1
|
Wei RM, Zhang MY, Fang SK, Liu GX, Hu F, Li XY, Zhang KX, Zhang JY, Liu XC, Zhang YM, Chen GH. Melatonin attenuates intermittent hypoxia-induced cognitive impairment in aged mice: The role of inflammation and synaptic plasticity. Psychoneuroendocrinology 2025; 171:107210. [PMID: 39378690 DOI: 10.1016/j.psyneuen.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Intermittent hypoxia (IH), a major pathophysiologic alteration in obstructive sleep apnea syndrome (OSAS), is an important contributor to cognitive impairment. Increasing research suggests that melatonin has anti-inflammatory properties and improves functions related to synaptic plasticity. However, it is unclear whether melatonin has a protective effect against OSAS-induced cognitive dysfunction in aged individuals and the involved mechanisms are also unclear. Therefore, in the study, the effects of exposure to IH alone and IH in combination with daily melatonin treatment were investigated in C57BL/6 J mice aged 18 months. Assessment of the cognitive ability of mice in a Morris water maze showed that melatonin attenuated IH-induced impairment of learning and memory in aged mice. Enzyme-linked immunosorbent assay, polymerase chain reaction, and western blotting molecular techniques showed that melatonin treatment reduced the levels of the proinflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, decreased the levels of NOD-like receptor thermal protein domain associated protein 3 and nuclear factor kappa-B, lowered the levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and increased the levels of the synaptic proteins, activity-regulated cytoskeleton-associated protein, growth-associated protein-43, postsynaptic density protein 95, and synaptophysin in IH-exposed mice. Moreover, electrophysiological results showed that melatonin ameliorated the decline in long-term potentiation induced by IH. The results suggest that melatonin can ameliorate IH-induced cognitive deficits by inhibiting neuroinflammation and improving synaptic plasticity in aged mice.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Meng-Ying Zhang
- Department of Anesthesiology, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Shi-Kun Fang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gao-Xia Liu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Fei Hu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Yan Li
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Kai-Xuan Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Jing-Ya Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Chun Liu
- Department of Neurology, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Yue-Ming Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gui-Hai Chen
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| |
Collapse
|
2
|
Zhang QY, Wang Q, Fu JX, Xu XX, Guo DS, Pan YC, Zhang T, Wang H. Multi Targeted Therapy for Alzheimer's Disease by Guanidinium-Modified Calixarene and Cyclodextrin Co-Assembly Loaded with Insulin. ACS NANO 2024; 18:33032-33041. [PMID: 39499644 DOI: 10.1021/acsnano.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Amyloid-β (Aβ) is considered a primary therapeutic target for Alzheimer's disease (AD). However, just eliminating Aβ in patients with AD has exhibited restricted clinical efficacy, possibly failing to address the metabolic abnormalities caused by AD, such as insulin resistance. To address this concern, our research has employed two types of macrocyclic amphiphiles, guanidinium-modified calixarene and cyclodextrin coassembly (GCD), as delivery systems for insulin. This approach aimed to tackle the metabolic dysregulation characteristic of AD in an innovative manner by exploring beyond the conventional strategy of Aβ removal. As a result, GCD and insulin coassembly could effectively improve plaque deposition and insulin resistance. The coassembly could also reduce abnormal neuronal apoptosis and synaptic damage and improve cognitive impairment in 5xFAD mice. Therefore, the GCD and insulin coassembly shows promise as a viable therapeutic option for AD.
Collapse
Affiliation(s)
- Qi-Yue Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiang Wang
- Department of Anaesthesiology, Peking University First Hospital, Beijing 100034, China
| | - Jing-Xuan Fu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xin-Xin Xu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Tao Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Morampudi RK, Neelakandan V, Naveen Kumar B, Indla E. Evaluation of Cognitive and Synaptic Restoration in Diabetic Rats Treated With Emblica officinalis, Clitoria ternatea, Vitamin C, and Metformin. Cureus 2024; 16:e75866. [PMID: 39822457 PMCID: PMC11736978 DOI: 10.7759/cureus.75866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Diabetes is known to cause cognitive impairments and synaptic dysfunction. This study investigates the effects of Emblica officinalis (EO), Clitoria ternatea (CT), Vitamin C, and metformin on cognitive function and synaptic density (SYN) in diabetic rats. This work aims to evaluate the impact of various treatments on spatial learning, memory, and SYN in a diabetic rat model. METHODS The Morris water maze test was used to assess spatial learning and memory at four time points (Days 1, 3, 14, and 21). SYN was measured using optical density to assess SYN expression. Eight experimental groups were included: Non-diabetic Control, Diabetic Control, Diabetic + EO, Diabetic + CT, Diabetic + Vitamin C, Diabetic + Metformin, Non-diabetic + EO, and Non-diabetic + CT. RESULTS On Day 1, the Diabetic Control group exhibited significantly longer latency times, indicating cognitive impairment. Diabetic + EO and Diabetic + CT showed the most significant improvements in cognitive performance compared to other diabetic groups, while Diabetic + Vitamin C and Diabetic + Metformin were less effective. On Day 3, cognitive performance in the diabetic groups improved, but none reached the level of Non-diabetic controls. On Day 14, EO and CT were again the most effective in reducing latency times, followed by Metformin. By Day 21, EO and CT showed significant improvements in cognitive function, with Metformin outperforming Vitamin C. SYN expression was significantly higher in the Non-diabetic + CT and Non-diabetic + EO groups, and these treatments also enhanced SYN expression in diabetic rats, with Metformin showing the greatest improvement. CONCLUSION The results suggest that EO and CT offer significant therapeutic potential for mitigating cognitive deficits and enhancing SYN in diabetic animals. Although metformin also improved cognitive function and SYN, it exhibited the most robust restorative effects. These findings highlight the potential of herbal treatments like EO and CT for managing cognitive dysfunction in diabetes.
