamine into small animals increased their rate of winning against larger opponents. Injection of a D1 receptor antagonist prohibited the onset of a 'loser' effect in subordinate animals, suggesting that the inhibitory effect of dopamine on larger animals is mediated by D1 receptors. Similarly, injection of a D2 receptor antagonist prohibited the onset of a 'winner' effect in dominant animals, suggesting that the facilitating effect of dopamine on small animals is mediated by D2 receptors. Since the inhibitory effect of 1 μmol l-1 dopamine was similar to that seen with 1 μmol l-1 octopamine and the facilitating effect of 10 μmol l-1 dopamine was similar to that of 1 μmol l-1 serotonin, functional interactions among dopamine, octopamine and serotonin were analyzed by co-injection of amines with their receptor antagonists in various combinations. The inhibitory effect of 1 μmol l-1 dopamine disappeared when administered with D1 receptor antagonist, but remained when combined with octopamine receptor antagonist. Octopamine effects disappeared when administered with either D1 receptor antagonist or octopamine receptor antagonist, suggesting that the dopamine system is downstream of octopamine. The facilitating effect of 10 μmol l-1 dopamine disappeared when combined with serotonin 5HT1 receptor antagonist or D2 receptor antagonist. Serotonin effects also disappeared when combined with D2 receptor antagonist, suggesting that dopamine and serotonin activate each other through parallel pathways.
Collapse
Affiliation(s)
- Kengo Ibuchi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
19
|
Pang YY, Huang GY, Song YM, Song XZ, Lv JH, He L, Niu C, Shi AY, Shi XL, Cheng YX, Yang XZ. Effects of miR-143 and its target receptor 5-HT2B on agonistic behavior in the Chinese mitten crab (Eriocheir sinensis). Sci Rep 2021; 11:4492. [PMID: 33627750 PMCID: PMC7904944 DOI: 10.1038/s41598-021-83984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5′-UTR (untranslated region), a 779 bp 3′-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3′-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xiao- Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ao-Ya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xing-Liang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
20
|
Wang G, Wu X. Exploring the role of Bombyx mori serotonin receptor 4 on locomotor activity by RNAi combined with locomotion assay. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1430-1431. [PMID: 33108443 DOI: 10.1093/abbs/gmaa119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guobao Wang
- College of Biological and Agricultural Engineering, Weifang University, Weifang 261061, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Ten Eyck GR, Ten Eyck LM. Serotonin and vasotocin function in territoriality. Pharmacol Biochem Behav 2020; 199:173068. [PMID: 33144208 DOI: 10.1016/j.pbb.2020.173068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
This ethopharmacological investigation comprised a long-term field study that examined the function of serotonergic and vasotonergic systems in territoriality. Adult territorial and non-territorial (silent) male coquí frogs (Eleutherodactylus coqui) were injected (IP) with either arginine vasotocin (AVT) or one of two serotonin agonists, 5-HT2A/2C selective agonist, (±) DOI - [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane], or 2) the 5-HT1A selective agonist, 8-OH-DPAT - [(±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene]. Control groups received saline injections. Each male received two injections. Following the first injection, whether AVT or a 5HT agonist, the male was observed so that behavior could be documented prior to the second injection, which consisted of the other drug class. All frogs were marked, placed back in the exact location as captured, and observed for all behaviors and vocalizations. Territoriality in E. coqui includes several behavioral components: movement into a calling site, presentation of dominant physical displays, emitting advertisement calls, and defense a territory (including the use of physical force and/or aggressive vocalizations). This investigation found that particular territorial behaviors were significantly influenced by 5HT and AVT action. Initiation of advertisement calling is activated by AVT and suppressed by 5HT, calling rate is affected by 5HT activation, presentation of dominant physical displays are activated by AVT and repressed by 5HT activation, and movement associated with activation of territorial behavior is stimulated by AVT. These data suggested that both 5HT and AVT have a profound impact on territoriality and are two fundamental neuroendocrine systems that govern territorial behavior in social systems.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA.
| | - Lily M Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
22
|
Sun Y, Qiu R, Li X, Cheng Y, Gao S, Kong F, Liu L, Zhu Y. Social attraction in Drosophila is regulated by the mushroom body and serotonergic system. Nat Commun 2020; 11:5350. [PMID: 33093442 PMCID: PMC7582864 DOI: 10.1038/s41467-020-19102-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
Sociality is among the most important motivators of human behaviour. However, the neural mechanisms determining levels of sociality are largely unknown, primarily due to a lack of suitable animal models. Here, we report the presence of a surprising degree of general sociality in Drosophila. A newly-developed paradigm to study social approach behaviour in flies reveal that social cues perceive through both vision and olfaction converged in a central brain region, the γ lobe of the mushroom body, which exhibite activation in response to social experience. The activity of these γ neurons control the motivational drive for social interaction. At the molecular level, the serotonergic system is critical for social affinity. These results demonstrate that Drosophila are highly sociable, providing a suitable model system for elucidating the mechanisms underlying the motivation for sociality. Robust social attraction in fruit flies relies on two prominent senses, vision and olfaction, which converge to central brain neurons. The neurons of the γ lobe of the mushroom bodies integrate sensory information and modulate social affinity.
