1
|
Wu M, He W, Gong H, Dong L, Ding N, Zhang G, Wang J, Rong W. The spatial and temporal pattern of GPER/GPR30 reporter expression in the developing and mature forebrain of mice. Brain Res Bull 2025; 223:111276. [PMID: 40024397 DOI: 10.1016/j.brainresbull.2025.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Evidence suggest that estrogens play crucial roles in the regulation of neural development and function and the G protein-coupled estrogen receptor (GPER/GPR30) appears to be the predominant estrogen receptor in the brain. However, the distribution and functions of GPER in the developing and mature brain are not fully understood. The current study aimed to characterize the expression of GPER in the forebrain, using Gper gene reporter mice combined with fluorescent in situ hybridization (FISH/RNAscope) and immunohistochemistry (IHC). Two lines of Gper reporter mice were constructed by crossing the Gper-cre mice with Ai14(RCL-tdT)-D or R26-ZsGreen mice, which showed identical spatial distributions of the reporters in adult brain. In the forebrain, neurons, protoplasmic astrocytes, mural cells and ependymal cells of third ventricle, were found to express Gper reporters. GPER-expressing neurons were particularly enriched in the olfactory system and the salience network, including posteromedial nucleus of the cortical amygdala (PmCo), entorhinal cortex, insula cortex, prefrontal cortex and dentate gyrus of the hippocampus. RNAscope and neural tracing showed GPER-expressing cortical neurons were long-range excitatory pyramidal neurons. GPER-expressing astrocytes represented a minor population (<10 %) of astrocytes and were found to be closely associated with neurovascular units. GPER-expressing mural cells were not labelled by the common pericyte marker PDGFRβ. In the critical period of neural development (P1-P10), GPER expression appeared to be intimately associated with neurogenesis, proliferation and migration in the olfactory system and the salience network. Collectively, the spatial and temporal pattern of GPER/GPR30 expression in the forebrain implied it might play important roles regulating the development and functions of the olfactory system, the salience network and the cerebral vessels.
Collapse
Affiliation(s)
- Meimei Wu
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenxin He
- School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Huashan Gong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Dong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Ding
- School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Guohua Zhang
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Weifang Rong
- Department of Gastroenterology, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Basic Medical Science and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Kondo H, Iwata T, Sato K, Koshiishi R, Suzuki H, Murata K, Spehr M, Touhara K, Nikaido M, Hirota J. Impaired pheromone detection and abnormal sexual behavior in female mice deficient for ancV1R. Curr Biol 2025; 35:21-35.e8. [PMID: 39577426 DOI: 10.1016/j.cub.2024.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
Ancient vomeronasal receptor type-1 (ancV1R), a putative vomeronasal receptor, is highly conserved across a wide range of vertebrates and is expressed in the majority of vomeronasal sensory neurons, co-expressing with canonical vomeronasal receptors, V1Rs and V2Rs. The pseudogenization of ancV1R is closely associated with vomeronasal organ (VNO) degeneration, indicating its critical role in pheromone sensing. However, the specific role of ancV1R remains unknown. In this study, to elucidate the function of ancV1R, we conducted phenotypic analyses of ancV1R-deficient female mice. Behavioral analyses showed that ancV1R-deficient females exhibited rejective responses toward male sexual behavior and displayed no preference for male urine. Physiological analyses demonstrate that the loss-of-function mutation of ancV1R reduced VNO response to various pheromone cues, including male urine, the sexual enhancing pheromone exocrine gland-secreting peptide 1 (ESP1), and β-estradiol 3-sulfate. Pre-exposure to ESP1 did not overcome the rejection behavior caused by ancV1R deficiency. Analysis of neural activity in the vomeronasal system revealed increased responses in the medial amygdala and posteromedial cortical amygdala of mutant females upon contact with males but not in response to male urine alone. Additionally, upon male contacts, ancV1R-deficient females exhibited increased neural activity in the lateral septum, a stress-associated brain region, along with elevated stress hormone levels. Such effects were not observed in females exposed solely to male urine. These findings suggest that, in females, ancV1R facilitates VNO responses to pheromone stimuli and plays a crucial role in perceiving males as mating partners. The absence of ancV1R results in failure of male perception, leading to abnormal sexual behaviors and stress responses upon male contact.
