1
|
Merz EC, Morys F, Hansen M, Strack J, Jacobs L, Vainik U, Shishikura M, Myers B. Socioeconomic factors, brain-derived neurotrophic factor Val66Met polymorphism, and cortical structure in children and adolescents. Sci Rep 2025; 15:18953. [PMID: 40442425 PMCID: PMC12122700 DOI: 10.1038/s41598-025-04081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025] Open
Abstract
Variability in associations between socioeconomic status and cortical gray matter may be due in part to the common, functional brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, which alters BDNF signaling. In this study, we examined whether BDNF Val66Met genotype moderated the associations between socioeconomic factors (family income, parental education) and cortical surface area (SA) and thickness (CT) in two large independent samples of typically-developing children and adolescents. Participants were 3- to 21-year-olds (N = 383; 47% female) from the Pediatric Imaging, Neurocognition, and Genetics (PING) study and 11- to 14-year-olds (N = 2566; 46% female) in the Adolescent Brain Cognitive Development (ABCD) study. High-resolution, T1-weighted magnetic resonance imaging data were acquired in both studies. Analyses were conducted on global and regional SA and CT. In the PING sample, BDNF Val66Met genotype significantly moderated the association between family income and total SA and SA in the left fusiform gyrus. In the ABCD sample, there were no significant interactions for global or regional SA or CT. Collectively, these results suggest that BDNF Val66Met genotype may not explain variability in associations between socioeconomic factors and SA or CT in children and adolescents.
Collapse
Affiliation(s)
- Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA.
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Lydia Jacobs
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- University of Tartu, Tartu, Estonia
| | - Mari Shishikura
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Subramanian SK, Morgan RT, Rasmusson C, Shepherd KM, Li CL. Genetic polymorphisms and post-stroke upper limb motor improvement - A systematic review and meta-analysis. J Cent Nerv Syst Dis 2024; 16:11795735241266601. [PMID: 39049838 PMCID: PMC11268047 DOI: 10.1177/11795735241266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Post-stroke upper limb (UL) motor improvement is associated with adaptive neuroplasticity and motor learning. Both intervention-related (including provision of intensive, variable, and task-specific practice) and individual-specific factors (including the presence of genetic polymorphisms) influence improvement. In individuals with stroke, most commonly, polymorphisms are found in Brain Derived Neurotrophic Factor (BDNF), Apolipoprotein (APOE) and Catechol-O-Methyltransferase (COMT). These involve a replacement of cystine by arginine (APOEε4) or valines by 1 or 2 methionines (BDNF:val66met, met66met; COMT:val158met; met158met). However, the implications of these polymorphisms on post-stroke UL motor improvement specifically have not yet been elucidated. Objective Examine the influence of genetic polymorphism on post-stroke UL motor improvement. Design Systematic Review and Meta-Analysis. Methods We conducted a systematic search of the literature published in English language. The modified Downs and Black checklist helped assess study quality. We compared change in UL motor impairment and activity scores between individuals with and without the polymorphisms. Meta-analyses helped assess change in motor impairment (Fugl Meyer Assessment) scores based upon a minimum of 2 studies/time point. Effect sizes (ES) were quantified based upon the Rehabilitation Treatment Specification System as follows: small (0.08-0.18), medium (0.19 -0.40) and large (≥0.41). Results We retrieved 10 (4 good and 6 fair quality) studies. Compared to those with BDNF val66met and met66met polymorphism, meta-analyses revealed lower motor impairment (large ES) in those without the polymorphism at intervention completion (0.5, 95% CI: 0.11-0.88) and at retention (0.58, 95% CI:0.06-1.11). The presence of CoMT val158met or met158met polymorphism had similar results, with lower impairment (large ES ≥1.5) and higher activity scores (large ES ranging from 0.5-0.76) in those without the polymorphism. Presence of APOEε4 form did not influence UL motor improvement. Conclusion Polymorphisms with the presence of 1 or 2 met alleles in BDNF and COMT negatively influence UL motor improvement. Registration https://osf.io/wk9cf/.
Collapse
Affiliation(s)
- Sandeep K. Subramanian
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Neurosciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Riley T. Morgan
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carl Rasmusson
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kayla M. Shepherd
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carol L. Li
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Health Administration, Polytrauma Rehabilitation Center, San Antonio, TX, USA
| |
Collapse
|
3
|
Goldfield GS, Cameron JD, Sigal RJ, Kenny GP, Prud'homme D, Ngu M, Alberga AS, Doucette S, Goldfield DB, Tulloch H, Thai H, Simas KR, Walsh J. The BDNF Val66Met polymorphism and health-related quality of life in youth with obesity. Physiol Rep 2024; 12:e16140. [PMID: 38997217 PMCID: PMC11245332 DOI: 10.14814/phy2.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The brain derived-neurotrophic factor (BDNF) Val66Met polymorphism causes functional changes in BDNF, and is associated with obesity and some psychiatric disorders, but its relationship to health-related quality of life (HRQoL) remains unknown. This study examined, in youth with obesity, whether carriers of the BDNF Val66met polymorphism Met-alleles (A/A or G/A) differed from noncarriers (G/G) on HRQoL. The participants were 187 adolescents with obesity. Ninety-nine youth were carriers of the homozygous Val/Val (G/G) alleles, and 88 were carriers of the Val/Met (G/A) or Met/Met (A/A) alleles. Blood samples were drawn in the morning after an overnight fast for genotyping. HRQoL was measured using the Pediatric-Quality of Life core version. Compared to carriers of the Val66Met Val (G/G) alleles, carriers of the Met-Alleles reported significantly higher physical -HRQoL (p = 0.02), school-related HRQoL, (p = 0.05), social-related HRQoL (p = 0.05), and total HRQoL (p = 0.03), and a trend for Psychosocial-HRQoL. Research is needed to confirm our findings and determine whether carriers of the BDNF Val66Met homozygous Val (G/G) alleles may be at risk of diminished HRQoL, information that can influence interventions in a high-risk population of inactive youth with obesity.
Collapse
Affiliation(s)
- Gary S. Goldfield
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of PediatricsUniversity of OttawaOttawaOntarioCanada
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of PsychologyCarleton UniversityOttawaOntarioCanada
| | - Jameason D. Cameron
- Department of PharmacyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Ronald J. Sigal
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Glen P. Kenny
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Denis Prud'homme
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- University of MonctonMonctonNew BrunswickCanada
| | - Mathew Ngu
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
| | - Angela S. Alberga
- Department of Exercise ScienceConcordia UniversityMontrealQuebecCanada
| | - Steve Doucette
- Department of Community Health and EpidemiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | | | - Heather Tulloch
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | - Helen Thai
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of PsychologyCarleton UniversityOttawaOntarioCanada
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
| | - Kevin R. Simas
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Jeremy Walsh
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
4
|
Early Life Stress Affects Bdnf Regulation: A Role for Exercise Interventions. Int J Mol Sci 2022; 23:ijms231911729. [PMID: 36233029 PMCID: PMC9569911 DOI: 10.3390/ijms231911729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Early life stress (ELS) encompasses exposure to aversive experiences during early development, such as neglect or maltreatment. Animal and human studies indicate that ELS has maladaptive effects on brain development, leaving individuals more vulnerable to developing behavioral and neuropsychiatric disorders later in life. This result occurs in part to disruptions in Brain derived neurotrophic factor (Bdnf) gene regulation, which plays a vital role in early neural programming and brain health in adulthood. A potential treatment mechanism to reverse the effects of ELS on Bdnf expression is aerobic exercise due to its neuroprotective properties and positive impact on Bdnf expression. Aerobic exercise opens the door to exciting and novel potential treatment strategies because it is a behavioral intervention readily and freely available to the public. In this review, we discuss the current literature investigating the use of exercise interventions in animal models of ELS to reverse or mitigate ELS-induced changes in Bdnf expression. We also encourage future studies to investigate sensitive periods of exercise exposure, as well as sufficient duration of exposure, on epigenetic and behavioral outcomes to help lead to standardized practices in the exercise intervention field.