Collapse
Affiliation(s)
- Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Qiu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,New England Biolabs (Beijing) LTD., No.1 Wang Zhuang Road, Beijing, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Cheng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shenzhen Science Museum, Shangbu Road, 1003, Shenzhen, China
| | - Shan Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanchen Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Aonuma H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J Exp Biol 2020; 223:jeb228874. [PMID: 32895325 DOI: 10.1242/jeb.228874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023]
Abstract
The decision to express either a defensive response or an escape response to a potential threat is crucial for insects to survive. This study investigated an aminergic mechanism underlying defensive responses to unexpected touch in an ant that has powerful mandibles, the so-called trap-jaw. The mandibles close extremely quickly and are used as a weapon during hunting. Tactile stimulation to the abdomen elicited quick forward movements in a dart escape in 90% of the ants in a colony. Less than 10% of the ants responded with a quick defensive turn towards the source of stimulation. To reveal the neuronal mechanisms underlying this defensive behavior, the effect of brain biogenic amines on the responses to tactile stimuli were investigated. The levels of octopamine (OA), dopamine (DA) and serotonin (5HT) in the brain were significantly elevated in ants that responded with a defensive turn to the unexpected stimulus compared with ants that responded with a dart escape. Oral administration of DA and 5HT demonstrated that both amines contributed to the initiation of a defensive response. Oral administration of l-DOPA weakly affected the initiation of the defensive turn, while 5-hydroxy-l-tryptophan (5HTP) strongly affected the initiation of defensive behavior. Oral administration of ketanserin, a 5HT antagonist, inhibited the initiation of the defensive turn in aggressive workers, abolishing the effects of both 5HT and 5HTP on the initiation of turn responses. These results indicate that 5HTergic control in the nervous system is a key for the initiation of defensive behavior in the trap-jaw ant.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
24
|
Chang CC, Connahs H, Tan ECY, Norma-Rashid Y, Mrinalini, Li D, Chew FT. Female spider aggression is associated with genetic underpinnings of the nervous system and immune response to pathogens. Mol Ecol 2020; 29:2626-2638. [PMID: 32510793 DOI: 10.1111/mec.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
Identifying the genetic architecture underlying phenotypic variation in natural populations and assessing the consequences of polymorphisms for individual fitness are fundamental goals in evolutionary and molecular ecology. Consistent between-individual differences in behaviour have been documented for a variety of taxa. Dissecting the genetic basis of such behavioural differences is however a challenging endeavour. The molecular underpinnings of natural variation in aggression remain elusive. Here, we used comparative gene expression (transcriptome analysis and RT-PCR), genetic association analysis and pharmacological experiments to gain insight into the genetic basis of aggression in wild-caught jumping spiders (Portia labiata). We show that spider aggression is associated with a putative viral infection response gene, BTB/POZ domain-containing protein 17 (BTBDH), in addition to a putative serotonin receptor 1A (5-HT1A) gene. Spider aggression varies with virus loads, and BTBDH is upregulated in docile spiders and exhibits a genetic variant associated with aggression. We also identify a putative serotonin receptor 5-HT1A gene upregulated in docile P. labiata. Individuals that have been treated with serotonin become less aggressive, but individuals treated with a nonselective serotonin receptor antagonist (methiothepin) also reduce aggression. Further, we identify the genetic variants in the 5-HT1A gene that are associated with individual variation in aggression. We therefore conclude that co-evolution of the immune and nervous systems may have shaped the between-individual variation in aggression in natural populations of jumping spiders.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Estella Cai Yu Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Y Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
25
|
Temporal and genetic variation in female aggression after mating. PLoS One 2020; 15:e0229633. [PMID: 32348317 PMCID: PMC7190144 DOI: 10.1371/journal.pone.0229633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Aggression between individuals of the same sex is almost ubiquitous across the animal kingdom. Winners of intrasexual contests often garner considerable fitness benefits, through greater access to mates, food, or social dominance. In females, aggression is often tightly linked to reproduction, with females displaying increases in aggressive behavior when mated, gestating or lactating, or when protecting dependent offspring. In the fruit fly, Drosophila melanogaster, females spend twice as long fighting over food after mating as when they are virgins. However, it is unknown when this increase in aggression begins or whether it is consistent across genotypes. Here we show that aggression in females increases between 2 to 4 hours after mating and remains elevated for at least a week after a single mating. In addition, this increase in aggression 24 hours after mating is consistent across three diverse genotypes, suggesting this may be a universal response to mating in the species. We also report here the first use of automated tracking and classification software to study female aggression in Drosophila and assess its accuracy for this behavior. Dissecting the genetic diversity and temporal patterns of female aggression assists us in better understanding its generality and adaptive function, and will facilitate the identification of its underlying mechanisms.