Collapse
|
4
|
Coupland CE, Karimi R, Bueler SA, Liang Y, Courbon GM, Di Trani JM, Wong CJ, Saghian R, Youn JY, Wang LY, Rubinstein JL. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024; 385:168-174. [PMID: 38900912 DOI: 10.1126/science.adp5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.
Collapse
Affiliation(s)
- Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Rayan Saghian
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Young Youn
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lu-Yang Wang
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Tan R, Ma R, Chu F, Zhou X, Wang X, Yin T, Liu Z. Study on Improving the Modulatory Effect of Rhythmic Oscillations by Transcranial Magneto-Acoustic Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1796-1805. [PMID: 38691431 DOI: 10.1109/tnsre.2024.3395641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.
Collapse
|
6
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 PMCID: PMC10581561 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Wei RM, Zhang YM, Zhang KX, Liu GX, Li XY, Zhang JY, Lun WZ, Liu XC, Chen GH. An enriched environment ameliorates maternal sleep deprivation-induced cognitive impairment in aged mice by improving mitochondrial function via the Sirt1/PGC-1α pathway. Aging (Albany NY) 2024; 16:1128-1144. [PMID: 38231482 PMCID: PMC10866428 DOI: 10.18632/aging.205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| |
Collapse
|
8
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular Vesicle-Serpine-1 Affects Neural Progenitor Cell Mitochondrial Networks and Synaptic Density: Modulation by Amyloid Beta and HIV-1. Mol Neurobiol 2023; 60:6441-6465. [PMID: 37458985 PMCID: PMC10533645 DOI: 10.1007/s12035-023-03456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells (HBMEC) to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nelson Serrano
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Irina Djuraskovic
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
9
|
El-Helaly A, Abou-El-Naga AM, Alshehri KM, El-Dein MA. Miracle Tree ( Moringa oleifera) Attuned GFAP and Synaptophysin Levels, Oxidative Stress and Biomarkers in Cerebellar Fluorosis of Pregnant Rats. Pak J Biol Sci 2023; 26:628-650. [PMID: 38334155 DOI: 10.3923/pjbs.2023.628.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
<b>Background and Objective:</b> Cerebellar fluorosis is a health issue associated with excessive exposure to fluoride (F) either in direct or indirect ways as pesticides, drinking water and caries preventing prescriptions. It is characterized by elevation in oxidative stress, inflammation, demyelination and Purkinje cell loss. <i>Moringa oleifera</i> (M), is a widely cultivated plant used as a health-booster agent in modulating various disorders because of its high content of vitamins and minerals. The beneficial effect of moringa against fluoride-induced cerebellar toxicity in pregnant rats was investigated in this study. <b>Materials and Methods:</b> Twenty pregnant rats were administered daily 300 mg kg<sup></sup><sup>1</sup> <i>M. oleifera</i> aqueous extract incorporated with 10 mg kg<sup></sup><sup>1</sup> of F intoxication from the 1st day of gestation until the 20th day. Following the termination of the trial, sera were collected and cerebellar tissue was removed for further examinations, along with the assessment of maternity. <b>Results:</b> The <i>M. oleifera</i> significantly normalized serum FSH, LH, progesterone, dopamine and serotonin levels of F-intoxicated mothers. Additionally, <i>M. oleifera</i> markedly prevented the lipid peroxidation and DNA fragmentation indicated by the tail length and moment in comet assay (-34.4 and -75.3%, respectively, when compared to the fluoride intoxicated group), while sustaining the levels of SOD and CAT revealing its antioxidant activity. The <i>M. oleifera</i> regressed the cerebellar α-amylase (-25.4%) and acetylcholinesterase activity (-40.6%), also attenuated GFAP (-73.4%, p<0.0001), synaptophysin level (216.6%, p<0.0001) and IL-6 expression (-91.2%) comparing to fluoride only treated mothers. <b>Conclusion:</b> Histological and ultrastructural examinations confirmed the recuperating effects of <i>M. oleifera</i> on mothers' cerebellar tissue intoxicated with fluoride indicated by intact folia and restored Purkinje cells number and architecture. The maternal study emphasized the anti-abortifacient activity of moringa against fluoride induced-fetotoxicity.
Collapse
|
10
|
Huang YQ, Gu X, Chen X, Du YT, Chen BC, Sun FY. BMECs Ameliorate High Glucose-Induced Morphological Aberrations and Synaptic Dysfunction via VEGF-Mediated Modulation of Glucose Uptake in Cortical Neurons. Cell Mol Neurobiol 2023; 43:3575-3592. [PMID: 37418138 PMCID: PMC10477237 DOI: 10.1007/s10571-023-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Gu
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Kimizoğlu O, Kirca ND, Kandis S, Micili SC, Harzadin NU, Kocturk S. Daily Consumption of High-Polyphenol Olive Oil Enhances Hippocampal Neurogenesis in Old Female Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:668-677. [PMID: 36416641 DOI: 10.1080/27697061.2022.2144540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of daily consumption of high-polyphenol (HP) olive oil on neurogenesis by investigating neuronal cell proliferation and maturation in the hippocampus of old rats, and to evaluate the relationship between neurogenesis, spatial memory, and anxiety-like behavior. METHODS A total of 34 female, 20-22-month-old Sprague Dawley rats were divided into three groups: control group, low-polyphenol (LP) group, and high-polyphenol (HP) group. The animals were fed distilled water, LP olive oil and HP-extra virgin olive oil, respectively for 6 weeks using an oral gavage. At 43 days, animals were tested using the Morris Water Maze to evaluate spatial memory, and the Open-field test to evaluate anxiety-like behavior. Neural cell proliferation in the dentate gyrus (DG) was determined by BrdU labeling and Nestin protein expression. Neuronal maturation was determined by NeuN labeling. Synaptic density in the hippocampus and prefrontal cortex was examined by measuring Synaptophysin (SYN) levels. Hippocampal Calbindin levels were measured to assess cellular calcium metabolism. RESULTS Daily consumption of HP olive oil significantly improved cell proliferation and neuronal maturation in the DG of old rats. HP-olive oil significantly increased SYN levels in the prefrontal cortex, and nestin and calbindin levels in the hippocampus (p < 0.05). LP olive oil diet has shown no effect on any parameter (p > 0.05). We also did not find any statistically significant difference between the groups in terms of spatial memory and anxiety-like behavior (p > 0.05). CONCLUSION Our study is first to show that daily consumption of HP-olive oil enhances hippocampal neurogenesis in old rats, which has been confirmed by proliferation and maturation biomarkers. In addition, increased SYN and calbindin levels showed that the generated cells were also functionally developed in the HP group. We suggest that daily consumption of HP olive oil may have beneficial effects on brain aging by triggering neurogenesis.