Collapse
|
5
|
Soler CT, Kanders SH, Olofsdotter S, Vadlin S, Åslund C, Nilsson KW. Exploration of the Moderating Effects of Physical Activity and Early Life Stress on the Relation between Brain-Derived Neurotrophic Factor (BDNF) rs6265 Variants and Depressive Symptoms among Adolescents. Genes (Basel) 2022; 13:1236. [PMID: 35886019 PMCID: PMC9319123 DOI: 10.3390/genes13071236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Depression affects one in five persons at 18 years of age. Allele A of the brain-derived neurotrophic factor (BDNF) rs6265 is considered to be a risk factor for depression. Previous studies of the interaction between BDNF rs6265, early adversity, and/or physical activity have shown mixed results. In this study, we explored the relation between BDNF rs6265 polymorphism and childhood stress, as well as the moderating effect of physical activity in relation to depressive symptoms using binary logistic regressions and process models 1, 2 and 3 applied to data obtained at three times (waves 1, 2 and 3) from the Survey of Adolescent Life in Västmanland cohort study (SALVe). Results revealed that both childhood stress and physical activity had a moderation effect; physical activity in wave 1 with an R2 change = 0.006, p = 0.013, and the Johnson−Neyman regions of significance (RoS) below 1.259, p = 0.05 for 11.97%; childhood stress in wave 2 with the R2 change = 0.008, p = 0 002, and RoS below 1.561 with 26.71% and >4.515 with 18.20%; and a three-way interaction in wave 1 in genotype AA carriers. These results suggest that allele A is susceptible to physical activity (positive environment) and childhood stress (negative environment).
Collapse
Affiliation(s)
- Catalina Torres Soler
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
| | - Sofia H. Kanders
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
| | - Susanne Olofsdotter
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
- Department of Psychology, Uppsala University, 75142 Uppsala, Sweden
| | - Sofia Vadlin
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
| | - Cecilia Åslund
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
- Department of Public Health and Caring Sciences, Uppsala University, 75122 Uppsala, Sweden
| | - Kent W. Nilsson
- Centre for Clinical Research, Region Västmanland, Uppsala University, 72189 Västerås, Sweden; (C.T.S.); (S.O.); (S.V.); (C.Å.); (K.W.N.)
- The School of Health, Care and Social Welfare, Mälardalen University, 72123 Västerås, Sweden
| |
Collapse
|
6
|
Donofry SD, Stillman CM, Hanson JL, Sheridan M, Sun S, Loucks EB, Erickson KI. Promoting brain health through physical activity among adults exposed to early life adversity: Potential mechanisms and theoretical framework. Neurosci Biobehav Rev 2021; 131:688-703. [PMID: 34624365 PMCID: PMC8642290 DOI: 10.1016/j.neubiorev.2021.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Adverse childhood experiences such as abuse, neglect, and poverty, profoundly alter neurobehavioral development in a manner that negatively impacts health across the lifespan. Adults who have been exposed to such adversities exhibit premature and more severe age-related declines in brain health. Unfortunately, it remains unclear whether the negative effects of early life adversity (ELA) on brain health can be remediated through intervention in adulthood. Physical activity may represent a low-cost behavioral approach to address the long-term consequences of ELA on brain health. However, there has been limited research examining the impact of physical activity on brain health among adults with a history of ELA. Accordingly, the purpose of this review is to (1) review the influence of ELA on brain health in adulthood and (2) highlight evidence for the role of neurotrophic factors, hypothalamic-adrenal-pituitary axis regulation, inflammatory processes, and epigenetic modifications in mediating the effects of both ELA and physical activity on brain health outcomes in adulthood. We then propose a theoretical framework to guide future research in this area.
Collapse
Affiliation(s)
- Shannon D Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Psychiatric and Behavioral Health Institute, Allegheny Health Network Pittsburgh, PA, United States.
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Margaret Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shufang Sun
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States
| | - Eric B Loucks
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States; Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Murdoch University, College of Science, Health, Engineering, and Education, Perth, Western Australia, Australia; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Cheng W, Luo N, Zhang Y, Zhang X, Tan H, Zhang D, Sui J, Yue W, Yan H. DNA Methylation and Resting Brain Function Mediate the Association between Childhood Urbanicity and Better Speed of Processing. Cereb Cortex 2021; 31:4709-4718. [PMID: 33987663 PMCID: PMC8408435 DOI: 10.1093/cercor/bhab117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Urbanicity has been suggested to affect cognition, but the underlying mechanism remains unknown. We examined whether epigenetic modification (DNA methylation, DNAm), and brain white matter fiber integrity (fractional anisotropy, FA) or local spontaneous brain function activity (regional homogeneity, ReHo) play roles in the association between childhood urbanicity and cognition based on 497 healthy Chinese adults. We found significant correlation between childhood urbanicity and better cognitive performance. Multiset canonical correlation analysis (mCCA) identified an intercorrelated DNAm-FA-ReHo triplet, which showed significant pairwise correlations (DNAm-FA: Bonferroni-adjusted P, Pbon = 4.99E-03, rho = 0.216; DNAm-ReHo: Pbon = 4.08E-03, rho = 0.239; ReHo-FA: Pbon = 1.68E-06, rho = 0.328). Causal mediation analysis revealed that 1) ReHo mediated 10.86% childhood urbanicity effects on the speed of processing and 2) childhood urbanicity alters ReHo through DNA methylation in the cadherin and Wnt signaling pathways (mediated effect: 48.55%). The mediation effect of increased ReHo in the superior temporal gyrus underlying urbanicity impact on a better speed of processing was further validated in an independent cohort. Our work suggests a mediation role for ReHo, particularly increased brain activity in the superior temporal gyrus, in the urbanicity-associated speed of processing.
Collapse
Affiliation(s)
- Weiqiu Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
8
|
Music-Based Intervention Ameliorates Mecp2-Loss-Mediated Sociability Repression in Mice through the Prefrontal Cortex FNDC5/BDNF Pathway. Int J Mol Sci 2021; 22:ijms22137174. [PMID: 34281226 PMCID: PMC8269182 DOI: 10.3390/ijms22137174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Patients with Rett syndrome (RTT) show severe difficulties with communication, social withdrawl, and learning. Music-based interventions improve social interaction, communication skills, eye contact, and physical skills and reduce seizure frequency in patients with RTT. This study aimed to investigate the mechanism by which music-based interventions compromise sociability impairments in mecp2 null/y mice as an experimental RTT model. Male mecp2 null/y mice and wild-type mice (24 days old) were randomly divided into control, noise, and music-based intervention groups. Mice were exposed to music or noise for 6 h/day for 3 consecutive weeks. Behavioral patterns, including anxiety, spontaneous exploration, and sociability, were characterized using open-field and three-chamber tests. BDNF, TrkB receptor motif, and FNDC5 expression in the prefrontal cortex (PFC), hippocampus, basal ganglia, and amygdala were probed using RT-PCR or immunoblotting. mecp2 null/y mice showed less locomotion in an open field than wild-type mice. The social novelty rather than the sociability of these animals increased following a music-based intervention, suggesting that music influenced the mecp2-deletion-induced social interaction repression rather than motor deficit. Mechanically, the loss of BDNF signaling in the prefrontal cortex and hippocampal regions, but not in the basal ganglia and amygdala, was compromised following the music-based intervention in mecp2 null/y mice, whereas TrkB signaling was not significantly changed in either region. FNDC5 expression in the prefrontal cortex region in mecp2 null/y mice also increased following the music-based intervention. Collective evidence reveals that music-based interventions improve mecp2-loss-induced social dysfunction. BDNF and FNDC5 signaling in the prefrontal cortex region mediates the music-based-intervention promotion of social interactions. This study gives new insight into the mechanisms underlying the improvement of social behaviors in mice suffering from experimental Rett syndrome following a music-based intervention.
Collapse
|
9
|
Sun H, Zhang X, Kong Y, Gou L, Lian B, Wang Y, Jiang L, Li Q, Sun H, Sun L. Maternal Separation-Induced Histone Acetylation Correlates with BDNF-Programmed Synaptic Changes in an Animal Model of PTSD with Sex Differences. Mol Neurobiol 2021; 58:1738-1754. [PMID: 33245480 DOI: 10.1007/s12035-020-02224-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Maternal separation (MS) causes long-lasting epigenetic changes in the brain and increases vulnerability to traumatic events in adulthood. Of interest, there may be sex-specific differences in these epigenetic changes. In this study, the extent of histone acetylation in the hippocampus (HIP) and the expression of BDNF were measured to determine whether BDNF influences risk of PTSD following MS in early life. Rat offspring were separated from their dams (3 h/day or 6 h/day from PND2~PND14). Then, pups were treated with a single prolonged stress (SPS) procedure when they reached adulthood (PND80). In animals stressed with the SPS procedure in adulthood, those that had increased MS intensity in childhood demonstrated more significant changes in performance on tests of anxiety, depression, and contextual fear memory. Reduced levels of total BDNF mRNA and protein were observed after SPS treatment and further declined in groups with greater MS time in childhood. Interestingly, these changes were correlated with decreased H3K9ac levels and increased HDAC2 levels. Additional MS also led to more severe ultrastructural synaptic damage in rats that experienced the SPS procedure, particularly in the CA1 and CA3 region of the HIP, reflecting impaired synaptic plasticity in these regions. Interestingly, male rats in the MS3h-PTSD group showed decreased anxiety, but no similar changes were found in female rats, suggesting a degree of gender specificity in coping with stress after mild MS. In summary, this study suggests that the epigenetic signatures of the BDNF genes can be linked to HIP responses to stress, providing insights that may be relevant for people at risk of stress-related psychopathologies.