Collapse
|
26
|
A standardized method for incorporation of drugs into food for use with Drosophila melanogaster. Anal Biochem 2020; 599:113740. [PMID: 32320689 DOI: 10.1016/j.ab.2020.113740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
With any in vivo model, diet plays an important role, even in an organism as simple as the fruit fly - Drosophila melanogaster. Flies serve as good surrogates to study human diseases as approximately 77% of human disease genes are orthologous in the fly. Though breeding and caring for fruit flies is simple, the use of this organism in drug discovery is wide-ranging, especially in the administration of drugs to flies, via their food. We present a standard method for preparing fly food containing drugs for administration to Drosophila melanogaster, from a chemist's perspective.
Collapse
|
27
|
Acute administration of levetiracetam in tonic pain model modulates gene expression of 5HT 1A and 5HT 7 receptors in the thalamus of rats (Rattus norvergicus). Mol Biol Rep 2020; 47:3389-3396. [PMID: 32285329 DOI: 10.1007/s11033-020-05419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
The nociceptive effect of Levetiracetam (LEV) on the expression of 5-HT1A and 5-HT7 receptors found in the thalamus was evaluated. Thirty-six male rats (Wistar) were randomized into six groups: in the Control group without treatment; LEV50 group LEV was administered in a single dose of 50 mg/kg i.g.; in the LEV300 group LEV dose of 300 mg/kg i.g.; in the FORMALIN group the formalin test was performed; in the LEV50/FORMALIN group LEV dose of 50 mg/kg i.g and the formalin test was performed; in the LEV300/FORMALIN group LEV dose of 300 mg/kg i.g and the formalin test was performed, subsequently the thalamus was dissected in all groups. In the formalin tests LEV exhibited an antinociceptive effect in the LEV300/FORMALIN group (p < 0.05) and a pronociceptive effect in the LEV50/FORMALIN group (p < 0.001). The results obtained by Real-time PCR confirmed the expression of the 5-HT1A and 5-HT7 receptors in the thalamus, 5-HT1A receptors increased significantly in the FORMALIN group and the LEV300/FORMALIN group (p < 0.05). 5-HT7 receptors are only over expressed at a dose of 300 mg/Kg of LEV with formalin (p < 0.05). This suggests that LEV modulates the sensation of pain by controlling the expression of 5-HT1A and 5-HT7 in a tonic pain model, and that changes in the expression of 5-HT1A and 5-HT7 receptors are associated with the sensation of pain, furthermore its possibility to be used in clinical treatments for pain.
Collapse
|
28
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|
29
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
30
|
Pang YY, Song YM, Zhang L, Song XZ, Zhang C, Lv JH, He L, Cheng YX, Yang XZ. 5-HT2B, 5-HT7, and DA2 Receptors Mediate the Effects of 5-HT and DA on Agonistic Behavior of the Chinese Mitten Crab ( Eriocheir sinensis). ACS Chem Neurosci 2019; 10:4502-4510. [PMID: 31642670 DOI: 10.1021/acschemneuro.9b00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a commercially important crab in China and is usually managed at high stocking densities. Agonistic behavior directly impacts crab integrity, survival, and growth and results in economic losses. In the present study, we evaluated the modulatory effects of serotonin (5-HT) and dopamine (DA) though the 5-HT2 and DA2 receptor-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway on agonistic behavior. The results showed that injection of either 10-6 mol/crab 5-HT or DA reduced the agonistic behavior of E. sinensis (P < 0.05), as did 10-10 mol/crab DA and 10-8 mol/crab 5-HT and DA (P < 0.05); however, a dose of 10-10 mol/crab 5-HT promoted agonistic behavior. 5-HT significantly increased the mRNA expression level of 5-HT7 receptor and reduced that of the DA2 receptor in the cerebral ganglion (P < 0.05). In contrast to 5-HT, DA significantly decreased 5-HT2B mRNA levels and increased 5-HT7 and DA2 receptor levels in the thoracic ganglia (P < 0.05). In addition, injections of either 5-HT or DA increased the cAMP and PKA levels in hemolymph (P < 0.05). By using in vitro culture of the thoracic ganglia, the current study showed that ketanserin (5-HT2 antagonist) and [R(-)-TNPA] (DA2 agonist) had obvious effects on the expression levels of the two receptors (P < 0.05). In vivo experiments further demonstrated that ketanserin and [R(-)-TNPA] could both significantly reduce the agonistic behavior of the crabs (P < 0.05). Furthermore, both ketanserin and [R(-)-TNPA] promoted the cAMP and PKA levels (P < 0.05). The injection of CPT-cAMP (cAMP analogue) elevated the PKA levels and inhibited agonistic behavior. In summary, this study showed that 5HT-2B and DA2 receptors were involved in the agonistic behavior that 5-HT/DA induced through the cAMP-PKA pathway in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
31
|
Rillich J, Rillich B, Stevenson PA. Differential modulation of courtship behavior and subsequent aggression by octopamine, dopamine and serotonin in male crickets. Horm Behav 2019; 114:104542. [PMID: 31226329 DOI: 10.1016/j.yhbeh.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Aggression is a behavioral strategy for securing limited resources and its expression is strongly influenced by their presence and value. In particular, males are generally thought to guard females after mating to ward off other males, but the underlying control mechanisms are unknown. Here, we investigated the role of amines on male courtship behavior and its subsequent effect on male-male aggression in crickets (Gryllus bimaculatus). Contrary to the guarding hypothesis, female presence alone had no immediate effect on male-male aggression. Furthermore, confirming studies on other species, prior female contact, but not necessarily courtship or copulation, promoted subsequent male-male aggression in subordinate, but not socially naive crickets. This promoting effect of female contact is transient and slowly wanes after her removal. Selective aminergic receptor antagonists revealed that the promoting effect of prior female contact on male-male aggression is mediated by octopamine (OA), as well as by serotonin (5HT) acting most likely via 5HT1 and/or 5HT7 like receptors. This contrasts the role of 5HT2-like receptors in maintaining reduced aggressiveness after social defeat. Furthermore, while dopamine (DA) is necessary for the recovery of aggression in subordinates after defeat, it appears to play no part in female induced aggression. Male courtship, on the other hand, is selectively promoted by DA and 5HT, again most likely via 5HT1 and/or 5HT7 like receptors, but not by OA. We conclude that OA, DA and 5HT each differentially modulate different aspects of courtship and aggressive behavior in a context specific fashion.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University, Leipzig, Germany.