Collapse
Affiliation(s)
- Hiro Kondo
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | - Tetsuo Iwata
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | - Koji Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Riseru Koshiishi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | | | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Nikaido
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| | - Junji Hirota
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| |
Collapse
|
3
|
Cohen O, Kahan A, Steinberg I, Malinowski ST, Rokni D, Spehr M, Ben-Shaul Y. Stimulus-Induced Theta-Band LFP Oscillations Format Neuronal Representations of Social Chemosignals in the Mouse Accessory Olfactory Bulb. J Neurosci 2023; 43:8700-8722. [PMID: 37903594 PMCID: PMC10727196 DOI: 10.1523/jneurosci.1055-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.
Collapse
Affiliation(s)
- Oksana Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anat Kahan
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Steinberg
- Alpha Program, Future Scientist Center, The Hebrew University Youth Division, Jerusalem 9190401, Israel
| | - Sebastian T Malinowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Dan Rokni
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Pardo-Bellver C, Vila-Martin ME, Martínez-Bellver S, Villafranca-Faus M, Teruel-Sanchis A, Savarelli-Balsamo CA, Drabik SM, Martínez-Ricós J, Cervera-Ferri A, Martínez-García F, Lanuza E, Teruel-Martí V. Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice. Front Neuroanat 2022; 16:988015. [PMID: 36120099 PMCID: PMC9479637 DOI: 10.3389/fnana.2022.988015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Manuel E. Vila-Martin
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Villafranca-Faus
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Anna Teruel-Sanchis
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Camila A. Savarelli-Balsamo
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sylwia M. Drabik
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Joana Martínez-Ricós
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Fernando Martínez-García
- Faculty of Health Sciences, Pre-Departmental Unit of Medicine, Jaume I University, Castellón de la Plana, Spain
| | - Enrique Lanuza
- Department of Functional and Cell Biology, Faculty of Biology, University of Valencia, Valencia, Spain
- *Correspondence: Enrique Lanuza,
| | - Vicent Teruel-Martí
- Laboratory of Neuronal Circuits, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Vicent Teruel-Martí,
| |
Collapse
|
5
|
Inbar T, Davis R, Bergan JF. A sex-specific feedback projection from aromatase-expressing neurons in the medial amygdala to the accessory olfactory bulb. J Comp Neurol 2022; 530:648-655. [PMID: 34415057 PMCID: PMC8716422 DOI: 10.1002/cne.25236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023]
Abstract
The accessory olfactory bulb (AOB) plays a critical role in classifying pheromonal signals. Here we identify two previously undescribed sources of aromatase signaling in the AOB: (1) a population of aromatase-expressing neurons in the AOB itself; (2) a tract of aromatase-expressing axons which originate in the ventral medial amygdala (MEA) and terminate in the AOB. Using a retrograde tracer in conjunction with a transgenic strategy to label aromatase-expressing neurons throughout the brain, we found that a single contiguous population of neurons in the ventral MEA provides the only significant feedback by aromatase-expressing neurons to the AOB. This population expresses the estrogen receptor alpha (ERα) and displayed anatomical sex differences in the number of neurons (higher in male mice) and the size of cell bodies (larger in females). Given the previously established relationship between aromatase expression, estrogen signaling, and the function of sexually dimorphic circuits, we suggest that this feedback population is well-positioned to provide neuroendocrine feedback to modulate sensory processing of social stimuli in the AOB.