Collapse
MESH Headings
- Acetylation
- Animals
- Behavior, Animal
- Brain-Derived Neurotrophic Factor/metabolism
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/ultrastructure
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/ultrastructure
- Corticosterone/blood
- Disease Models, Animal
- Elevated Plus Maze Test
- Fear
- Female
- Gene Expression Regulation
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Histones/metabolism
- Immobilization
- Male
- Maternal Deprivation
- Open Field Test
- Rats, Sprague-Dawley
- Regression Analysis
- Sex Characteristics
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/complications
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/blood
- Stress, Psychological/complications
- Swimming
- Synapses/metabolism
- Synapses/ultrastructure
- Rats
Collapse
Affiliation(s)
- Haoran Sun
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Xianqiang Zhang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100083, People's Republic of China
| | - Yujia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Luping Gou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Bo Lian
- School of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Yanyu Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Li Jiang
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang, 261205, Shandong, People's Republic of China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, People's Republic of China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Are serum brain-derived neurotrophic factor concentrations related to brain structure and psychopathology in late childhood and early adolescence? CNS Spectr 2020; 25:790-796. [PMID: 31845634 DOI: 10.1017/s1092852919001688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Mental disorders can have a major impact on brain development. Peripheral blood concentrations of brain-derived neurotrophic factor (BDNF) are lower in adult psychiatric disorders. Serum BDNF concentrations and BDNF genotype have been associated with cortical maturation in children and adolescents. In 2 large independent samples, this study tests associations between serum BDNF concentrations, brain structure, and psychopathology, and the effects of BDNF genotype on BDNF serum concentrations in late childhood and early adolescence. METHODS Children and adolescents (7-14 years old) from 2 cities (n = 267 in Porto Alegre; n = 273 in São Paulo) were evaluated as part of the Brazilian high-risk cohort (HRC) study. Serum BDNF concentrations were quantified by sandwich ELISA. Genotyping was conducted from blood or saliva samples using the SNParray Infinium HumanCore Array BeadChip. Subcortical volumes and cortical thickness were quantified using FreeSurfer. The Development and Well-Being Behavior Assessment was used to identify the presence of a psychiatric disorder. RESULTS Serum BDNF concentrations were not associated with subcortical volumes or with cortical thickness. Serum BDNF concentration did not differ between participants with and without mental disorders, or between Val homozygotes and Met carriers. CONCLUSIONS No evidence was found to support serum BDNF concentrations as a useful marker of developmental differences in brain and behavior in early life. Negative findings were replicated in 2 of the largest independent samples investigated to date.
Collapse
|
11
|
Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res 2020; 1748:147061. [DOI: 10.1016/j.brainres.2020.147061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022]
|
12
|
Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci 2020; 53:1569-1591. [PMID: 33048398 DOI: 10.1111/ejn.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In 61 healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1 mA for 10-min via 6 × 4 cm active and 7 × 5 cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3 ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short-interval intracranial inhibition (SICI) and 10 ms ISI for intracortical facilitation (ICF). Saliva samples were tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reductions in CSE (i.e. Non-responders). No changes in ICI or ICF were reported. No relationships were reported between genetic polymorphisms in excitatory receptor genes and a-tDCS responders. An association was reported between a-tDCS responders and GABRA3 gene polymorphisms encoding for GABA-A receptors suggesting potential relationships between GABA-A receptor variations and capacity to undergo tDCS-induced cortical plasticity. In the largest tDCS study of its kind, this study presents an important step forward in determining the contribution genetic factors play in previously observed inter-individual variability to tDCS.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Peters RB, Xavier J, Mondin TC, Cardoso TDA, Ferreira FB, Teixeira L, Gräeff K, Quevedo LDA, Jansen K, Souza LD, Oses JP, Pinheiro RT, da Silva RA, Ghisleni G. BDNF Val66Met polymorphism and resilience in major depressive disorder: the impact of cognitive psychotherapy. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:22-28. [PMID: 32844885 PMCID: PMC7861181 DOI: 10.1590/1516-4446-2019-0726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
Objective: Clinical and biological correlates of resilience in major depressive disorder are scarce. We aimed to investigate the effect of the Val66Met polymorphism in the BDNF gene on resilience scores in major depressive disorder patients and evaluate the polymorphism’s moderation effect on resilience scores in response to cognitive therapy. Method: A total of 106 major depressive disorder patients were enrolled in this clinical randomized study. The Resilience Scale and the Hamilton Rating Scale for Depression were applied at baseline, post-treatment, and at six months of follow-up. Blood samples were obtained at baseline for molecular analysis. Results: The baseline resilience scores were higher in patients with the Met allele (114.6±17.6) than in those with the Val/Val genotype (104.04±21.05; p = 0.037). Cognitive therapy treatment increased resilience scores (p ≤ 0.001) and decreased depressive symptoms (p ≤ 0.001). In the mixed-effect model, the Val/Val genotype represented a decrease in resilience scores (t218 = -1.98; p = 0.048), and the Val66Met polymorphism interacted with sex to predict an increase in total resilience scores during cognitive treatment (t218 = 2.69; p = 0.008). Conclusion: Our results indicate that cognitive therapy intervention could improve resilience in follow-up, considering that gender and genetic susceptibility are predicted by the Val66Met polymorphism.
Collapse
Affiliation(s)
- Renata B Peters
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Janaína Xavier
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Thaíse C Mondin
- Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Taiane de A Cardoso
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Fabiana B Ferreira
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Liana Teixeira
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Kiane Gräeff
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Luciana de A Quevedo
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Karen Jansen
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Luciano D Souza
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Ricardo T Pinheiro
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Ricardo A da Silva
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Gabriele Ghisleni
- Programa de Pós-Graduação em Saúde e Comportamento (PPGSC), Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| |
Collapse
|
14
|
Gagner C, Tuerk C, De Beaumont L, Bernier A, Beauchamp MH. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Internalizing Behaviors after Early Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:102-110. [PMID: 32605421 DOI: 10.1089/neu.2019.6936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pediatric traumatic brain injury (TBI) can lead to adverse emotional, social, and behavioral consequences. However, outcome is difficult to predict due to significant individual variability, likely reflecting a complex interaction between injury- and child-related variables. Among these variables are genetically determined individual differences, which can modulate TBI outcome through their influence on neuroplasticity mechanisms. In this study, we examined the effect of Val66Met, a common polymorphism of the brain-derived neurotrophic factor gene known to be involved in neuroplasticity mechanisms, on behavioral symptoms of mild TBI (mTBI) sustained in early childhood. This work is part of a prospective, longitudinal cohort study of early TBI. The current sample consisted of 145 children between ages 18 and 60 months assigned to one of three participant groups: mild TBI, orthopedic injury, or typically developing children. Participants provided a saliva sample to detect the presence of the Val66Met polymorphism, and the Child Behavior Checklist was used to document the presence of behavioral symptoms at 6- and 18-months post-injury. Contrary to our initial hypothesis, at 6 months post-injury, non-carriers of the Val66Met polymorphism in the mTBI group presented significantly more internalizing symptoms (e.g., anxiety/depression and somatic complaints) than Val66Met carriers, who were similar to orthopedically injured and typically developing children. However, at 18 months post-injury, all children with mTBI presented more internalizing symptoms, independent of genotype. The results of the study provide evidence for a protective effect of the Val66Met polymorphism on internalizing behavior symptoms 6 months after early childhood mTBI.
Collapse
Affiliation(s)
- Charlotte Gagner
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Carola Tuerk
- Department of Psychology, University of Montreal, Montréal, Québec, Canada
| | - Louis De Beaumont
- Hôpital du Sacré-Coeur de Montréal Research Center, Montréal, Québec, Canada.,Department of Surgery, University of Montreal, Montréal, Québec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Montréal, Québec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| |
Collapse
|
15
|
Briana DD, Malamitsi‐Puchner A. Perinatal biomarkers implying 'Developmental Origins of Health and Disease' consequences in intrauterine growth restriction. Acta Paediatr 2020; 109:1317-1322. [PMID: 31577039 DOI: 10.1111/apa.15022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
The intrauterine-growth-restricted (IUGR) state, particularly the asymmetric one, has been associated with 'Developmental Origins of Health and Disease' (DOHaD) consequences later in life. Several environmental factors, acting during the phase of foetal developmental plasticity interact with genotypic variation, 'programme' tissue function and change the capacity of the organism to cope with its environment. They may be responsible for chronic illness risk in adulthood. Detection of possible future DOHaD consequences at a very early age, by applying relevant biomarkers, is of utmost importance. This review focuses on biomarkers possibly predicting consequences from bone, psychoneural system and lung. Although no concrete biomarker has been identified for bone disorders in adulthood, reduced brain-derived neurotrophic factor (BDNF) concentrations in cord blood and BDNF DNA methylation might predict schizophrenia and possibly depression, bipolar disorder and autism. High surfactant protein D (SP-D) concentrations in cord blood of IUGR foetuses/neonates could point to structural lung immaturity, resulting to asthma and chronic obstructive pulmonary disease in adult life.