Collapse
Affiliation(s)
- Ozgun Kimizoğlu
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - N Deniz Kirca
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Serap Cilaker Micili
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| | - Nazan Uysal Harzadin
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Semra Kocturk
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
12
|
Ahad MA, Chear NJY, Keat LG, Has ATC, Murugaiyah V, Hassan Z. Bio-enhanced fraction from Clitoria ternatea root extract ameliorates cognitive functions and in vivo hippocampal neuroplasticity in chronic cerebral hypoperfusion rat model. Ageing Res Rev 2023; 89:101990. [PMID: 37343678 DOI: 10.1016/j.arr.2023.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
Collapse
Affiliation(s)
| | | | - Lim Gin Keat
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, USM Health Campus Kota Bharu, Kelantan, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
13
|
Lei C, Liu C, Peng Y, Zhan Y, Zhang X, Liu T, Liu Z. A high-salt diet induces synaptic loss and memory impairment via gut microbiota and butyrate in mice. IMETA 2023; 2:e97. [PMID: 38868427 PMCID: PMC10989808 DOI: 10.1002/imt2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/14/2024]
Abstract
High-salt diet (HSD)-fed mice display cognitive impairment and lower synaptic proteins via changed gut microbiota composition and short-chain fatty acids production. Gut microbiota from HSD-fed mice impairs memory and synapse in normal salt diet-fed mice. Butyrate treatment partially reverses memory impairment in HSD-fed mice. Above all, this study indicates the important role of the gut microbiome and butyrate production in synaptic loss and memory impairment.
Collapse
Affiliation(s)
- Chao Lei
- Department of Anorectal Surgery, Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Cong Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuling Peng
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yu Zhan
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaoming Zhang
- Department of Internal MedicineHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Ting Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhihua Liu
- Department of Anorectal Surgery, Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Exploration of the Shared Molecular Mechanisms between COVID-19 and Neurodegenerative Diseases through Bioinformatic Analysis. Int J Mol Sci 2023; 24:ijms24054839. [PMID: 36902271 PMCID: PMC10002862 DOI: 10.3390/ijms24054839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic has caused millions of deaths and remains a major public health burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). We aimed to explore the shared pathways between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms, which may explain the neurological symptoms and degeneration of brain that occur in COVID-19 patients, and to provide early intervention. In this study, gene expression datasets of the frontal cortex were employed to detect common differentially expressed genes (DEGs) of COVID-19, AD, and PD. A total of 52 common DEGs were then examined using functional annotation, protein-protein interaction (PPI) construction, candidate drug identification, and regulatory network analysis. We found that the involvement of the synaptic vesicle cycle and down-regulation of synapses were shared by these three diseases, suggesting that synaptic dysfunction might contribute to the onset and progress of neurodegenerative diseases caused by COVID-19. Five hub genes and one key module were obtained from the PPI network. Moreover, 5 drugs and 42 transcription factors (TFs) were also identified on the datasets. In conclusion, the results of our study provide new insights and directions for follow-up studies of the relationship between COVID-19 and neurodegenerative diseases. The hub genes and potential drugs we identified may provide promising treatment strategies to prevent COVID-19 patients from developing these disorders.
Collapse
|
15
|
Ma Y, Liu Z, Jiang L, Wang L, Li Y, Liu Y, Wang Y, Yang GY, Ding J, Zhang Z. Endothelial progenitor cell transplantation attenuates synaptic loss associated with enhancing complement receptor 3-dependent microglial/macrophage phagocytosis in ischemic mice. J Cereb Blood Flow Metab 2023; 43:379-392. [PMID: 36457150 PMCID: PMC9941864 DOI: 10.1177/0271678x221135841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022]
Abstract
Endothelial progenitor cell (EPC) transplantation has therapeutic effects in cerebral ischemia. However, how EPCs modulate microglial activity remains unclear. In the study, we explored whether EPCs modulated microglial/macrophage activity and facilitated injured brain repair. Adult male mice (n = 184) underwent transient middle cerebral artery occlusion, and EPCs were transplanted into the brain immediately after ischemia. Microglial/macrophage activity and complement receptor 3 (CR3) expression were evaluated in ischemic brains and cultured microglia. CR3 agonist leukadherin-1 was administrated into mice immediately after ischemia to imitate the effects of EPCs. Synaptophysin and postsynaptic density protein 95 (PSD-95) expressions were detected in EPC- and leukadherin-1 treated mice. We found that EPC transplantation increased the number of M2 microglia/macrophage-phagocytizing apoptotic cells and CR3 expression in ischemic brains at 3 days after ischemia (p < 0.05). EPC-conditional medium or cultured EPCs increased microglial migration and phagocytosis and upregulated CR3 expression in cultured microglia under oxygen-glucose deprivation condition (p < 0.05). Leukadherin-1 reduced brain atrophy volume and neurological deficits at 14 days after ischemia (p < 0.05). Both EPC transplantation and leukadherin-1 increased synaptophysin and PSD-95 expression at 14 days after ischemia (p < 0.05). EPC transplantation promoted CR3-mediated microglial/macrophage phagocytosis and subsequently attenuated synaptic loss. Our study provided a novel therapeutic mechanism for EPCs.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University,
Shanghai, China
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Ze Liu
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Liping Wang
- Department of Neurology, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military
Medical University, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University,
Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| |
Collapse
|
16
|