Collapse
Affiliation(s)
- Tal Inbar
- Neuroscience and Behavior Graduate Program, University of Massachusetts at Amherst
| | - Rachel Davis
- Department of Psychological and Brain Sciences, University of Massachusetts at Amherst
| | - Joseph F. Bergan
- Neuroscience and Behavior Graduate Program, University of Massachusetts at Amherst,Department of Psychological and Brain Sciences, University of Massachusetts at Amherst
| |
Collapse
|
6
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Processing of intraspecific chemical signals in the rodent brain. Cell Tissue Res 2021; 383:525-533. [PMID: 33404846 DOI: 10.1007/s00441-020-03383-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/06/2020] [Indexed: 12/24/2022]
Abstract
In the rodent brain, the central processing of ecologically relevant chemical stimuli involves many different areas located at various levels within the neuraxis: the main and accessory olfactory bulbs, some nuclei in the amygdala, the hypothalamus, and brainstem. These areas allow the integration of the chemosensory stimuli with other sensory information and the selection of the appropriate neurohormonal and behavioral response. This review is a brief introduction to the processing of intraspecific chemosensory stimuli beyond the secondary projection, focusing on the activity of the relevant amygdala and hypothalamic nuclei, namely the medial amygdala and ventromedial hypothalamus. These areas are involved in the appropriate interpretation of chemosensory information and drive the selection of the proper response, which may be behavioral or hormonal and may affect the neural activity of other areas in the telencephalon and brainstem.Recent data support the notion that the processing of intraspecific chemical signals is not unique to one chemosensory system and some molecules may activate both the main and the accessory olfactory system. Moreover, both these systems have mixed projections and cooperate for the correct identification of the stimuli and selection of relevant responses.
Collapse
|
8
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Holy TE. The Accessory Olfactory System: Innately Specialized or Microcosm of Mammalian Circuitry? Annu Rev Neurosci 2018; 41:501-525. [DOI: 10.1146/annurev-neuro-080317-061916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that ( a) physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that ( b) the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.
Collapse
Affiliation(s)
- Timothy E. Holy
- Department of Neuroscience, Washington University, St. Louis, Missouri 63132, USA
| |
Collapse
|
10
|
McCarthy EA, Maqsudlu A, Bass M, Georghiou S, Cherry JA, Baum MJ. DREADD-induced silencing of the medial amygdala reduces the preference for male pheromones and the expression of lordosis in estrous female mice. Eur J Neurosci 2017; 46:2035-2046. [PMID: 28677202 DOI: 10.1111/ejn.13636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023]
Abstract
Sexually naïve estrous female mice seek out male urinary pheromones; however, they initially display little receptive (lordosis) behavior in response to male mounts. Vomeronasal-accessory olfactory bulb inputs to the medial amygdala (Me) regulate courtship in female rodents. We used a reversible inhibitory chemogenetic technique (Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) to assess the contribution of Me signaling to females' preference for male pheromones and improvement in receptivity normally seen with repeated testing. Sexually naïve females received bilateral Me injections of an adeno-associated virus carrying an inhibitory DREADD. Females were later ovariectomized, treated with ovarian hormones, and given behavioral tests following intraperitoneal injections of saline or clozapine-N-oxide (CNO; which hyperpolarizes infected Me neurons). CNO attenuated females' preference to investigate male vs. female urinary odors. Repeated CNO treatment also slowed the increase in lordosis otherwise seen in females given saline. However, when saline was given to females previously treated with CNO, their lordosis quotients were as high as other females repeatedly given saline. No disruptive behavioral effects of CNO were seen in estrous females lacking DREADD infections of the Me. Finally, CNO attenuated the ability of male pheromones to stimulate Fos expression in the Me of DREADD-infected mice but not in non-infected females. Our results affirm the importance of Me signaling in females' chemosensory preferences and in the acute expression of lordosis. However, they provide no indication that Me signaling is required for the increase in receptivity normally seen after repeated hormone priming and testing with a male.