Collapse
Affiliation(s)
- Despina D. Briana
- Medical School National and Kapodistrian University of Athens Athens Greece
| | | |
Collapse
|
16
|
Trucco EM, Yang S, Yang JJ, Zucker RA, Li R, Buu A. Time-varying Effects of GABRG1 and Maladaptive Peer Behavior on Externalizing Behavior from Childhood to Adulthood: Testing Gene × Environment × Development Effects. J Youth Adolesc 2020; 49:1351-1364. [PMID: 31786770 PMCID: PMC7260088 DOI: 10.1007/s10964-019-01171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Engagement in externalizing behavior is problematic. Deviant peer affiliation increases risk for externalizing behavior. Yet, peer effects vary across individuals and may differ across genes. This study determines gene × environment × development interactions as they apply to externalizing behavior from childhood to adulthood. A sample (n = 687; 68% male, 90% White) of youth from the Michigan Longitudinal Study was assessed from ages 10 to 25. Interactions between γ-amino butyric acid type A receptor γ1 subunit (GABRG1; rs7683876, rs13120165) and maladaptive peer behavior on externalizing behavior were examined using time-varying effect modeling. The findings indicate a sequential risk gradient in the influence of maladaptive peer behavior on externalizing behavior depending on the number of G alleles during childhood through adulthood. Individuals with the GG genotype are most vulnerable to maladaptive peer influences, which results in greater externalizing behavior during late childhood through early adulthood.
Collapse
Affiliation(s)
- Elisa M Trucco
- Psychology Department and the Center for Children and Families, Florida International University, Miami, FL, USA.
- Psychiatry Department, University of Michigan, Ann Arbor, MI, USA.
| | - Songshan Yang
- Pennsylvania State University, University Park, PA, USA
| | - James J Yang
- Department of Biostatistics and Data Science, University of Texas Health Scince Center, Houston, TX, USA
| | - Robert A Zucker
- Psychiatry Department, University of Michigan, Ann Arbor, MI, USA
| | - Runze Li
- Pennsylvania State University, University Park, PA, USA
| | - Anne Buu
- Department of Health Promotion and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
17
|
Maul S, Giegling I, Fabbri C, Corponi F, Serretti A, Rujescu D. Genetics of resilience: Implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am J Med Genet B Neuropsychiatr Genet 2020; 183:77-94. [PMID: 31583809 DOI: 10.1002/ajmg.b.32763] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Resilience is the ability to cope with critical situations through the use of personal and socially mediated resources. Since a lack of resilience increases the risk of developing stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), a better understanding of the biological background is of great value to provide better prevention and treatment options. Resilience is undeniably influenced by genetic factors, but very little is known about the exact underlying mechanisms. A recently published genome-wide association study (GWAS) on resilience has identified three new susceptibility loci, DCLK2, KLHL36, and SLC15A5. Further interesting results can be found in association analyses of gene variants of the stress response system, which is closely related to resilience, and PTSD and MDD. Several promising genes, such as the COMT (catechol-O-methyltransferase) gene, the serotonin transporter gene (SLC6A4), and neuropeptide Y (NPY) suggest gene × environment interaction between genetic variants, childhood adversity, and the occurrence of PTSD and MDD, indicating an impact of these genes on resilience. GWAS on PTSD and MDD provide another approach to identifying new disease-associated loci and, although the functional significance for disease development for most of these risk genes is still unknown, they are potential candidates due to the overlap of stress-related psychiatric disorders and resilience. In the future, it will be important for genetic studies to focus more on resilience than on pathological phenotypes, to develop reasonable concepts for measuring resilience, and to establish international cooperations to generate sufficiently large samples.
Collapse
Affiliation(s)
- Stephan Maul
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Corponi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
18
|
Abstract
Epigenetic mechanisms govern the transcription of the genome. Research with model systems reveals that environmental conditions can directly influence epigenetic mechanisms that are associated with interindividual differences in gene expression in brain and neural function. In this review, we provide a brief overview of epigenetic mechanisms and research with relevant rodent models. We emphasize more recent translational research programs in epigenetics as well as the challenges inherent in the integration of epigenetics into developmental and clinical psychology. Our objectives are to present an update with respect to the translational relevance of epigenetics for the study of psychopathology and to consider the state of current research with respect to its potential importance for clinical research and practice in mental health.
Collapse
Affiliation(s)
- Kieran J O'Donnell
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3H 1R4, Canada.,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609 Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
19
|
Kang HJ, Kim KO, Kim JW, Kim SW, Park MS, Kim HR, Shin MG, Cho KH, Kim JM. A longitudinal study of the associations of BDNF genotype and methylation with poststroke anxiety. Int J Geriatr Psychiatry 2019; 34:1706-1714. [PMID: 31368178 DOI: 10.1002/gps.5185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although the precise etiology of poststroke anxiety (PSA) has yet to be fully elucidated, it is known that brain-derived neurotrophic factor (BDNF) is important for neural plasticity and long-term potentiation, associated with the pathophysiology of anxiety. The expression of BDNF is regulated by epigenetic and genetic profiles. Thus, we investigated the association between BDNF methylation status and PSA at 2 weeks and 1 year after stroke while accounting for interactions with the BDNF Val66Met polymorphism. METHODS The baseline sample comprised 286 patients who were assessed at 2 weeks after stroke; of these patients, 222 (78%) were followed up with at 1 year after stroke. The presence of PSA was determined using the anxiety subscale of the Hospital Anxiety and Depression Scale (HADS), and the effects of BDNF methylation status and polymorphisms on PSA status were assessed with multivariate logistic regression models. RESULTS The prevalence of PSA was slightly lower (27 [9.4%]) at baseline, and 35 (15.8%) patients were identified as having PSA at the 1-year follow-up. Stroke patients with a higher average methylation status were more likely to have PSA at 1 year. The BDNF Val66Met polymorphism was not independently associated with PSA during either the acute or chronic phase after stroke, but there was a significant interactive effect between BDNF methylation and genotype on PSA at 2 weeks. CONCLUSIONS In this study, BDNF methylation in combination with the met/met BDNF polymorphism (Val66Met polymorphism) was associated with PSA. These findings may help identify patients at higher risk for PSA.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Kyu-On Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Hye-Ran Kim
- College of Korean Medicine, Dongshin University, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
20
|
Regular Music Exposure in Juvenile Rats Facilitates Conditioned Fear Extinction and Reduces Anxiety after Foot Shock in Adulthood. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8740674. [PMID: 31380440 PMCID: PMC6662454 DOI: 10.1155/2019/8740674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
Music exposure is known to play a positive role in learning and memory and can be a complementary treatment for anxiety and fear. However, whether juvenile music exposure affects adult behavior is not known. Two-week-old Sprague-Dawley rats were exposed to music for 2 hours daily or to background noise (controls) for a period of 3 weeks. At 60 days of age, rats were subjected to auditory fear conditioning, fear extinction training, and anxiety-like behavior assessments or to anterior cingulate cortex (ACC) brain-derived neurotrophic factor (BDNF) assays. We found that the music-exposed rats showed significantly less freezing behaviors during fear extinction training and spent more time in the open arm of the elevated plus maze after fear conditioning when compared with the control rats. Moreover, the BDNF levels in the ACC in the music group were significantly higher than those of the controls with the fear conditioning session. This result suggests that music exposure in juvenile rats decreases anxiety-like behaviors, facilitates fear extinction, and increases BDNF levels in the ACC in adulthood after a stressful event.
Collapse
|
21
|
VanTieghem MR, Tottenham N. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology. Curr Top Behav Neurosci 2019; 38:117-136. [PMID: 28439771 PMCID: PMC5940575 DOI: 10.1007/7854_2016_42] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.