| | - Birk Rillich
- Institute for Biology, University of Rostock, Rostock, Germany
| | | |
Collapse
|
32
|
Yang XZ, Pang YY, Huang GY, Xu MJ, Zhang C, He L, Lv JH, Song YM, Song XZ, Cheng YX. The serotonin or dopamine by cyclic adenosine monophosphate-protein kinase A pathway involved in the agonistic behaviour of Chinese mitten crab, Eriocheir sinensis. Physiol Behav 2019; 209:112621. [PMID: 31323296 DOI: 10.1016/j.physbeh.2019.112621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Agonistic behaviour is common in an encounter between two crustaceans. It often causes limb disability and consumes a lot of energy, which is harmful for the growth and survival of commercially important crustaceans. In the present study, we mainly focused on the agonistic behaviour of the Chinese mitten crab, Eriocheir sinensis, which is an important species of the aquaculture industry in China. We recorded agnostic behaviour with a high-definition camera and preliminarily evaluated the role of serotonin (5-HT) or dopamine (DA)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway and eyestalk in the behaviour. The results showed that agonistic behaviour in E. sinensis consisted of three stages: approach, contact and fight. We found that the number of fights and cumulative time of fight were significantly higher in the male vs. male group than in the female vs. female and female vs. male groups (P < 0.05). After 1 h of agonistic behaviour, 5-HT concentration showed a significant increase and DA concentration showed a significant decrease when compared with the control group (no encounter; P < 0.05). 5-HT1B and 5-HT2B mRNA levels showed a significant increase in the eyestalk (P < 0.05). 5-HT7 mRNA levels showed significant downregulation in the thoracic ganglia and DA1A mRNA levels showed upregulation in the intestine (P < 0.05). DA2 mRNA levels showed a significant decrease in the eyestalk (P < 0.05). These changes were accompanied by a significant increase in cAMP level and significant decrease in PKA level in the haemolymph (P < 0.05). In addition, a significant decrease in glucose levels was detected after the agonistic behaviour. Crustacean hyperglycemic hormone (CHH) mRNA levels showed significant upregulation in the eyestalk and significant downregulation in the intestine (P < 0.05). The number of fights and cumulative time of fight in the left eyestalk ablation (L-X vs. L-X) group were more and longer than those in the intact eyestalk (C vs. C), right eyestalk ablation (R-X vs. R-X) and bilateral eyestalk ablation (D-X vs. D-X) groups. In short, E. sinensis shows special agonistic behaviour modulated by 5-HT or DA-cAMP-PKA pathway and eyestalk, especially the left eyestalk.
Collapse
Affiliation(s)
- Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China.
| | - Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Min-Jie Xu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China.
| |
Collapse
|
33
|
Yang S, Xi G, Wang G. Molecular Cloning and Expression Analysis of 5-hydroxytryptamine Receptor 7 in Ant Polyrhachis vicina Roger (Hymenoptera: Formicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5366996. [PMID: 30817822 PMCID: PMC6394970 DOI: 10.1093/jisesa/iez015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine neurotransmitter that plays an important role in regulating a variety of physiological and behavioral activities. In this study, the 5-HT7 receptor gene was cloned from the ant Polyrhachis vicina Roger (1863). The complete Pv5-HT7 receptor cDNA is 3054 bp, including a 5'-untranslated region (UTR) of 790 bp, a 3'-UTR of 752 bp and an open reading frame of 1512 bp encoding polypeptide of 503 amino acids. Hydrophobic analysis suggests that seven trans-membrane domains are the major sequence characteristic of the Pv5-HT7 receptor. In addition, the Pv5-HT7 receptor has three potential N-glycosylation sites, a palmitoylation site, three protein kinase A phosphorylation sites, and four protein kinase C phosphorylation sites. Phylogenetic analysis revealed that the deduced Pv5-HT7 receptor sequence shared a high homology with 5-HT7 receptor sequences of other species, such as a 78% similarity with the Am5-HT7 receptor (Apis mellifera). Real-time quantitative PCR (qRT-PCR) results showed that the expression level of the Pv5-HT7 receptor was low in the eggs and 1th-4th larval stages, but it was increased in the pupae stage and reached its peak in the adult workers. Western blot results showed that the highest protein expression was in the male body, head, and thorax. These results suggest that the Pv5-HT7 receptor may have specific functions in regulating the development of P. vicina, especially in adult formation and caste differentiation, feeding and caring behaviors of workers in the nest, and in the development of motor organs and mating behaviors in males.