Collapse
Affiliation(s)
| | - Arman Maqsudlu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Matthew Bass
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Sofia Georghiou
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Michael J Baum
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Abstract
Social interactions are often powerful drivers of learning. In female mice, mating creates a long-lasting sensory memory for the pheromones of the stud male that alters neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates of pheromonal learning, however, remain unclear. We examined local circuit changes in the accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness, suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed in the MC ensembles activated by the stud male, consistent with formation of memories for specific individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may act to filter sustained or repetitive sensory signals. DOI:http://dx.doi.org/10.7554/eLife.25421.001 To navigate social situations, humans and other animals need to remember who they have interacted with and how it went, and adjust their behavior in future encounters accordingly. For example, your physical actions, and even your body’s physiological responses, will be very different when you encounter the last person you kissed instead of the last person you fought with (assuming this is not the same person!). Memories of social interactions can have dramatic consequences. For instance, male mice often kill the offspring of other males. Female mice appear to have adopted a countermeasure to avoid losing a litter of pups to such aggression: they will spontaneously abort a pregnancy when exposed to chemicals called pheromones from unfamiliar males. However, when the female mouse is exposed to the pheromones of the male she mated with she maintains her pregnancy. Exactly how the memories of previous social interactions with the males affect the female’s pheromone responses is not fully understood. To investigate how the female is able to respond differently to different males, Gao et al. recorded the activity of individual neurons taken from the brain tissue of female mice who had recently mated. The recordings showed that previous social experiences produce learning-related changes in the brain of the female mouse that reduce how sensitively pheromone-detecting neurons respond to the chemical cues of the male mate. This suppresses the signals that the neurons would otherwise send to trigger an abortion in response to male pheromones. Gao et al. also used fluorescent tags to identify which neurons in the female’s brain had been activated during mating. This revealed that only those neurons that had been activated by the mate become unresponsive when the cells again encountered his pheromones. This suggests that a set of neurons in the female’s brain records the chemical ‘fingerprint’ of the mate, and can then selectively filter out that mate’s pheromone signals. Many other social interactions, such as parenting, are also strongly shaped by experience. The results presented by Gao et al. may therefore offer wider lessons for understanding how the brain targets different behaviors toward specific individuals. It will also be important to investigate how highly arousing experiences cause such powerful memories to form. This could ultimately help us to better understand – and potentially treat – conditions like post-traumatic stress disorder. DOI:http://dx.doi.org/10.7554/eLife.25421.002
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biology, Boston University, Boston, United States
| | - Carl Budlong
- Department of Biology, Boston University, Boston, United States
| | - Emily Durlacher
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, United States
| | - Ian G Davison
- Department of Biology, Boston University, Boston, United States
| |
Collapse
|
12
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Takahashi LK. Olfactory systems and neural circuits that modulate predator odor fear. Front Behav Neurosci 2014; 8:72. [PMID: 24653685 PMCID: PMC3949219 DOI: 10.3389/fnbeh.2014.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 11/13/2022] Open
Abstract
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Collapse
Affiliation(s)
- Lorey K Takahashi
- Department of Psychology, University of Hawaii at Manoa Honolulu, HI, USA
| |
Collapse
|
14
|
Gutiérrez-Castellanos N, Pardo-Bellver C, Martínez-García F, Lanuza E. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice. Eur J Neurosci 2013; 39:141-58. [PMID: 24188795 DOI: 10.1111/ejn.12393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/18/2022]
Abstract
Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex.
Collapse
Affiliation(s)
- Nicolás Gutiérrez-Castellanos
- Laboratori de Neuroanatomia Funcional Comparada, Departaments de Biologia Cellular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, Burjassot, 46100, València, Spain
| | | | | | | |
Collapse
|
15
|
Petrulis A. Chemosignals and hormones in the neural control of mammalian sexual behavior. Front Neuroendocrinol 2013; 34:255-67. [PMID: 23911848 DOI: 10.1016/j.yfrne.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Males and females of most mammalian species depend on chemosignals to find, attract and evaluate mates and, in most cases, these appetitive sexual behaviors are strongly modulated by activational and organizational effects of sex steroids. The neural circuit underlying chemosensory-mediated pre- and peri-copulatory behavior involves the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), medial preoptic area (MPOA) and ventromedial hypothalamus (VMH), each area being subdivided into interconnected chemoreceptive and hormone-sensitive zones. For males, MA-BNST connections mediate chemoinvestigation whereas the MA-MPOA pathway regulates copulatory initiation. For females, MA-MPOA/BNST connections also control aspects of precopulatory behavior whereas MA-VMH projections control both precopulatory and copulatory behavior. Significant gaps in understanding remain, including the role of VMH in male behavior and MPOA in female appetitive behavior, the function of cortical amygdala, the underlying chemical architecture of this circuit and sex differences in hormonal and neurochemical regulation of precopulatory behavior.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
16
|
Contreras CM, Gutiérrez-García AG, Molina-Jiménez T. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala. Behav Brain Res 2013; 252:101-109. [PMID: 23721965 DOI: 10.1016/j.bbr.2013.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/26/2022]
Abstract
Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition.