Collapse
Affiliation(s)
- Michelle R VanTieghem
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA.
| | - Nim Tottenham
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA
| |
Collapse
|
22
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
23
|
Avinun R, Nevo A, Knodt AR, Elliott ML, Hariri AR. Replication in Imaging Genetics: The Case of Threat-Related Amygdala Reactivity. Biol Psychiatry 2018; 84:148-159. [PMID: 29279201 PMCID: PMC5955809 DOI: 10.1016/j.biopsych.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Low replication rates are a concern in most, if not all, scientific disciplines. In psychiatric genetics specifically, targeting intermediate brain phenotypes, which are more closely associated with putative genetic effects, was touted as a strategy leading to increased power and replicability. In the current study, we attempted to replicate previously published associations between single nucleotide polymorphisms and threat-related amygdala reactivity, which represents a robust brain phenotype not only implicated in the pathophysiology of multiple disorders, but also used as a biomarker of future risk. METHODS We conducted a literature search for published associations between single nucleotide polymorphisms and threat-related amygdala reactivity and found 37 unique findings. Our replication sample consisted of 1117 young adult volunteers (629 women, mean age 19.72 ± 1.25 years) for whom both genetic and functional magnetic resonance imaging data were available. RESULTS Of the 37 unique associations identified, only three replicated as previously reported. When exploratory analyses were conducted with different model parameters compared to the original findings, significant associations were identified for 28 additional studies: eight of these were for a different contrast/laterality; five for a different gender and/or race/ethnicity; and 15 in the opposite direction and for a different contrast, laterality, gender, and/or race/ethnicity. No significant associations, regardless of model parameters, were detected for six studies. Notably, none of the significant associations survived correction for multiple comparisons. CONCLUSIONS We discuss these patterns of poor replication with regard to the general strategy of targeting intermediate brain phenotypes in genetic association studies and the growing importance of advancing the replicability of imaging genetics findings.
Collapse
Affiliation(s)
- Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.
| | - Adam Nevo
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Annchen R. Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Maxwell L. Elliott
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Vandenberg A, Lin WC, Tai LH, Ron D, Wilbrecht L. Mice engineered to mimic a common Val66Met polymorphism in the BDNF gene show greater sensitivity to reversal in environmental contingencies. Dev Cogn Neurosci 2018; 34:34-41. [PMID: 29909248 PMCID: PMC6596311 DOI: 10.1016/j.dcn.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/30/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
A new line of mice,Val68Met, mimic human BDNF Val66Met polymorphism. New knock-in BDNF Met mice reverse more efficiently than Val in two separate tasks. Supports theory that BDNF Met allele confers greater sensitivity to the environment. Reversal performance can be dissociated from go/no-go and extinction performance. Phenotypes differ between newer and older BDNF Val66Met mouse models.
A common human polymorphism in the gene that encodes brain derived neurotrophic factor (BDNF), Val66Met, is considered a marker of vulnerability for mental health issues and has been associated with cognitive impairment. An alternate framework has been proposed in which “risk alleles” are reinterpreted as “plasticity alleles” that confer vulnerability in adverse environments and positive effects in neutral or positive environments (Belsky et al., 2009). These frameworks produce divergent predictions for tests of learning and cognitive flexibility. Here, we examined multiple aspects of learning and cognitive flexibility in a relatively new BDNF Val66Met mouse model (BDNF Val68Met, Warnault et al., 2016), including multiple choice discrimination and reversal, go/no-go learning and reversal, and appetitive extinction learning. We found that mice homozygous for the Met allele show more efficient reversal learning in two different paradigms, but learn at rates comparable to Val homozygotes on the multiple choice discrimination task, a go/no-go task, and in appetitive extinction. Our results dissociate reversal performance from go/no-go learning and appetitive extinction and support the plasticity allele framework that suggests BDNF Met carriers are potentially more sensitive to changes in the environment.
Collapse
Affiliation(s)
- Angela Vandenberg
- Neuroscience Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, CA, 94720, USA
| | - Lung-Hao Tai
- Department of Psychology, University of California, Berkeley, CA, 94720, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA.
| |
Collapse
|
25
|
Levy Y. 'Developmental Delay' Reconsidered: The Critical Role of Age-Dependent, Co-variant Development. Front Psychol 2018; 9:503. [PMID: 29740364 PMCID: PMC5924800 DOI: 10.3389/fpsyg.2018.00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
In memory of Annette Karmiloff-Smith . This paper reviews recent neurobiological research reporting structural co-variance and temporal dependencies in age-dependent gene expression, parameters of cortical maturation, long range connectivity and interaction of the biological network with the environment. This research suggests that age by size trajectories of brain structures relate to functional properties more than absolute sizes. In line with these findings, recent behavioral studies of typically developing children whose language development was delayed reported long term consequences of such delays. As for neurodevelopmental disorders, disrupted developmental timing and slow acquisitional pace are hallmarks of these populations. It is argued that these behavioral and neuro-biological results highlight the need to commit to a developmental model which will reflect the fact that temporal dependencies overseeing structural co-variance among developmental components are major regulatory factors of typical development of the brain/mind network. Consequently, the concept of 'developmental delay' in developmental theorizing needs to be reconsidered.
Collapse
Affiliation(s)
- Yonata Levy
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Briana DD, Malamitsi-Puchner A. Developmental origins of adult health and disease: The metabolic role of BDNF from early life to adulthood. Metabolism 2018; 81:45-51. [PMID: 29217485 DOI: 10.1016/j.metabol.2017.11.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the origins of adult disease may occur during fetal life. Thus, the concept of "developmental programming" has been introduced and supported by epidemiological and experimental data. This concept supports the idea that the nutritional and hormonal status during pregnancy could interfere in metabolism control. The mechanisms responsible for this "developmental programming" remain poorly documented. Current research indicates that neurotrophins and particularly brain-derived neurotrophic factor (BDNF) may play a crucial role in this process. Although mainly expressed in the nervous system, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are immunolocalized in several regions of the human placenta and have important functions during pregnancy. BDNF serves widespread roles in regulating energy homeostasis in both fetuses and adults, by controlling patterns of fetal growth, adult feeding and physical activity, and by regulating glucose metabolism in peripheral tissues. Impaired BDNF signaling may be implicated in the etiopathogenesis of the metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes and neurological disorders. The aim of this article is to provide a brief comprehensive literary review regarding the potential implications of BDNF in "developmental programming", through regulation of metabolism and energy balance from early life to adulthood.
Collapse
Affiliation(s)
- Despina D Briana
- Department of Neonatology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
27
|
de Araujo CM, Zugman A, Swardfager W, Belangero SIN, Ota VK, Spindola LM, Hakonarson H, Pellegrino R, Gadelha A, Salum GA, Pan PM, de Moura LM, Del Aquilla M, Picon FA, Amaro E, Sato JR, Brietzke E, Grassi-Oliveira R, Rohde LAP, Miguel EC, Bressan RA, Jackowski AP. Effects of the brain-derived neurotropic factor variant Val66Met on cortical structure in late childhood and early adolescence. J Psychiatr Res 2018; 98:51-58. [PMID: 29288952 DOI: 10.1016/j.jpsychires.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/18/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been associated with several neuropsychiatric disorders and regional structural brain changes in adults, but little is known about Val66Met's effect on brain morphology during typical or atypical neurodevelopment. Windows of vulnerability to psychopathology may be associated with the different alleles of the Val66Met polymorphism during childhood and adolescence. METHODOLOGY We investigated the effect of Val66Met on cortical thickness in MRI scans of 718 children and adolescents (6-12 years old) with typical development, and in those meeting DSM criteria for a psychiatric disorder. RESULTS Val66Met had a significant effect on cortical thickness. Considering the typically developing group, Met-carriers presented thicker parietal and occipital lobes and prefrontal cortices compared to Val homozygotes. Met-carriers with psychiatric disorders presented thicker medial and lateral temporal cortices than Val homozygotes. Furthermore, a significant genotype × psychiatric diagnosis interaction was found: Met-carriers with a psychiatric diagnosis presented thinner bilateral prefrontal cortices than Val homozygotes. CONCLUSION This study provides evidence that Val66Met is associated with cortical maturation in children and adolescents with and without psychiatric disorders.