Collapse
Affiliation(s)
- Sen Yang
- Department of Biology, College of Life Science, Shaanxi Normal University, West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi Province, P.R. China
- Department of Physical Education, College of Physical Education, Xianyang Normal University, Xianyang, Shaanxi Province, P.R. China
| | - Gengsi Xi
- Department of Biology, College of Life Science, Shaanxi Normal University, West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi Province, P.R. China
- Corresponding author, e-mail:
| | - Guirong Wang
- Department of Biology, College of Life Science, Shaanxi Normal University, West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
34
|
Bubak AN, Watt MJ, Renner KJ, Luman AA, Costabile JD, Sanders EJ, Grace JL, Swallow JG. Sex differences in aggression: Differential roles of 5-HT2, neuropeptide F and tachykinin. PLoS One 2019; 14:e0203980. [PMID: 30695038 PMCID: PMC6350964 DOI: 10.1371/journal.pone.0203980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin's (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression. Similarly, the influence of these systems in driving sex differences in aggressive behavior of invertebrates is not well understood. Here, we investigated these questions by employing complementary approaches in a novel invertebrate model of aggression, the stalk-eyed fly. A combination of altered social conditions, pharmacological manipulation and 5-HT2 receptor knockdown by siRNA revealed an inhibitory role of this receptor subtype on aggression. Additionally, we provide evidence for 5-HT2's involvement in regulating neuropeptide F activity, a suspected inhibitor of aggression. However, this function appears to be stage-specific, altering only the initiation stage of aggressive conflicts. Alternatively, pharmacologically increasing systemic concentrations of 5-HT significantly elevated the expression of the neuropeptide tachykinin, which did not affect contest initiation but instead promoted escalation via production of high intensity aggressive behaviors. Notably, these effects were limited solely to males, with female aggression and neuropeptide expression remaining unaltered by any manipulation that affected 5-HT. Together, these results demonstrate a more nuanced role for 5-HT in modulating aggression in invertebrates, revealing an important interactive role with neuropeptides that is more reminiscent of vertebrates. The sex-differences described here also provide valuable insight into the evolutionary contexts of this complex behavior.
Collapse
Affiliation(s)
- Andrew N. Bubak
- Department of Neurology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Watt
- Center for Brain and Behavior Research, Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Kenneth J. Renner
- Biology Department, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Abigail A. Luman
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jamie D. Costabile
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Erin J. Sanders
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jaime L. Grace
- Department of Biology, Bradley University, Peoria, Illinois, United States of America
| | - John G. Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rillich J, Stevenson PA. Serotonin Mediates Depression of Aggression After Acute and Chronic Social Defeat Stress in a Model Insect. Front Behav Neurosci 2018; 12:233. [PMID: 30349464 PMCID: PMC6186776 DOI: 10.3389/fnbeh.2018.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
In all animals, losers of a conflict against a conspecific exhibit reduced aggressiveness, often coupled with depression-like symptoms, particularly after multiple defeats. While serotonin (5HT) is involved, discovering its natural role in aggression and depression has proven elusive. We show how 5HT influences aggression in male crickets, before, and after single and multiple defeats using serotonergic drugs, at dosages that had no obvious deleterious effect on general motility: the 5HT synthesis inhibitor alpha-methyltryptophan (AMTP), the 5HT2 receptor blocker ketanserin, methiothepin which blocks 5HT receptor subtypes other than 5HT2, 5HT's precursor 5-hydroxytryptophan (5HTP) and re-uptake inhibitor fluoxetine. Contrasting reports for other invertebrates, none of the drugs influenced aggression at the first encounter. However, the recovery of aggression after single defeat, which normally requires 3 h in crickets, was severely affected. Losers that received ketanserin or AMTP regained their aggressiveness sooner, whereas those that received fluoxetine, 5HTP, or methiothepin failed to recover within 3 h. Furthermore, compared to controls, which show long term aggressive depression 24 h after 6 defeats at 1 h intervals, crickets that received AMTP or ketanserin regained their full aggressiveness and were thus more resilient to chronic defeat stress. In contrast, 5HTP and fluoxetine treated crickets showed long term aggressive depression 24 h after only 2 defeats, and were thus more susceptible to defeat stress. We conclude that 5HT acts after social defeat via a 5HT2 like receptor to maintain depressed aggressiveness after defeat, and to promote the susceptibility to and establishment of long-term depression after chronic social defeat. It is known that the decision to flee and establishment of loser depression in crickets is controlled by nitric oxide (NO), whereas dopamine (DA), but not octopamine (OA) is necessary for recovery after defeat. Here we show that blocking NO synthesis, just like ketanserin, affords resilience to multiple defeat stress, whereas blocking DA receptors, but not OA receptors, increases susceptibility, just like fluoxetine. We discuss the possible interplay between 5HT, NO, DA, and OA in controlling aggression after defeat, as well as similarities and differences to findings in mammals and other invertebrate model systems.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