Collapse
Affiliation(s)
- Carlos M Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | | | | |
Collapse
|
17
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Moriya-Ito K, Endoh K, Fujiwara-Tsukamoto Y, Ichikawa M. Three-dimensional reconstruction of electron micrographs reveals intrabulbar circuit differences between accessory and main olfactory bulbs. Front Neuroanat 2013; 7:5. [PMID: 23626525 PMCID: PMC3631763 DOI: 10.3389/fnana.2013.00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional (3D) reconstruction of synaptic arrangement on a particular dendrite provides essential information regarding neuronal properties and neural microcircuits. Unconventional synapses are particularly good candidates for such steric attribution. In main and accessory olfactory bulbs (MOBs and AOBs), there are dendrodendritic reciprocal synapses (RSs) between excitatory projection neurons and inhibitory interneurons. Although the fine structure and configuration of these synapses have been investigated in MOB, their characteristics in AOB were unknown. In this study, we performed 3D AOB reconstruction using serial section transmission electron microscopy. We found numerous RSs on primary dendrites from glomeruli to mitral/tufted (MT) cell somas. These synapses formed between dendritic shafts of MT cells and large dendritic spines, or so-called gemmules, of granule (Gr) cells. This indicates that chemical signals received by a glomerulus are regulated in the primary dendrite of an MT cell before reaching its soma. In MOB, RSs are located on secondary dendrites and act as lateral and self-inhibiting following mitral cell depolarization. Our results indicate that AOB intrabulbar microcircuitry is quite different from that in the MOB.
Collapse
Affiliation(s)
- Keiko Moriya-Ito
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science Setagaya, Tokyo, Japan
| | | | | | | |
Collapse
|
19
|
Arzate DM, Portillo W, Corona R, Paredes RG. Repeated paced mating promotes the arrival of more newborn neurons in the main and accessory olfactory bulbs of adult female rats. Neuroscience 2012; 232:151-60. [PMID: 23262235 DOI: 10.1016/j.neuroscience.2012.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/27/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
We have previously shown that the first-paced mating encounter increases the number of newborn cells in the granule cell layer (Gra; also known as internal cell layer, ICL) of the accessory olfactory bulb (AOB) in the adult female rat (Corona et al., 2011). In the present study we evaluated if repetition of the stimulus (paced mating) could increase the arrival of more newborn neurons in the olfactory bulb generated during the first session of paced sexual contact. Sexually naive female rats were bilaterally ovariectomized, hormonally supplemented with estradiol (E2) and progesterone (P) and randomly assigned to one of four groups: (1) without sexual contact, (2) one session of paced mating, (3) four sessions of paced mating, and (4) four sessions of non-paced mating. We also included a group of gonadally intact females. On the first day of the experiment, all females were i.p. injected with the marker of DNA synthesis bromodeoxyuridine and were killed 16 days later. Blood was collected at sacrifice to determine the plasma levels of E2 and P. The number of newborn neurons that arrived at the ICL of the AOB and the Gra of the main olfactory bulb (MOB) increased, relative to all other groups, only in the group that repeatedly mated under pacing conditions. No differences were found in E2 and P levels between supplemented groups indicating that our results are not influenced by changes in hormone concentrations. We suggest that repeated paced mating promotes the arrival of more newborn neurons in the AOB and MOB.