Collapse
Affiliation(s)
- Celia Maria de Araujo
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil.
| | - Andre Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Sintia Iole Nogueira Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leticia Maria Spindola
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil; Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Renata Pellegrino
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | | | - Marco Del Aquilla
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Felipe Almeida Picon
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edson Amaro
- Institute of Radiology (INRAD), Universidade de São Paulo, São Paulo, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Mathematics & Statistics Institute, Universidade Federal do ABC, Santo André, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Laboratory (DCNL), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto P Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department & Institute of Psychiatry (IPq), Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo A Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil; Department of Psychiatry, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
28
|
Giannopoulou I, Pagida MA, Briana DD, Panayotacopoulou MT. Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones (Athens) 2018; 17:25-32. [PMID: 29858855 DOI: 10.1007/s42000-018-0007-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Brain development is influenced by various prenatal, intrapartum, and postnatal events which may interact with genotype to affect the neural and psychophysiological systems related to emotions, specific cognitive functions (e.g., attention, memory), and language abilities and thereby heighten the risk for psychopathology later in life. Fetal hypoxia (intrapartum oxygen deprivation), hypoxia-related obstetric complications, and hypoxia during the early neonatal period are major environmental risk factors shown to be associated with an increased risk for later psychopathology. Experimental models of perinatal hypoxia/ischemia (PHI) showed that fetal hypoxia-a consequence common to many birth complications in humans-results in selective long-term disturbances of the dopaminergic systems that persist in adulthood. On the other hand, neurotrophic signaling is critical for pre- and postnatal brain development due to its impact on the process of neuronal development and its reaction to perinatal stress. The aim of this review is (a) to summarize epidemiological data confirming an association of PHI with an increased risk of a range of psychiatric disorders from childhood through adolescence to adulthood, (b) to present immunohistochemical findings on human autopsy material indicating vulnerability of the dopaminergic neurons of the human neonate to PHI that could predispose infant survivors of PHI to dopamine-related neurological and/or cognitive deficits in adulthood, and
Collapse
Affiliation(s)
- Ioanna Giannopoulou
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna A Pagida
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute, PO Box 66517, GR-15601, Papagou, Athens, Greece
| | - Despina D Briana
- Neonatal Unit, 1st Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria T Panayotacopoulou
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece.
- Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute, PO Box 66517, GR-15601, Papagou, Athens, Greece.
| |
Collapse
|
29
|
Watts A, Andrews SJ, Anstey KJ. Sex Differences in the Impact of BDNF Genotype on the Longitudinal Relationship between Physical Activity and Cognitive Performance. Gerontology 2018; 64:361-372. [PMID: 29402782 DOI: 10.1159/000486369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Physical activity may preserve cognitive function in older adults, but benefits vary by sex and genetic factors. OBJECTIVE We tested the longitudinal association between physical activity and cognitive performance to de termine whether a common genetic polymorphism for brain-derived neurotrophic factor (BDNF Val66Met) moderated this effect. METHODS In a 12-year longitudinal population-based sample of older adults (n = 2,218), we used growth curve modeling to investigate whether the benefits of physical activity on cognitive preservation differed by BDNF genotype and sex across multiple cognitive domains including processing speed, attention, working memory, and episodic verbal memory. RESULTS The relationship between physical activity and cognitive performance was dependent on BDNF carrier status in males (Δχ2 [Δdf] = 12.94 [4], p = 0.01), but not in females (Δχ2 [Δdf] = 4.38 [4], p = 0.36). Cognition benefited from physical activity in male BDNF met noncarriers, but not met carriers, whereas cognition was not statistically significantly related to physical activity in females regardless of genotype. CONCLUSION We observed longitudinal, but not cross-sectional, effects of physical activity on cognitive performance. Our study highlights the importance of longitudinal follow-up and consideration of sex differences in the relationships between physical activity, BDNF genotype, and cognitive decline. The findings contribute to understanding gene-lifestyle interactions in promoting cognitive health.
Collapse
Affiliation(s)
- Amber Watts
- Department of Clinical Psychology, University of Kansas, Lawrence, Kansas, USA
| | - Shea J Andrews
- Centre for Research on Ageing, Health & Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health & Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Martin L, Hemmings SMJ, Kidd M, Seedat S. No gene-by-environment interaction of BDNF Val66Met polymorphism and childhood maltreatment on anxiety sensitivity in a mixed race adolescent sample. Eur J Psychotraumatol 2018; 9:1472987. [PMID: 29805780 PMCID: PMC5965035 DOI: 10.1080/20008198.2018.1472987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Anxiety disorders in youth are attributable to multiple causal mechanisms, comprising biological vulnerabilities, such as genetics and temperament, and unfavourable environmental influences, such as childhood maltreatment (CM). Objective: A gene-environment (G x E) interaction study was conducted to determine the interactive effect of the BDNF Val66Met polymorphism and CM to increase susceptibility to anxiety sensitivity (AS) in a sample of mixed race adolescents. Method: Participants (n = 308, mean age = 15.8 years) who were all secondary school students and who completed measures for AS and CM were genotyped for the BDNF Val66Met polymorphism. Hierarchical multiple regression analysis was conducted to assess G x E influences on AS. Age and gender were included in the models as covariates as age was significantly associated with AS total score (p < .05), and females had significantly higher AS scores than males (p < .05). Results: A main effect of CM on AS was evident (p < .05), however, no main effect of BDNF genotype on AS was observed (p > .05). A non-significant G x E effect on AS was revealed (p < .05). Conclusions: Our results suggest that CM does not have a moderating role in the relationship between the BDNF Val66Met genotype and the increased risk of anxiety-related phenotypes, such as AS. Given the exploratory nature of this study, findings require replication in larger samples and adjustment for population stratification to further explore the role of BDNF Val66Met and CM on AS in mixed race adolescents.
Collapse
Affiliation(s)
- Lindi Martin
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | - Martin Kidd
- Department of Statistics and Actuarial Science, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
31
|
|
32
|
Neurogenetic plasticity and sex influence the link between corticolimbic structural connectivity and trait anxiety. Sci Rep 2017; 7:10959. [PMID: 28887539 PMCID: PMC5591318 DOI: 10.1038/s41598-017-11497-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022] Open
Abstract
Corticolimbic pathways connecting the amygdala and ventral prefrontal cortex (vPFC) are linked with trait anxiety, but it remains unclear what potential genetic moderators contribute to this association. We sought to address this by examining the inter-individual variability in neuroplasticity as modeled by a functional polymorphism (rs6265) in the human gene for brain derived neurotrophic factor (BDNF). Amygdala-vPFC pathway fractional anisotropy (FA) from 669 diffusion magnetic resonance images was used to examine associations with trait anxiety as a function of rs6265 genotype. We first replicated the inverse correlation between trait anxiety and amygdala-vPFC pathway FA in women. Furthermore, we found a moderating influence of rs6265 genotype such that the association between trait anxiety and right amygdala-vPFC pathway FA was strongest in women carrying the Met allele, which is linked with decreased activity-dependent neuroplasticity. Results indicate that the microstructural integrity of pathways supporting communication between the amygdala and vPFC help shape the expression of trait anxiety in women, and that this association is further modulated by genetically driven variability in neuroplasticity.
Collapse
|
33
|
Stewart JC, Cramer SC. Genetic Variation and Neuroplasticity: Role in Rehabilitation After Stroke. J Neurol Phys Ther 2017; 41 Suppl 3:S17-S23. [PMID: 28628592 PMCID: PMC5477674 DOI: 10.1097/npt.0000000000000180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE In many neurologic diagnoses, significant interindividual variability exists in the outcomes of rehabilitation. One factor that may impact response to rehabilitation interventions is genetic variation. Genetic variation refers to the presence of differences in the DNA sequence among individuals in a population. Genetic polymorphisms are variations that occur relatively commonly and, while not disease-causing, can impact the function of biological systems. The purpose of this article is to describe genetic polymorphisms that may impact neuroplasticity, motor learning, and recovery after stroke. SUMMARY OF KEY POINTS Genetic polymorphisms for brain-derived neurotrophic factor (BDNF), dopamine, and apolipoprotein E have been shown to impact neuroplasticity and motor learning. Rehabilitation interventions that rely on the molecular and cellular pathways of these factors may be impacted by the presence of the polymorphism. For example, it has been hypothesized that individuals with the BDNF polymorphism may show a decreased response to neuroplasticity-based interventions, decreased rate of learning, and overall less recovery after stroke. However, research to date has been limited and additional work is needed to fully understand the role of genetic variation in learning and recovery. RECOMMENDATIONS FOR CLINICAL PRACTICE Genetic polymorphisms should be considered as possible predictors or covariates in studies that investigate neuroplasticity, motor learning, or motor recovery after stroke. Future predictive models of stroke recovery will likely include a combination of genetic factors and other traditional factors (eg, age, lesion type, corticospinal tract integrity) to determine an individual's expected response to a specific rehabilitation intervention.
Collapse
Affiliation(s)
- Jill Campbell Stewart
- Physical Therapy Program, Department of Exercise Science, University of South Carolina
| | - Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine
| |
Collapse
|
34
|
A genetic variant brain-derived neurotrophic factor (BDNF) polymorphism interacts with hostile parenting to predict error-related brain activity and thereby risk for internalizing disorders in children. Dev Psychopathol 2017; 30:125-141. [PMID: 28427482 DOI: 10.1017/s0954579417000517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the event-related potential occurring when individuals make mistakes, and is increased in children with internalizing psychopathology. We recently found that harsh parenting predicts a larger ERN in children, and recent work has suggested that variation in the brain-derived neurotrophic factor (BDNF) gene may moderate the impact of early life adversity. Parents and children completed measures of parenting when children were 3 years old (N = 201); 3 years later, the ERN was measured and diagnostic interviews as well as dimensional symptom measures were completed. We found that harsh parenting predicted an increased ERN only among children with a methionine allele of the BDNF genotype, and evidence of moderated mediation: the ERN mediated the relationship between parenting and internalizing diagnoses and dimensional symptoms only if children had a methionine allele. We tested this model with externalizing disorders, and found that harsh parenting predicted externalizing outcomes, but the ERN did not mediate this association. These findings suggest that harsh parenting predicts both externalizing and internalizing outcomes in children; however, this occurs through different pathways that uniquely implicate error-related brain activity in the development of internalizing disorders.