Jyothi AK, Thotakura B, Priyadarshini SC, Patil S, Poojari MS, Subramanian M. Paternal stress alters synaptic density and expression of GAP-43, GRIN1, M1 and SYP genes in the hippocampus and cortex of offspring of stress-induced male rats. Morphologie 2023; 107:67-79. [PMID: 35715368 DOI: 10.1016/j.morpho.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Adverse experiences during pregnancy have a negative impact on the neuronal structure and behavior of offspring, but the effects of a father's life events on the outcome of progeny are scarce. The present study is intended to investigate whether paternal stress affects the offspring brain structure, especially those regions concerned with learning and formation of memory, namely the hippocampus (HC) and prefrontal cortex (PFC), and also the expression of certain genes linked to learning and memory in the offspring. Induced stress to male rats by five stressors, one per day followed by allowing them to mate with the normal, unstressed female. Synaptophysin immunoreactivity was assessed in the tissue sections of the HC and PFC as well as expression of genes concerned with learning and memory was evaluated by RT-PCR in the progeny of stress-received males. The progeny of stressed rats had reduced antisynaptophysin immunoreactivity in the HC and PFC. The synaptic density in HC was less in the A-S (Offspring of male rats who received stress during adulthood) and PA-S (offspring of male rats who received stress during both adolescence and adulthood) than in P-S (offspring of male rats who received stress during adolescence) and C-C (offspring of control) groups. Similar results were observed even in the PFC. The results of post hoc tests proved that the HC and PFC of the progeny of stress-exposed rats exhibited considerably less synaptic density than control (P<0.05), and the levels of expression of GAP-43, GRIN1, M1, and SYP genes in HC and PFC were down-regulated. This study concludes that paternal adverse experiences can affect the offspring's synaptic plasticity and also the genes, which can regulate learning and formation of memory.
Collapse
Affiliation(s)
- A K Jyothi
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - B Thotakura
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, 603103 Kanchipuram, Tamil Nadu, India.
| | - S C Priyadarshini
- Department of Anatomy, Tagore Medical College & Hospital, 600127 Chennai, Tamil Nadu, India
| | - S Patil
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - M S Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - M Subramanian
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, 603103 Kanchipuram, Tamil Nadu, India
| |
Collapse
|
17
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular vesicle-Serpine-1 affects neural progenitor cell mitochondrial functions and synaptic density: modulation by amyloid beta and HIV-1. RESEARCH SQUARE 2023:rs.3.rs-2551245. [PMID: 36824983 PMCID: PMC9949237 DOI: 10.21203/rs.3.rs-2551245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology and mitochondrial function alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E András
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nelson Serrano
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Irina Djuraskovic
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michal Toborek
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
18
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Zhu X, Liu H, Deng Z, Yan C, Liu Y, Yin X. Hesperidin Exerts Anxiolytic-like Effects in Rats with Streptozotocin- Induced Diabetes via PKA/CREB Signaling. Curr Mol Pharmacol 2023; 16:91-100. [PMID: 35289260 DOI: 10.2174/1573413718666220314140848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mechanisms underlying synaptic injury and anxiety-like behavioral changes caused by diabetes and the strategies to reverse these changes are not well understood. OBJECTIVES This study examined the neuroprotective effects of hesperidin on anxiety-like behaviors in diabetic rats and investigated the underlying mechanisms from the perspective of the PKA/CREB pathway. METHODS Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) for 10 weeks. The elevated plus maze (EPM), hole board test (HBT), and marbleburying test (MBT) were used to assess anxiety-like behaviors. We further examined the effects of hesperidin on the PKA/CREB pathway in vivo and in vitro. RESULTS The results show that supplementation with hesperidin exerted anxiolytic effects on the diabetic rats, as evidenced by increased percentages of open arm entries and time spent in the open arms in the EPM; decreased numbers of hole visits in the HBT; decreased numbers of marbles buried; and increased expression of PKA, CREB, BDNF, and synaptic proteins in the amygdala and hippocampus of diabetic rats. Hesperidin was found to reverse the imbalance in the PKA/CREB/BDNF pathway. In vitro, we found that the PKA inhibitor H89 reversed the protective effects of hesperidin against cell injury and reversed the HG-induced expression of PKA, pCREB/CREB, and BDNF. CONCLUSION Our results demonstrated that hesperidin could ameliorate the anxiety-like behaviors of diabetic rats and that activating the PKA/CREB/BDNF pathway contributed to the beneficial effects. This study may provide important insights into the mechanisms underlying anxiety-like behaviors in diabetes and identify new therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chuanzhi Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| |
Collapse
|
20
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
21
|
Flores J, Fillion ML, LeBlanc AC. Caspase-1 inhibition improves cognition without significantly altering amyloid and inflammation in aged Alzheimer disease mice. Cell Death Dis 2022; 13:864. [PMID: 36220815 PMCID: PMC9553979 DOI: 10.1038/s41419-022-05290-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Human genetic and animal model studies indicate that brain microglial inflammation is a primary driver of cognitive impairment in Alzheimer Disease (AD). Inflammasome-activated Caspase-1 (Casp1) is associated with both AD microglial inflammation and neuronal degeneration. In mice, Casp1 genetic ablation or VX-765 small molecule inhibition of Casp1 given at onset of cognitive deficits strongly supports the association between microglial inflammation and cognitive impairment. Here, VX-765 significantly improved episodic and spatial memory impairment eight months after the onset of cognitive impairment in aged AD mice with significant amyloid beta peptide (Aβ) accumulation and microglial inflammation. Unexpectedly, while cognitive improvement was associated with dendritic spine density and hippocampal synaptophysin level recovery, VX-765 only slightly decreased Aβ deposition and did not alter biochemically-measured Aβ levels. Furthermore, increased hippocampal Iba1+-microglia, GFAP+-astrocytes, IL-1β, and TNF-α levels were unaltered by VX-765. These results support the hypothesis that neuronal degeneration, not Aβ or microglial inflammation, drives cognitive impairment in AD.