Collapse
Affiliation(s)
- D M Arzate
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - W Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| | - R Corona
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - R G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
20
|
Mucignat-Caretta C, Redaelli M, Caretta A. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. Front Neuroanat 2012; 6:46. [PMID: 23162438 PMCID: PMC3494019 DOI: 10.3389/fnana.2012.00046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
The accessory olfactory system is present in most tetrapods. It is involved in the perception of chemical stimuli, being implicated also in the detection of pheromones. However, it is sensitive also to some common odorant molecules, which have no clear implication in intraspecific chemical communication. The accessory olfactory system may complement the main olfactory system and may contribute different perceptual features to the construction of a unitary representation, which merges the different chemosensory qualities. Crosstalk between the main and accessory olfactory systems occurs at different levels of central processing, in brain areas where the inputs from the two systems converge. Interestingly, centrifugal projections from more caudal brain areas are deeply involved in modulating both main and accessory sensory processing. A high degree of interaction between the two systems may be conceived and partial overlapping appears to occur in many functions. Therefore, the central chemosensory projections merge inputs from different organs to obtain a complex chemosensory picture.
Collapse
|
21
|
Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012; 6:33. [PMID: 22933993 PMCID: PMC3423790 DOI: 10.3389/fnana.2012.00033] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022] Open
Abstract
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Facultat de Ciències Biològiques, Laboratory of Functional and Comparative Neuroanatomy, Departament de Biologia Cel·lular, Universitat de València València, Spain
| | | | | | | | | |
Collapse
|
22
|
Baum MJ. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Front Neuroanat 2012; 6:20. [PMID: 22679420 PMCID: PMC3367429 DOI: 10.3389/fnana.2012.00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022] Open
Abstract
Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition.
Collapse
Affiliation(s)
- Michael J Baum
- Department of Biology, Boston University, Boston MA, USA
| |
Collapse
|
23
|
Mohedano-Moriano A, de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Pro-Sistiaga P, de Moya-Pinilla M, Martinez-Marcos A. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs. Front Neuroanat 2012; 6:19. [PMID: 22661931 PMCID: PMC3362118 DOI: 10.3389/fnana.2012.00019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/12/2012] [Indexed: 12/30/2022] Open
Abstract
Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing.
Collapse
Affiliation(s)
- Alicia Mohedano-Moriano
- Facultad de Medicina de Albacete, Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha Albacete, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Leszkowicz E, Khan S, Ng S, Ved N, Swallow DL, Brennan PA. Noradrenaline-induced enhancement of oscillatory local field potentials in the mouse accessory olfactory bulb does not depend on disinhibition of mitral cells. Eur J Neurosci 2012; 35:1433-45. [PMID: 22487171 DOI: 10.1111/j.1460-9568.2012.08070.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The olfactory bulb differs from other brain regions by its use of bidirectional synaptic transmission at dendrodendritic reciprocal synapses. These reciprocal synapses provide tight coupling of inhibitory feedback from granule cell interneurons to mitral cell projection neurons in the accessory olfactory bulb (AOB), at the first stage of vomeronasal processing. It has been proposed that both the mGluR2 agonist DCG-IV and noradrenaline promote mate recognition memory formation by reducing GABAergic feedback on mitral cells. The resultant mitral cell disinhibition is thought to induce a long-lasting enhancement in the gain of inhibitory feedback from granule to mitral cells, which selectively gates the transmission of the learned chemosensory information. However, we found that local infusions of both noradrenaline and DCG-IV failed to disinhibit AOB neural activity in urethane-anaesthetised mice. DCG-IV infusion had similar effects to the GABA(A) agonist isoguvacine, suggesting that it increased GABAergic inhibition in the AOB rather than reducing it. Noradrenaline infusion into the AOB also failed to disinhibit mitral cells in awake mice despite inducing long-term increases in power of AOB local field potentials, similar to those observed following memory formation. These results suggest that mitral cell disinhibition is not essential for the neural changes in the AOB that underlie mate recognition memory formation in mice.