Collapse
|
35
|
Briana DD, Papastavrou M, Boutsikou M, Marmarinos A, Gourgiotis D, Malamitsi-Puchner A. Differential expression of cord blood neurotrophins in gestational diabetes: the impact of fetal growth abnormalities. J Matern Fetal Neonatal Med 2017; 31:278-283. [DOI: 10.1080/14767058.2017.1281907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Despina D. Briana
- Department of Neonatology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papastavrou
- Department of Neonatology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Boutsikou
- Department of Neonatology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
36
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Koss KJ, Cummings EM, Davies PT, Hetzel S, Cicchetti D. Harsh Parenting and Serotonin Transporter and BDNF Val66Met Polymorphisms as Predictors of Adolescent Depressive Symptoms. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2016; 47:S205-S218. [PMID: 27736236 DOI: 10.1080/15374416.2016.1220311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Depressive symptoms are prevalent and rise during adolescence. The present study is a prospective investigation of environmental and genetic factors that contribute to the growth in depressive symptoms and the frequency of heightened symptoms during adolescence. Participants included 206 mother-father-adolescent triads (M age at Time 1 = 13.06 years, SD = .51, 52% female). Harsh parenting was observationally assessed during a family conflict paradigm. DNA was extracted from saliva samples and genotyped for the 5-HTTLPR and BDNF Val66Met polymorphisms. Adolescents provide self-reports of depressive symptoms annually across early adolescence. The results reveal Gene × Environment interactions as predictors of adolescent depressive symptom trajectories in the context of harsh parenting as an environmental risk factor. A BDNF Val66Met × Harsh Parenting interaction predicted the rise in depressive symptoms across a 3-year period, whereas a 5-HTTLPR × Harsh Parenting interaction predicted greater frequency in elevated depressive symptoms. The findings highlight the importance of unique genetic and environmental influences in the development and course of heightened depressive symptoms during adolescence.
Collapse
Affiliation(s)
- Kalsea J Koss
- a Department of Psychology and Human Development , Vanderbilt University
| | | | | | - Susan Hetzel
- d Institute of Child Development , University of Minnesota
| | - Dante Cicchetti
- d Institute of Child Development , University of Minnesota.,e Mt. Hope Family Center , University of Rochester
| |
Collapse
|
38
|
Marusak HA, Kuruvadi N, Vila AM, Shattuck DW, Joshi SH, Joshi AA, Jella PK, Thomason ME. Interactive effects of BDNF Val66Met genotype and trauma on limbic brain anatomy in childhood. Eur Child Adolesc Psychiatry 2016; 25:509-18. [PMID: 26286685 PMCID: PMC4760899 DOI: 10.1007/s00787-015-0759-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023]
Abstract
Childhood trauma is a major precipitating factor in psychiatric disease. Emerging data suggest that stress susceptibility is genetically determined, and that risk is mediated by changes in limbic brain circuitry. There is a need to identify markers of disease vulnerability, and it is critical that these markers be investigated in childhood and adolescence, a time when neural networks are particularly malleable and when psychiatric disorders frequently emerge. In this preliminary study, we evaluated whether a common variant in the brain-derived neurotrophic factor (BDNF) gene (Val66Met; rs6265) interacts with childhood trauma to predict limbic gray matter volume in a sample of 55 youth high in sociodemographic risk. We found trauma-by-BDNF interactions in the right subcallosal area and right hippocampus, wherein BDNF-related gray matter changes were evident in youth without histories of trauma. In youth without trauma exposure, lower hippocampal volume was related to higher symptoms of anxiety. These data provide preliminary evidence for a contribution of a common BDNF gene variant to the neural correlates of childhood trauma among high-risk urban youth. Altered limbic structure in early life may lay the foundation for longer term patterns of neural dysfunction, and hold implications for understanding the psychiatric and psychobiological consequences of traumatic stress on the developing brain.
Collapse
Affiliation(s)
- Hilary A. Marusak
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nisha Kuruvadi
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Angela M. Vila
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - David W. Shattuck
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shantanu H. Joshi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand A. Joshi
- Brain and Creativity Institute, University of Southern California, Los Angeles, California USA,Signal and Image Processing Institute, University of Southern California, Los Angeles, California, USA
| | - Pavan K. Jella
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Moriah E. Thomason
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA,Perinatology Research Branch, NICHD/NIH/DHSS, Bethesda, Maryland, and Detroit, Michigan, USA
| |
Collapse
|
39
|
Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach. Dev Psychopathol 2016; 27:587-613. [PMID: 25997774 DOI: 10.1017/s0954579415000188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.
Collapse
|
40
|
Zhang L, Li Z, Chen J, Li X, Zhang J, Belsky J. The BDNF Val66Met Polymorphism Interacts with Maternal Parenting Influencing Adolescent Depressive Symptoms: Evidence of Differential Susceptibility Model. J Youth Adolesc 2016; 45:471-483. [PMID: 26510938 DOI: 10.1007/s10964-015-0378-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023]
Abstract
Although depressive symptoms are common during adolescence, little research has examined gene-environment interaction on youth depression. This study chose the brain-derived neurotrophic factor (BDNF) gene, tested the interaction between a functional polymorphism resulting amino acid substitution of valine (Val) to methionine (Met) in the proBDNF protein at codon 66 (Val66Met), and maternal parenting on youth depressive symptoms in a sample of 780 community adolescents of Chinese Han ethnicity (aged 11-17, M = 13.6, 51.3 % females). Participants reported their depressive symptoms and perceived maternal parenting. Results indicated the BDNF Val66Met polymorphism significantly moderated the influence of maternal warmth-reasoning, but not harshness-hostility, on youth depressive symptoms. Confirmatory model evaluation indicated that the interaction effect involving warmth-reasoning conformed to the differential-susceptibility rather than diathesis-stress model of person-X-environment interaction. Thus, Val carriers experienced less depressive symptoms than Met homozygotes when mothering was more positive but more symptoms when mothering was less positive. The findings provided evidence in support of the differential susceptibility hypothesis of youth depressive symptoms and shed light on the importance of examining the gene-environment interaction from a developmental perspective.
Collapse
Affiliation(s)
- Leilei Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Zhi Li
- Department of Human Ecology, University of California, Davis, CA, USA
| | - Jie Chen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| | - Xinying Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Jianxin Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Jay Belsky
- Department of Human Ecology, University of California, Davis, CA, USA
| |
Collapse
|
41
|
Hashimoto T, Fukui K, Takeuchi H, Yokota S, Kikuchi Y, Tomita H, Taki Y, Kawashima R. Effects of the BDNF Val66Met Polymorphism on Gray Matter Volume in Typically Developing Children and Adolescents. Cereb Cortex 2016; 26:1795-803. [PMID: 26830347 PMCID: PMC4785961 DOI: 10.1093/cercor/bhw020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) is associated with psychiatric disorders and regional gray matter volume (rGMV) in adults. However, the relationship between BDNF and rGMV in children has not been clarified. In this 3-year cross-sectional/longitudinal (2 time points) study, we investigated the effects of BDNF genotypes on rGMV in 185 healthy Japanese children aged 5.7-18.4 using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) analyses. We found that the volume of the right cuneus in Met homozygotes (Met/Met) was greater than in Val homozygotes (Val/Val) in both exams, and the left insula and left ventromedial prefrontal cortex volumes were greater in Val homozygotes versus Met homozygotes in Exam l. In addition, Met homozygous subjects exhibited higher processing speed in intelligence indices than Val homozygotes and Val/Met heterozygotes at both time points. Longitudinal analysis showed that the left temporoparietal junction volume of Val/Met heterozygotes increased more substantially over the 3-year study period than in Val homozygotes, and age-related changes were observed for the Val/Met genotype. Our findings suggest that the presence of 2 Met alleles may have a positive effect on rGMV at the developmental stages analyzed in this study.