Collapse
Affiliation(s)
- Joseph Flores
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Marie-Lyne Fillion
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Andréa C. LeBlanc
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| |
Collapse
|
22
|
Jing G, Zuo J, Fang Q, Yuan M, Xia Y, Jin Q, Liu Y, Wang Y, Zhang Z, Liu W, Wu X, Song X. Erbin protects against sepsis-associated encephalopathy by attenuating microglia pyroptosis via IRE1α/Xbp1s-Ca 2+ axis. J Neuroinflammation 2022; 19:237. [PMID: 36171629 PMCID: PMC9520943 DOI: 10.1186/s12974-022-02598-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 06/27/2024] Open
Abstract
Background Microglia pyroptosis-mediated neuroinflammation is thought to be the crucial pathogenesis of sepsis-associated encephalopathy (SAE). Erbin has been reported to be associated with various inflammatory diseases. However, the role of Erbin in SAE and the relationship between Erbin and microglia pyroptosis are unknown. In this study, we investigated the promising role and underlying molecular mechanism of Erbin in the regulation of microglia pyroptosis. Methods WT and Erbin knockout mice underwent cecum ligation perforation (CLP) to induce SAE. Primary mouse microglia and BV2 cells were treated with LPS/nigericin in vitro. Behavioral tests were performed to evaluate cognitive function. Nissl staining and transmission electron microscopy were used to assess histological and structural lesions. ELISA and qPCR were carried out to detect neuroinflammation. Western blot and immunofluorescence were used to analyze protein expression. Flow cytometry and confocal microscopy were utilized to observe the Ca2+ changes in the cytoplasm and endoplasmic reticulum (ER). To further explore the underlying mechanism, STF083010 was administered to block the IRE1α/Xbp1s pathway. Results Erbin deletion resulted in more pronounced neuronal damage and cognitive impairment in mice that underwent CLP. Erbin knockout promoted microglial pyroptosis and inflammatory cytokines secretion in vivo and in vitro, which was mediated by activation of the IRE1α/Xbp1s. Treatment with the selective inhibitor STF083010 significantly inhibited IRE1α/Xbp1s pathway activity, decreased intracytoplasmic Ca2+, attenuated microglial pyroptosis, reduced pro-inflammatory cytokine secretion, lessened neuronal damage, and improved cognitive function. Conclusions In SAE, Erbin inhibits IRE1/Xbp1s pathway activity and reduces the ER Ca2+ influx to the cytoplasm, reducing microglial pyroptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02598-5.
Collapse
Affiliation(s)
- Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Fang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiyan Jin
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuping Liu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanlin Wang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongze Zhang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
AdipoRon induces AMPK activation and ameliorates Alzheimer's like pathologies and associated cognitive impairment in APP/PS1 mice. Neurobiol Dis 2022; 174:105876. [PMID: 36162737 DOI: 10.1016/j.nbd.2022.105876] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive devastating neurodegenerative disorder characterized by extracellular amyloid beta (Aβ42) plaque formation, hyperphosphorylation of tau protein leading to intracellular neurofibrillary tangle formation. Recently discovered hallmark features responsible for AD pathogenesis are neuronal insulin resistance, dysregulation in adiponectin and AMPK signaling. The presence of adiponectin and its receptor in the brain with its unique anti-diabetic effects and association with neurodegenerative diseases has raised our interest in exploring orally active small molecule adiponectin receptor agonist, AdipoRon. To date, all the available drugs for the treatment of AD provides symptomatic relief and do not stall the progression of the disease. Indeed, it is becoming increasingly apparent to find appropriate targets. Here, we attempt to shed lights on adiponectin receptor agonist, AdipoRon and its downstream molecular targets in reducing disease pathogenesis and insulin resistance. In brain, AdipoRon induced AMPK activation, increased insulin sensitivity, reduced amyloid beta plaque deposition and improved cognitive impairment. Levels of BACE were also downregulated while LDLR, APOE and neprilysin were upregulated promoting amyloid beta clearance from brain. AdipoRon further reduced the chronic inflammatory marker, GFAP and improved synaptic markers PSD-95 and synaptophysin in APP/PS1 mice. Our in-vitro studies further confirmed the potential role of AdipoRon in improving insulin sensitivity by increasing GLUT 4 translocation, glucose uptake and insulin signaling under hyperinsulinemic condition. Our findings suggest that AdipoRon could be a promising lead in the future treatment strategies in the development of effective AD treatment.