Collapse
Affiliation(s)
- Emilia Leszkowicz
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
25
|
Been LE, Petrulis A. Dissociated functional pathways for appetitive and consummatory reproductive behaviors in male Syrian hamsters. Horm Behav 2012; 61:204-11. [PMID: 22210198 PMCID: PMC3278532 DOI: 10.1016/j.yhbeh.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
Abstract
In many species, including Syrian hamsters, the generation of male reproductive behavior depends critically on the perception of female odor cues from conspecifics in the environment. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (MA), posterior bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). Previous studies have demonstrated that each of these three nuclei is required for appropriate sexual behavior and that MA preferentially sends female odor information directly to BNST and MPOA. It is unknown, however, how the functional connections between MA and BNST and/or MPOA are organized to generate different aspects of reproductive behavior. Therefore, the following experiments used the asymmetrical pathway lesion technique to test the role of the functional connections between MA and BNST and/or MPOA in odor preference and copulatory behaviors. Lesions that functionally disconnected MA from MPOA eliminated copulatory behavior but did not affect odor preference. In contrast, lesions that functionally disconnected MA from BNST eliminated preference for volatile female odors but did not affect preference for directly contacted odors or copulatory behavior. These results therefore demonstrate a double dissociation in the functional connections required for attraction to volatile sexual odors and copulation and, more broadly, suggest that appetitive and consummatory reproductive behaviors are mediated by distinct neural pathways.
Collapse
Affiliation(s)
- Laura E Been
- Georgia State University, Neuroscience Institute, 100 Piedmont Avenue NE, Atlanta, GA 30303, USA.
| | | |
Collapse
|
26
|
Martinez LA, Petrulis A. The bed nucleus of the stria terminalis is critical for sexual solicitation, but not for opposite-sex odor preference, in female Syrian hamsters. Horm Behav 2011; 60:651-9. [PMID: 21925504 PMCID: PMC3210388 DOI: 10.1016/j.yhbeh.2011.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/17/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli.
Collapse
Affiliation(s)
- Luis A Martinez
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | | |
Collapse
|
27
|
Oboti L, Schellino R, Giachino C, Chamero P, Pyrski M, Leinders-Zufall T, Zufall F, Fasolo A, Peretto P. Newborn interneurons in the accessory olfactory bulb promote mate recognition in female mice. Front Neurosci 2011; 5:113. [PMID: 21994486 PMCID: PMC3182443 DOI: 10.3389/fnins.2011.00113] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/22/2022] Open
Abstract
In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well known model of mating-induced imprinting to avoid pregnancy block, which requires accessory olfactory bulb (AOB) function, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in this brain region. We show that, in adult female mice, exposure to the male urine compounds involved in mate recognition increases the number of new granule cells surviving in the AOB. This process is modulated by male signals sensed through the vomeronasal organ and, in turn, changes the activity of the downstream amygdaloid and hypothalamic nuclei involved in the pregnancy block response. Chemical depletion of newly generated bulbar interneurons causes strong impairment in mate recognition, thus resulting in a high pregnancy failure rate to familiar mating male odors. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odor learning and mate recognition.
Collapse
Affiliation(s)
- Livio Oboti
- Department of Animal and Human Biology, University of Turin Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu Y, Moriya-Ito K, Iwakura T, Tsutiya A, Ichikawa M, Ohtani-Kaneko R. Sexually dimorphic effects of estrogen on spines in cultures of accessory olfactory bulb. Neurosci Lett 2011; 500:77-81. [DOI: 10.1016/j.neulet.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/08/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
|
29
|
Kang N, McCarthy EA, Cherry JA, Baum MJ. A sex comparison of the anatomy and function of the main olfactory bulb-medial amygdala projection in mice. Neuroscience 2011; 172:196-204. [PMID: 21070839 PMCID: PMC3010476 DOI: 10.1016/j.neuroscience.2010.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/21/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
We previously reported that some main olfactory bulb (MOB) mitral/tufted (M/T) cells send a direct projection to the "vomeronasal" amygdala in female mice and selectively respond to volatile male mouse urinary odors. We asked whether MOB M/T cells that project to the vomeronasal amygdala exist in male mice and whether there is a sexually dimorphic response of these neurons to volatile male urinary pheromones. Gonadectomized male and female mice received bilateral injections of the retrograde tracer, Cholera toxin-B (CTb) into the medial amygdala (Me), which is part of the vomeronasal amygdala. All subjects were then treated with estradiol benzoate and progesterone before being exposed to volatile male urinary odors whereupon they were sacrificed 90 min later. Sections of the MOB were immunostained for Fos protein and/or CTb. Male mice, like females, displayed a small population of MOB M/T cells that project to the Me. While the general localization of these cells was similar in the two sexes, there were statistically significant sex differences in the percentage of MOB M/T cells in the anterior and posterior medial segments of the MOB that were retrogradely labeled by CTb. Male urinary volatiles stimulated equivalent, significant increases in Fos expression by MOB M/T neurons projecting to the Me in the two sexes. By contrast, in the same mice exposure to male urinary volatiles stimulated a significant increase in Fos expression by mitral cells in the accessory olfactory bulb (AOB) only in female subjects. Thus any sexually dimorphic behavioral or neuroendocrine responses to male urinary volatiles likely depend on the differential processing of these odor inputs in the AOB and/or other downstream forebrain structures after their detection by the main olfactory system.