Collapse
Affiliation(s)
| | - Kento Fukui
- Department of Nuclear Medicine and Radiology, Division of Medical Neuroimaging Analysis, Institute Development, Aging and Cancer
| | | | | | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience Department of Nuclear Medicine and Radiology, Division of Medical Neuroimaging Analysis, Institute Development, Aging and Cancer Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, 980-8575 Sendai, Japan
| | | |
Collapse
|
42
|
Ebesutani C, Tottenham N, Chorpita B. The Revised Child Anxiety and Depression Scale - Parent Version: Extended Applicability and Validity for Use with Younger Youth and Children with Histories of Early-Life Caregiver Neglect. JOURNAL OF PSYCHOPATHOLOGY AND BEHAVIORAL ASSESSMENT 2015; 37:705-718. [PMID: 30364688 PMCID: PMC6197808 DOI: 10.1007/s10862-015-9494-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Revised Child Anxiety and Depression Scale - Parent Version (RCADS-P) is a widely used parent-report measure, initially developed to assess anxiety and depression in youth in grades 3-12 from school-based and clinic-referred settings. It is important however to be able to assess these problems in even younger children due to the need for earlier understanding, identification, intervention and prevention efforts of anxiety and depression in younger children, and continual monitoring of these problems across the youth life span. For the present study, we used a sample of 307 children and adolescents ages 3.0 to 17.5 years old (M=8.68, SE=4.10). For the first set of analyses, we divided the sample into Younger youth (kindergarten to grade 2; n=152) and Older youth (grade 3 to 12; n=155) to see whether each group independently met benchmarks for acceptable reliability and validity. Given the number of children who also develop anxiety and depression following early-life adversities and adverse care (such as caregiver neglect), we also divided our sample differently into a Post-Institutionalized group (i.e., previously institutionalized youth; n=100) and a Comparison group (i.e., youth without histories of early-life caregiver neglect; n=195) to examine whether each of these groups also met benchmarks for acceptable reliability and validity. Specifically, in each of these grade and experience groups, we examined the factor structure (including measurement invariance), internal consistency and convergent and discriminant validity of the RCADS-P anxiety and depression scales scores. Results demonstrated that younger youth RCADS-P reports were associated with acceptable reliability and validity estimates. Similar support for the RCADS-P scores was found for the Post-Institutionalized youth. The present study therefore extends needed support for the use of the RCADS-P to assess and monitor these two new and important youth groups.
Collapse
Affiliation(s)
- Chad Ebesutani
- Department of Psychology, Duksung Women’s University, 33, Samyang-ro 144-gil, 419 Ssangmun-dong, Dobong-gu, Seoul 132-714, South Korea
| | - Nim Tottenham
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave., MC 5501, New York, NY 10027, USA
| | - Bruce Chorpita
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Hariri AR, Holmes A. Finding translation in stress research. Nat Neurosci 2015; 18:1347-52. [PMID: 26404709 PMCID: PMC4693288 DOI: 10.1038/nn.4111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
In our ongoing efforts to advance understanding of human diseases, translational research across rodents and humans on stress-related mental disorders stands out as a field that is producing discoveries that illuminate mechanisms of risk and pathophysiology at a brisk rate. Here we offer a Perspective on how a productive translational research dialog between preclinical models and clinical studies of these disorders is being powered by an ever-developing appreciation of the shared neural circuits and genetic architecture that moderate the response to stress across species. Working from these deep foundations, we discuss the approaches, both traditional and innovative, that have the potential to deliver a new generation of risk biomarkers and therapeutic strategies for stress-related disorders.
Collapse
Affiliation(s)
- Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology &Neuroscience, Duke University, Durham, North Carolina, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
44
|
Casey BJ, Glatt CE, Lee FS. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies. Neuron 2015; 86:1358-68. [PMID: 26087163 DOI: 10.1016/j.neuron.2015.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Behaviors and underlying brain circuits show characteristic changes across the lifespan that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, anxiety disorders in particular. We present cross-species studies relating fear learning to anxiety across development and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain.
Collapse
Affiliation(s)
- B J Casey
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Charles E Glatt
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Douet V, Chang L, Cloak C, Ernst T. Genetic influences on brain developmental trajectories on neuroimaging studies: from infancy to young adulthood. Brain Imaging Behav 2015; 8:234-50. [PMID: 24077983 DOI: 10.1007/s11682-013-9260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human brain development has been studied intensively with neuroimaging. However, little is known about how genes influence developmental brain trajectories, even though a significant number of genes (about 10,000, or approximately one-third) in the human genome are expressed primarily in the brain and during brain development. Interestingly, in addition to showing differential expression among tissues, many genes are differentially expressed across the ages (e.g., antagonistic pleiotropy). Age-specific gene expression plays an important role in several critical events in brain development, including neuronal cell migration, synaptogenesis and neurotransmitter receptor specificity, as well as in aging and neurodegenerative disorders (e.g., Alzheimer disease or amyotrophic lateral sclerosis). In addition, the majority of psychiatric and mental disorders are polygenic, and many have onsets during childhood and adolescence. In this review, we summarize the major findings from neuroimaging studies that link genetics with brain development, from infancy to young adulthood. Specifically, we focus on the heritability of brain structures across the ages, age-related genetic influences on brain development and sex-specific developmental trajectories.
Collapse
Affiliation(s)
- Vanessa Douet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA,
| | | | | | | |
Collapse
|
46
|
Mueller K, Möller HE, Horstmann A, Busse F, Lepsien J, Blüher M, Stumvoll M, Villringer A, Pleger B. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity. Front Hum Neurosci 2015; 9:372. [PMID: 26190989 PMCID: PMC4486867 DOI: 10.3389/fnhum.2015.00372] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany
| | - Franziska Busse
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| | - Burkhard Pleger
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| |
Collapse
|
47
|
Johnson SL, Carver CS, Joormann J, Cuccaro M. A genetic analysis of the validity of the Hypomanic Personality Scale. Bipolar Disord 2015; 17:331-9. [PMID: 25219588 DOI: 10.1111/bdi.12251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Studies of mania risk have increasingly relied on measures of subsyndromal tendencies to experience manic symptoms. The measures of mania risk employed in those studies have been shown to predict manic onset, to show familial associations, and to demonstrate expected correlations with psychosocial variables related to bipolar disorder. However, little work has been conducted to validate such measures against biologically relevant indices, or to consider whether early adversity, which has been shown to be highly elevated among those with bipolar disorder, is related to higher scores on mania risk measures. This study tested whether a well-used, self-report measure of vulnerability to mania is associated with several candidate genes that have previously been linked with bipolar disorder or with early adversity. Interactions of genes with early adversity in the prediction of mania vulnerability were also tested. METHODS Undergraduate students from the University of Miami (Coral Gables, FL, USA) (N = 305) completed the Hypomanic Personality Scale and the Risky Families Scale, and provided blood for genotyping. RESULTS Findings indicated that the Hypomanic Personality Scale was related to a number of dopamine-relevant polymorphisms and with early adversity. A polymorphism of ANKK1 appeared to specifically increase mania risk in the context of early adversity. CONCLUSIONS These results provide additional support for the validity of the Hypomanic Personality Scale.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Center for Advanced Study in the Behavioral Sciences, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
48
|
Baranova KA, Rybnikova EA, Samoilov MO. The neurotrophin BDNF is involved in the development and prevention of stress-induced psychopathologies. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Swartz JR, Williamson DE, Hariri AR. Developmental change in amygdala reactivity during adolescence: effects of family history of depression and stressful life events. Am J Psychiatry 2015; 172:276-83. [PMID: 25526599 PMCID: PMC4452289 DOI: 10.1176/appi.ajp.2014.14020195] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Although heightened amygdala reactivity is observed in patients with major depression, two critical gaps in our knowledge remain. First, it is unclear whether heightened amygdala reactivity is a premorbid vulnerability or a consequence of the disorder. Second, it is unknown how and when this neural phenotype develops. The authors sought to address these gaps by evaluating developmental change in threat-related amygdala reactivity in adolescents at high or low risk for depression based on family history, before onset of disorder. METHOD At baseline and again 2 years later, adolescents (initially 11-15 years of age) participated in a functional MRI paradigm that elicited threat-related amygdala reactivity. After quality control, data were available for 232 adolescents at wave 1 and 197 adolescents at wave 2; longitudinal data meeting quality control at both waves were available for 157 of these participants. Change in amygdala reactivity was assessed as a function of family history of depression and severity of stressful life events. RESULTS Threat-related amygdala reactivity increased with age in participants with a positive family history regardless of the severity of life stress reported, and it increased in adolescents with a negative family history who reported relatively severe life stress. These changes in amygdala reactivity with age occurred in the absence of clinical disorder or increases in depressive symptoms. CONCLUSIONS These results suggest that heightened amygdala reactivity emerges during adolescence, prior to the development of depression, as a function of familial risk or, in the absence of familial risk, stressful life events.
Collapse
|
50
|
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Dev Psychopathol 2015; 27:137-50. [DOI: 10.1017/s0954579414001357] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractEarly life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine–phosphate–guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine–phosphate–guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.
Collapse
|