Collapse
|
24
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
25
|
Hosseindoost S, Akbarabadi A, Sadat-Shirazi MS, Mousavi SM, Khalifeh S, Mokri A, Hadjighassem M, Zarrindast MR. Effect of tramadol on apoptosis and synaptogenesis in hippocampal neurons: The possible role of µ-opioid receptor. Drug Dev Res 2022; 83:1425-1433. [PMID: 35808942 DOI: 10.1002/ddr.21973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022]
Abstract
Tramadol is a synthetic opioid with centrally acting analgesic activity that alleviates moderate to severe pain and treats withdrawal symptoms of the other opioids. Like other opioid drugs, tramadol abuse has adverse effects on central nervous system components. Chronic administration of tramadol induces maladaptive plasticity in brain structures responsible for cognitive function, such as the hippocampus. However, the mechanisms by which tramadol induces these alternations are not entirely understood. Here, we examine the effect of tramadol on apoptosis and synaptogenesis of hippocampal neuronal in vitro. First, the primary culture of hippocampal neurons from neonatal rats was established, and the purity of the neuronal cells was verified by immunofluorescent staining. To evaluate the effect of tramadol on neuronal cell viability MTT assay was carried out. The western blot analysis technique was performed for the assessment of apoptosis and synaptogenesis markers. Results show that chronic exposure to tramadol reduces cell viability of neuronal cells and naloxone reverses this effect. Also, the level of caspase-3 significantly increased in tramadol-exposed hippocampal neurons. Moreover, tramadol downregulates protein levels of synaptophysin and stathmin as synaptogenesis markers. Interestingly, the effects of tramadol were abrogated by naloxone treatment. These findings suggest that tramadol can induce neurotoxicity in hippocampal neuronal cells, and this effect was partly mediated through opioid receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed M Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Thomson S, Chan YL, Yi C, Wang B, Machaalani R, Oliver B, Gorrie CA, Chen H. The impact of high fat consumption on neurological functions following a traumatic brain injury in rats. J Neurotrauma 2022; 39:1547-1560. [PMID: 35658673 DOI: 10.1089/neu.2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) and obesity are two common conditions in modern society; both can impair neuronal integrity and neurological function. However, it is unclear whether the co-existence of both conditions will worsen outcomes. Thus, in a rat model, we aimed to investigate whether the co-existence of TBI and a high-fat diet (HFD) has an additive effect, leading to more severe neurological impairments, and whether they are related to changes in brain protein markers of oxidative stress, inflammation and synaptic plasticity. Sprague-Dawley rats (female, ~250g) were divided into HFD (43% fat) and chow diet (CD, 17% fat) groups for 6 weeks. Within each dietary group, half underwent a TBI by a weight-drop device, and the other half underwent sham surgery. Short-term memory and sensory function were measured at 24 hours, 1 week, 3 weeks and 6 weeks post-TBI. Brain tissues were harvested at 24 hours and 6 weeks post-TBI and markers of oxidative stress, apoptosis, inflammation, and synaptic plasticity were measured via immunostaining and western blotting. In rats without TBI, HFD increased the presynaptic protein synaptophysin. In rats with TBI, HFD resulted in worsened sensory and memory function, an increase in activated macrophages, and a decrease in the endogenous antioxidant manganese superoxide dismutase. Our findings suggest that the additive effect of HFD and TBI worsens short term memory and sensation deficits, and may be driven by enhanced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shannon Thomson
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Yik Lung Chan
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Chenju Yi
- The Seventh Affiliated Hospital Sun Yat-sen University, 543160, 628 Zhenyuan Road, Guangming 518107 Shenzhen China, Shenzhen, China, 518107;
| | - Baoming Wang
- University of Technology Sydney, 1994, School of Life Sciences, Faculty of Science , Sydney, New South Wales, Australia;
| | - Rita Machaalani
- University of Technology Sydney, 1994, Faculty of Medicine and Health, Sydney, New South Wales, Australia;
| | - Brian Oliver
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia.,The University of Sydney, RCMB, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia;
| | - Catherine A Gorrie
- University of Technology Sydney, School of Life Sciences, Faculty of Science, PO Box 123, Broadway, Sydney, New South Wales, Australia, 2007;
| | - Hui Chen
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia;
| |
Collapse
|
27
|
Chen C, Bu L, Liu H, Rang Y, Huang H, Xiao X, Ou G, Liu C. Learning and memory impairment induced by 1,4-butanediol is regulated by ERK1/2-CREB-BDNF signaling pathways in PC12 cells. Metab Brain Dis 2022; 37:1451-1463. [PMID: 35348994 DOI: 10.1007/s11011-022-00963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/14/2022] [Indexed: 01/03/2023]
Abstract
1,4-butanediol (1,4-BD) is a known γ-hydroxybutyric acid (GHB) precursor which affects the nervous system after ingestion, leading to uncontrolled behavioral consequences. In the present study, we investigated whether 1,4-BD induces oxidative stress and inflammation in PC12 cells and evaluated the toxic effects of 1,4-BD associates with learning and memory. CCK-8 results revealed a dose-effect relationship between the cell viability of PC12 cells and 1,4-BD when the duration of action was 2 h or 4 h. Assay kits results showed that 1,4-BD decreased the levels of Glutathione (GSH), Glutathione peroxidase (GSH-px), Superoxide dismutase (SOD), Acetylcholine (Ach) and increased the levels of Malondialdehyde (MDA), Nitric oxide (NO) and Acetylcholinesterase (AchE). Elisa kits results indicated that 1,4-BD decreased the levels of synaptophysin I (SYN-1), Postsynaptic density protein-95 (PSD-95), Growth associated protein-43 (GAP-43) and increased the levels of Tumor necrosis factor alpha (TNF-α) and Interleukin- 6 (IL-6). RT-PCR results showed that the mRNA levels of PSD-95, SYN-1 and GAP-43 were significantly decreased. The expression of phosphorylation extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), phosphorylation cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) proteins were significantly decreased in PC12 cells by protein blotting. Overall, these results suggest that 1,4-BD may affect synaptic plasticity via the ERK1/2-CREB-BDNF pathway, leading to Ach release reduction and ultimately to learning and memory impairment. Furthermore, oxidative stress and inflammation induced by 1,4-BD may also result in learning and memory deficits. These findings will enrich the toxicity data of 1.4-BD associated with learning and memory impairment.
Collapse
Affiliation(s)
- Congying Chen
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Lingling Bu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China.
| |
Collapse
|
28
|
Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease. Prog Neurobiol 2022; 214:102280. [PMID: 35525373 DOI: 10.1016/j.pneurobio.2022.102280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the old adult and characterized by progressive cognitive decline and neuronal damage. The mammalian Ste20-like kinase1/2 (MST1/2) is a core component in Hippo signaling, which regulates neural stem cell proliferation, neuronal death and neuroinflammation. However, whether MST1/2 is involved in the occurrence and development of AD remains unknown. In this study we reported that the activity of MST1 was increased with Aβ accumulation in the hippocampus of 5xFAD mice. Overexpression of MST1 induced AD-like phenotype in normal mice and accelerated cognitive decline, synaptic plasticity damage and neuronal apoptosis in 2-month-old 5xFAD mice, but did not significantly affect Aβ levels. Mechanistically, MST1 associated with p53 and promoted neuronal apoptosis by phosphorylation and activation of p53, while p53 knockout largely reversed MST1-induced AD-like cognitive deficits. Importantly, either genetic knockdown or chemical inactivation of MST1 could significantly improve cognitive deficits and neuronal apoptosis in 7-month-old 5xFAD mice. Our results support the idea that MST1-mediated neuronal apoptosis is an essential mechanism of cognitive deficits and neuronal loss for AD, and manipulating the MST1 activity as a potential strategy will shed light on clinical treatment for AD or other diseases caused by neuronal injury.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Yingchun Shang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Enlin Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Xinxin Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Qiyue Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Chenxi Qian
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China.