Collapse
Affiliation(s)
- Ningdong Kang
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - James A. Cherry
- Department of Psychology, Boston University, Boston, MA 02215, USA
| | - Michael J. Baum
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
30
|
Been LE, Petrulis A. Lesions of the posterior bed nucleus of the stria terminalis eliminate opposite-sex odor preference and delay copulation in male Syrian hamsters: role of odor volatility and sexual experience. Eur J Neurosci 2010; 32:483-93. [PMID: 20597978 PMCID: PMC2921451 DOI: 10.1111/j.1460-9568.2010.07277.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Syrian hamsters (Mesocricetus auratus), the expression of reproductive behavior requires the perception of social odors. The behavioral response to these odors is mediated by a network of ventral forebrain nuclei, including the posterior bed nucleus of the stria terminalis (pBNST). Previous studies have tested the role of the pBNST in reproductive behavior, but the use of large, fiber-damaging lesions in these studies make it difficult to attribute post-lesion deficits to the pBNST specifically. Thus, the current study used discrete, excitotoxic lesions of the pBNST to test the role of the pBNST in opposite-sex odor preference and copulatory behavior in both sexually-naive and sexually-experienced males. Lesions of the pBNST decreased sexually-naive males' investigation of volatile female odors, resulting in an elimination of opposite-sex odor preference. This elimination of preference was not due to a sensory deficit, as males with pBNST lesions were able to discriminate between odors. When, however, subjects were given sexual experience prior to pBNST lesions, their preference for volatile opposite-sex odors remained intact post-lesion. Similarly, when sexually-naive or sexually-experienced subjects were allowed to contact the social odors during the preference test, lesions of the pBNST decreased males' investigation of female odors but did not eliminate preference for opposite-sex odors, regardless of sexual experience. Finally, lesions of the pBNST delayed the copulatory sequence in sexually-naive, but not sexually-experienced, males such that they took longer to mount, intromit, ejaculate and display long intromissions. Together, these results demonstrate that the pBNST plays a unique and critical role in both appetitive and consummatory aspects of male reproductive behaviors.
Collapse
Affiliation(s)
- Laura E Been
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
31
|
Mucignat-Caretta C. The rodent accessory olfactory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:767-77. [PMID: 20607541 DOI: 10.1007/s00359-010-0555-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 06/10/2010] [Accepted: 06/19/2010] [Indexed: 11/24/2022]
Abstract
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors-in contrast to the main olfactory receptors-are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic-hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.
Collapse
|
32
|
Gutiérrez-Castellanos N, Martínez-Marcos A, Martínez-García F, Lanuza E. Chemosensory Function of the Amygdala. VITAMINS & HORMONES 2010; 83:165-96. [DOI: 10.1016/s0083-6729(10)83007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Salazar I, Quinteiro PS. The risk of extrapolation in neuroanatomy: the case of the Mammalian vomeronasal system. Front Neuroanat 2009; 3:22. [PMID: 19949452 PMCID: PMC2782799 DOI: 10.3389/neuro.05.022.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/05/2009] [Indexed: 12/13/2022] Open
Abstract
The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Collapse
Affiliation(s)
- Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|