36
|
Tierney AJ. Invertebrate serotonin receptors: a molecular perspective on classification and pharmacology. ACTA ACUST UNITED AC 2018; 221:221/19/jeb184838. [PMID: 30287590 DOI: 10.1242/jeb.184838] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invertebrate receptors for the neurotransmitter serotonin (5-HT) have been identified in numerous species from diverse phyla, including Arthropoda, Mollusca, Nematoda and Platyhelminthes. For many receptors, cloning and characterization in heterologous systems have contributed data on molecular structure and function across both closely and distantly related species. This article provides an overview of heterologously expressed receptors, and considers evolutionary relationships among them, classification based on these relationships and nomenclature that reflects classification. In addition, transduction pathways and pharmacological profiles are compared across receptor subtypes and species. Previous work has shown that transduction mechanisms are well conserved within receptor subtypes, but responses to drugs are complex. A few ligands display specificity for different receptors within a single species; however, none acts with high specificity in receptors across different species. Two non-selective vertebrate ligands, the agonist 5-methoxytryptamine and antagonist methiothepin, are active in most receptor subtypes in multiple species and hence bind very generally to invertebrate 5-HT receptors. Future challenges for the field include determining how pharmacological profiles are affected by differences in species and receptor subtype, and how function in heterologous receptors can be used to better understand 5-HT activity in intact organisms.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Department of Psychology, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
37
|
Brown MK, Strus E, Naidoo N. Reduced Sleep During Social Isolation Leads to Cellular Stress and Induction of the Unfolded Protein Response. Sleep 2017; 40:3852531. [PMID: 28541519 DOI: 10.1093/sleep/zsx095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Study Objectives Social isolation has a multitude of negative consequences on human health including the ability to endure challenges to the immune system, sleep amount and efficiency, and general morbidity and mortality. These adverse health outcomes are conserved in other social species. In the fruit fly Drosophila melanogaster, social isolation leads to increased aggression, impaired memory, and reduced amounts of daytime sleep. There is a correlation between molecules affected by social isolation and those implicated in sleep in Drosophila. We previously demonstrated that acute sleep loss in flies and mice induced the unfolded protein response (UPR), an adaptive signaling pathway. One mechanism indicating UPR upregulation is elevated levels of the endoplasmic reticular chaperone BiP/GRP78. We previously showed that BiP overexpression in Drosophila led to increased sleep rebound. Increased rebound sleep has also been demonstrated in socially isolated (SI) flies. Methods D. melanogaster were used to study the effect of social isolation on cellular stress. Results SI flies displayed an increase in UPR markers; there were higher BiP levels, increased phosphorylation of the translation initiation factor eIF2α, and increased splicing of xbp1. These are all indicators of UPR activation. In addition, the effects of isolation on the UPR were reversible; pharmacologically and genetically altering sleep in the flies modulated the UPR. Conclusions The reduction in sleep observed in SI flies is a cellular stressor that results in UPR induction.
Collapse
Affiliation(s)
- Marishka K Brown
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ewa Strus
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
38
|
Ivanova J, Zhang S, Wang RL, Schoenfuss HL. Social hierarchy modulates responses of fish exposed to contaminants of emerging concern. PLoS One 2017; 12:e0186807. [PMID: 29049393 PMCID: PMC5648243 DOI: 10.1371/journal.pone.0186807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
Many organisms, including the fathead minnow (Pimephales promelas), a toxicological model organism, establish social hierarchies. The social rank of each male in a population is under the control of the hypothalamic-pituitary-gonadal (HPG) axis mainly through regulation of circulating androgen concentrations, which in turn drive the expression of secondary sex characteristics (SSCs). As dominant and subordinate males in an exposure study are initially under different physiological conditions (i.e., differing plasma androgen concentrations), we proposed that they belong to different subpopulations in the context of exposure to compounds that may interact with the HPG axis. Using a meta-analysis of our data from several previously published studies, we corroborated the hypothesis that social status, as indicated by SSCs, results in distinct clusters (eigenvalues >0.8 explaining >80% of variability) with differential expression of plasma vitellogenin, a commonly used biomarker of exposure to contaminants of emerging concern (CEC). Furthermore, we confirmed our predictions that exposure to estrogenic CECs would homogenize plasma vitellogenin response (E1: cluster mean SSC values decreased to 4.33 and 4.86 relative to those of control; E2: decreased to 4.8 and 5.37) across the social hierarchy. In contrast, serotonin-specific reuptake inhibitors expand this response range (cluster mean SSC increased to 5.21 and 6.5 relative to those of control). Our results demonstrated that social hierarchies in male fathead minnows result in heterogeneous responses to chemical exposure. These results represent a cautionary note for the experimental design of single-sex exposure studies. We anticipate our study to be a starting point for the re-evaluation of toxicological data analyses in single sex exposure experiments.