| | - Shian Wu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
29
|
TLR4 mutation protects neurovascular function and cognitive decline in high-fat diet-fed mice. J Neuroinflammation 2022; 19:104. [PMID: 35488354 PMCID: PMC9052472 DOI: 10.1186/s12974-022-02465-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Metabolic syndrome (MS) is defined as a low-grade proinflammatory state in which abnormal metabolic and cardiovascular factors increase the risk of developing cardiovascular disease and neuroinflammation. Events, such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in MS may contribute to the direct or indirect activation of Toll-like receptors (TLRs), specifically TLR4, which is thought to be a major component of this syndrome. Activation of the innate immune response via TLR4 may contribute to this state of chronic inflammation and may be related to the neuroinflammation and neurodegeneration observed in MS. In this study, we investigated the role of TLR4 in the brain microcirculation and in the cognitive performance of high-fat diet (HFD)-induced MS mice. Methods Wild-type (C3H/He) and TLR4 mutant (C3H/HeJ) mice were maintained under a normal diet (ND) or a HFD for 24 weeks. Intravital video-microscopy was used to investigate the functional capillary density, endothelial function, and endothelial–leukocyte interactions in the brain microcirculation. Plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), adipokines and metabolic hormones were measured with a multiplex immunoassay. Brain postsynaptic density protein-95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the vessels, microglial activation and structural capillary density were evaluated by immunohistochemistry. Results The HFD-induced MS model leads to metabolic, hemodynamic, and microcirculatory alterations, as evidenced by capillary rarefaction, increased rolling and leukocyte adhesion in postcapillary venules, endothelial dysfunction, and less coverage of astrocytes in the vessels, which are directly related to cognitive decline and neuroinflammation. The same model of MS reproduced in mice deficient for TLR4 because of a genetic mutation does not generate such changes. Furthermore, the comparison of wild-type mice fed a HFD and a normolipid diet revealed differences in inflammation in the cerebral microcirculation, possibly related to lower TLR4 activation. Conclusions Our results demonstrate that TLR4 is involved in the microvascular dysfunction and neuroinflammation associated with HFD-induced MS and possibly has a causal role in the development of cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02465-3.
Collapse
|
30
|
Zhou J, Li Q, Wu W, Zhang X, Zuo Z, Lu Y, Zhao H, Wang Z. Discovery of Novel Drug Candidates for Alzheimer’s Disease by Molecular Network Modeling. Front Aging Neurosci 2022; 14:850217. [PMID: 35493947 PMCID: PMC9051440 DOI: 10.3389/fnagi.2022.850217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
To identify the molecular mechanisms and novel therapeutic agents of late-onset Alzheimer’s disease (AD), we performed integrative network analysis using multiple transcriptomic profiles of human brains. With the hypothesis that AD pathology involves the whole cerebrum, we first identified co-expressed modules across multiple cerebral regions of the aging human brain. Among them, two modules (M3 and M8) consisting of 1,429 protein-coding genes were significantly enriched with AD-correlated genes. Differential expression analysis of microarray, bulk RNA-sequencing (RNA-seq) data revealed the dysregulation of M3 and M8 across different cerebral regions in both normal aging and AD. The cell-type enrichment analysis and differential expression analysis at the single-cell resolution indicated the extensive neuronal vulnerability in AD pathogenesis. Transcriptomic-based drug screening from Connectivity Map proposed Gly-His-Lys acetate salt (GHK) as a potential drug candidate that could probably restore the dysregulated genes of the M3 and M8 network. Pretreatment with GHK showed a neuroprotective effect against amyloid-beta-induced injury in differentiated human neuron-like SH-SY5Y cells. Taken together, our findings uncover a dysregulated network disrupted across multiple cerebral regions in AD and propose pretreatment with GHK as a novel neuroprotective strategy against AD.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyong Li
- Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wensi Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Yanan Lu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiying Zhao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
- *Correspondence: Huiying Zhao,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Zhi Wang,
| |
Collapse
|
31
|
Villegas C, Perez R, Petiz LL, Glaser T, Ulrich H, Paz C. Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life 2022; 74:763-779. [PMID: 35384262 DOI: 10.1002/iub.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual deterioration of cognitive function, memory, and inability to perform daily, social, or occupational activities. Its etiology is associated with the accumulation of β-amyloid peptides, phosphorylated tau protein, and neuroinflammatory and oxidative processes in the brain. Currently, there is no successful pharmacological treatment for AD. The few approved drugs are mainly aimed at treating the symptoms; however, due to the increasing discovery of etiopathological factors, there are great efforts to find new multifunctional molecules to slow down the course of this neurodegenerative disease. The commercial Ginkgo biloba formulation EGb 761® and Huperzine A, an alkaloid present in the plant Huperzia serrata, have shown in clinical trials to possess cholinergic and neuroprotective activities, including improvement in cognition, activities of daily living, and neuropsychiatric symptoms in AD patients. The purpose of this review is to expose the positive results of intervention with EGb 761® and Huperzine in patients with mild to moderate AD in the last 10 years, highlighting the pharmacological functions that justify their use in AD therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
32
|
Nikkar R, Esmaeili-Bandboni A, Badrikoohi M, Babaei P. Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer's disease. Metab Brain Dis 2022; 37:1119-1131. [PMID: 35244824 DOI: 10.1007/s11011-022-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
Communication between astrocytes and neurons has a profound effect on the pathophysiology of Alzheimer's disease (AD). Astrocytes regulate homeostasis and increase synaptic plasticity in physiological situations, however, they become activated during the progression of AD. Whether or not these reactions are supportive or detrimental for the central nervous system have not been understood yet. Considering epigenetic regulation of neuroinflammatory genes by chromatin readers, particularly bromodomain and extraterminal domain (BET) family, here we examined the effect of chronic co-inhibition of astrocytes metabolism (with fluorocitrate) and also BRD4 (with JQ1) on cognition deficit at early stages of AD. Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intrahippocampal injection of Aβ1-42 (4 μg/8 μl/rat). Then animals were divided into five groups of Saline+DMSO, Aβ + saline+DMSO, Aβ + JQ1, Aβ + FC (fluorocitrate), and Aβ + JQ1 + FC and received the related treatments. Two weeks later, spatial memory was recorded by Morris Water Maze (MWM), and the levels of phosphorylated cyclic-AMP response element binding protein (CREB), postsynaptic density 95 (PSD95), synaptophysin (SYP), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus by western blotting and RT-qPCR. Administration of JQ1 significantly improved both acquisition and retrieval of spatial memory, which were evident by decreased escape latency and increased total time spent (TTS) in target quadrant, and significant rise in p-CREB, PSD95, and synaptophysin compared with Aβ + saline+DMSO group. In contrast, both groups receiving FC demonstrated memory decline, and reduction in p-CREB, PSD95 and synaptophysin in parallel with increase in TNF-α. Our data indicate that chronic inhibition of BRD4 significantly restores memory impaired by amyloid β partly via CREB signaling and upregulating synaptic proteins of PSD95 and synaptophysin. However, inhibition of astrocytes nullifies the memory-boosting effects of JQ1 and reduces CREB/PSD95/synaptophysin levels in hippocampus.