Collapse
Affiliation(s)
- Jelena Ivanova
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Shiju Zhang
- Department of Mathematics & Statistics, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Rong-Lin Wang
- Exposure Methods & Measurements Division, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| |
Collapse
|
39
|
Kim K, Kim JH, Kim YH, Hong SE, Lee SH. Pathway profiles based on gene-set enrichment analysis in the honey bee Apis mellifera under brood rearing-suppressed conditions. Genomics 2017; 110:43-49. [PMID: 28803879 DOI: 10.1016/j.ygeno.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Abstract
Perturbation of normal behaviors in honey bee colonies by any external factor can immediately reduce the colony's capacity for brood rearing, which can eventually lead to colony collapse. To investigate the effects of brood-rearing suppression on the biology of honey bee workers, gene-set enrichment analysis of the transcriptomes of worker bees with or without suppressed brood rearing was performed. When brood rearing was suppressed, pathways associated with both protein degradation and synthesis were simultaneously over-represented in both nurses and foragers, and their overall pathway representation profiles resembled those of normal foragers and nurses, respectively. Thus, obstruction of normal labor induced over-representation in pathways related with reshaping of worker bee physiology, suggesting that transition of labor is physiologically reversible. In addition, some genes associated with the regulation of neuronal excitability, cellular and nutritional stress and aggressiveness were over-expressed under brood rearing suppression perhaps to manage in-hive stress under unfavorable conditions.
Collapse
Affiliation(s)
- Kyungmun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ju Hyeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, College of Ecology & Environmental Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Seong-Eui Hong
- Theragen Etex, Bio Institute, Suwon, Gyeonggi-do, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
41
|
Qi YX, Jin M, Ni XY, Ye GY, Lee Y, Huang J. Characterization of three serotonin receptors from the small white butterfly, Pieris rapae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:107-116. [PMID: 28663125 DOI: 10.1016/j.ibmb.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/07/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays a key role in modulating diverse physiological processes and behaviors in both protostomes and deuterostomes. These functions are mediated through the binding of serotonin to its receptors, which are recognized as potential insecticide targets. We investigated the sequence, pharmacology and tissue distribution of three 5-HT receptors (Piera5-HT1A, Piera5-HT1B, Piera5-HT7) from the small white butterfly Pieris rapae, an important pest of cultivated cabbages and other mustard family crops. Activation of Piera5-HT1A or Piera5-HT1B by 5-HT inhibited the production of cAMP in a dose-dependent manner. Stimulation of Piera5-HT7 with 5-HT increased cAMP level significantly. Surprisingly, with the exception of 5-methoxytryptamine, agonists including α-methylserotonin, 8-Hydroxy-DPAT and 5-carboxamidotryptamine activated these receptors poorly. The results are consistent with previous findings in Manduca sexta. All three receptors were blocked by methiothepin, but ketanserin and yohimbine were not effective. The selective mammalian 5-HT receptor antagonists SB 216641 and SB 269970 displayed potent inhibition effects on Piera5-HT1B and Piera5-HT7 respectively. The results we achieved here indicate that the pharmacological properties of Lepidoptera 5-HT receptors are quite different from those in other insects and vertebrates and may contribute to development of new selective pesticides. This study offers important information on three 5-HT receptors from P. rapae that will facilitate further analysis of the functions of 5-HT receptors in insects.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miao Jin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xu-Yang Ni
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Republic of Korea
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat Commun 2017; 8:15738. [PMID: 28585544 PMCID: PMC5467214 DOI: 10.1038/ncomms15738] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) affects millions of patients; however, the pathophysiology is poorly understood. Rodent models have been developed using chronic mild stress or unavoidable punishment (learned helplessness) to induce features of depression, like general inactivity and anhedonia. Here we report a three-day vibration-stress protocol for Drosophila that reduces voluntary behavioural activity. As in many MDD patients, lithium-chloride treatment can suppress this depression-like state in flies. The behavioural changes correlate with reduced serotonin (5-HT) release at the mushroom body (MB) and can be relieved by feeding the antidepressant 5-hydroxy-L-tryptophan or sucrose, which results in elevated 5-HT levels in the brain. This relief is mediated by 5-HT-1A receptors in the α-/β-lobes of the MB, whereas 5-HT-1B receptors in the γ-lobes control behavioural inactivity. The central role of serotonin in modulating stress responses in flies and mammals indicates evolutionary conserved pathways that can provide targets for treatment and strategies to induce resilience. Features of major depressive disorder including lack of motivation, sleep disruption and cognitive deficit have been modelled in rodents. Here, the authors develop a new method to elicit a depression-like state in Drosophila, and uncover separable roles for different serotonin receptors in depression-like behaviour.
Collapse
|
43
|
Abstract
In this review, I discuss current knowledge and outstanding questions on the neuromodulators that influence aggressive behavior of the fruit fly Drosophila melanogaster. I first present evidence that Drosophila exchange information during an agonistic interaction and choose appropriate actions based on this information. I then discuss the influence of several biogenic amines and neuropeptides on aggressive behavior. One striking characteristic of neuromodulation is that it can configure a neural circuit dynamically, enabling one circuit to generate multiple outcomes. I suggest a consensus effect of each neuromodulatory molecule on Drosophila aggression, as well as effects of receptor proteins where relevant data are available. Lastly, I consider neuromodulation in the context of strategic action choices during agonistic interactions. Genetic components of neuromodulatory systems are highly conserved across animals, suggesting that molecular and cellular mechanisms controlling Drosophila aggression can shed light on neural principles governing action choice during social interactions.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
44
|
Solari P, Rivelli N, De Rose F, Picciau L, Murru L, Stoffolano JG, Liscia A. Opposite effects of 5-HT/AKH and octopamine on the crop contractions in adult Drosophila melanogaster: Evidence of a double brain-gut serotonergic circuitry. PLoS One 2017; 12:e0174172. [PMID: 28334024 PMCID: PMC5363830 DOI: 10.1371/journal.pone.0174172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 01/29/2023] Open
Abstract
This study showed that in adult Drosophila melanogaster, the type of sugar-either present within the crop lumen or in the bathing solution of the crop-had no effect on crop muscle contraction. What is important, however, is the volume within the crop lumen. Electrophysiological recordings demonstrated that exogenous applications of serotonin on crop muscles increases both the amplitude and the frequency of crop contraction rate, while adipokinetic hormone mainly enhances the crop contraction frequency. Conversely, octopamine virtually silenced the overall crop activity. The present study reports for the first time an analysis of serotonin effects along the gut-brain axis in adult D. melanogaster. Injection of serotonin into the brain between the interocellar area shows that brain applications of serotonin decrease the frequency of crop activity. Based on our results, we propose that there are two different, opposite pathways for crop motility control governed by serotonin: excitatory when added in the abdomen (i.e., directly bathing the crop) and inhibitory when supplied within the brain (i.e., by injection). Finally, our results point to a double brain-gut serotonergic circuitry suggesting that not only the brain can affect gut functions, but the gut can also affect the central nervous system. On the basis of our results, and data in the literature, a possible mechanism for these two discrete serotonergic functions is suggested.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Nicholas Rivelli
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Francescaelena De Rose
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Lorenzo Picciau
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Ludovico Murru
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - John G. Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| |
Collapse
|
45
|
Boyan GS, Liu Y. Development of the Neurochemical Architecture of the Central Complex. Front Behav Neurosci 2016; 10:167. [PMID: 27630548 PMCID: PMC5005427 DOI: 10.3389/fnbeh.2016.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.
Collapse
Affiliation(s)
- George S. Boyan
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| |
Collapse
|
46
|
Crocker A, Guan XJ, Murphy CT, Murthy M. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Rep 2016; 15:1580-1596. [PMID: 27160913 DOI: 10.1016/j.celrep.2016.04.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation.
Collapse
Affiliation(s)
- Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiao-Juan Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Paul F. Glenn Laboratories for Aging Research, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
47
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Stevenson PA, Rillich J. Controlling the decision to fight or flee: the roles of biogenic amines and nitric oxide in the cricket. Curr Zool 2016; 62:265-275. [PMID: 29491914 PMCID: PMC5804241 DOI: 10.1093/cz/zow028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adaptive decision to fight or flee is barely known. Here, we review our work on crickets that reveals the roles of biogenic amines, primarily octopamine (the insect analog of noradrenaline) and nitric oxide (NO). Using aminergic drugs, we found that amines are not essential for actually initiating aggression. However, octopamine is necessary for mediating the aggression-promoting effects of potentially rewarding experiences including stimulation with a male antenna, physical exertion, winning, and resource possession. Hence, octopamine can be considered as the motivational component of aggression. Imposed handicaps that impede aggressive signaling revealed that the agonistic actions of an opponent perceived during fighting act to reduce aggression, and that crickets make the decision to flee the moment the accumulated sum of such aversive experiences exceeds some critical level. Treatment with nitridergic drugs revealed that the impact of the opponent’s aggressive actions is mediated by NO. NO acts to suppress aggression by promoting the tendency to flee and is primarily responsible for the depressed aggressiveness of subordinates after social defeat. Octopamine and dopamine can each restore aggression in subordinates, but only dopamine is necessary for normal recovery. The role of serotonin remains unclear, and is discussed. We conclude that octopamine and NO control the decision to fight or flee by mediating the effects of potentially rewarding and aversive experiences, respectively.
Collapse
Affiliation(s)
- Paul A Stevenson
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany
| | - Jan Rillich
- Institute for Biology, Leipzig University, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
49
|
Schneider J, Atallah J, Levine JD. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc 2016; 92:1027-1038. [PMID: 26990016 DOI: 10.1111/brv.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this 'social environment effect' by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group-level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Jade Atallah
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
50
|
Social isolation increases male aggression toward females in the field cricket Gryllus bimaculatus. POPUL ECOL 2015. [DOI: 10.1007/s10144-015-0522-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|