Collapse
Affiliation(s)
- Rastin Nikkar
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
33
|
De Luca SN, Brassington K, Chan SMH, Dobric A, Mou K, Seow HJ, Vlahos R. Ebselen prevents cigarette smoke-induced cognitive dysfunction in mice by preserving hippocampal synaptophysin expression. J Neuroinflammation 2022; 19:72. [PMID: 35351173 PMCID: PMC8966248 DOI: 10.1186/s12974-022-02432-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The “spill-over” of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. Methods Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. Results CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. Conclusion We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.
Collapse
|
34
|
Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol 2022; 5:236. [PMID: 35301411 PMCID: PMC8931075 DOI: 10.1038/s42003-022-03177-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.
Collapse
|
35
|
Yeh KC, Hung CF, Lee HL, Hsieh TY, Wang SJ. Soybean Meal Extract Preserves Memory Ability by Increasing Presynaptic Function and Modulating Gut Microbiota in Rats. Mol Neurobiol 2022; 59:1649-1664. [PMID: 35001354 DOI: 10.1007/s12035-021-02669-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Age-related degenerative brain diseases frequently manifest as memory deficits. Dietary interventions or nutraceuticals may provide efficacious treatments through prevention and cure. Soybean meal, a byproduct of soy oil refining, has health benefits, but its effect on memory function is unknown. Therefore, we evaluated the effect of the oral administration of soybean meal extract (SME) for 2 weeks on memory function using the Morris water maze (MWM) test in healthy rats and investigated the possible underlying mechanisms. First, analysis of the composition revealed that SME is rich in isoflavones; SME did not exhibit hepatotoxicity or renal toxicity at the different doses tested. The MWM results revealed that the escape latency and movement distance of rats were significantly shorter in the SME group than in the control group, indicating that SME can help in memory preservation. In addition, SME increased the levels of presynaptic proteins such as synaptophysin, synaptobrevin, synaptotagmin, syntaxin, synapsin I, and 25-kDa synaptosome-associated protein as well as protein kinases and their phosphorylated expression, including extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampal nerve terminals (synaptosomes). Transmission electron microscopy also indicated that SME increased the number of synaptic vesicles in hippocampal synaptosomes. Furthermore, SME rats exhibited altered microbiota composition compared with control rats. Therefore, our data suggest that SME can increase presynaptic function and modulate gut microbiota, thus aiding in memory preservation in rats.
Collapse
Affiliation(s)
- Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
- Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ting-Yang Hsieh
- P.H.D. Program in Neutrition & Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
36
|
Marco-Manclus P, Ávila-González D, Paredes RG, Portillo W. Sexual experience in female mice involves synaptophysin-related plasticity in the accessory olfactory bulb. Physiol Behav 2022; 244:113649. [PMID: 34798129 DOI: 10.1016/j.physbeh.2021.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Sexually naïve female mice do not display high levels of sexual receptivity in their first sexual experience; they require around 4-5 sexual encounters to display the full receptive response, assessed by the lordosis reflex. In this study, we evaluated if repeated sexual stimulation with the same male is associated with changes in synaptic remodeling evaluated by synaptophysin (SYP) in brain structures involved in the control of sexual behavior such as the main and accessory olfactory bulbs (MOB and AOB, respectively), medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and amygdala (AMG). Female mice were ovariectomized and hormonally primed to induce sexual receptivity. They were randomly distributed into three groups: a) sexually naïve (SN), with no prior sexual stimulation; b) sexually inexperienced (SI), with one prior mating session; and c) sexually experienced (SE), with six mating sessions. The SI group showed a significant decrease in SYP in the glomerular, mitral and granular layers of the AOB in comparison to SN and SE females. SYP expression increased in the SE group in comparison to SN and SI females in the glomerular and mitral cell layers of the AOB. No significant differences between groups were found in the other brain regions (MOB, MPOA, VMH or AMG). These changes in SYP expression in the AOB suggest that plastic modifications in this brain region can be associated with receptivity increase in sexual experience in female mice.
Collapse
Affiliation(s)
- P Marco-Manclus
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico
| | - D Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico; Escuela Nacional de Estudios Superiores, UNAM. Juriquilla Querétaro, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico.
| |
Collapse
|
37
|
Sóki N, Richter Z, Karádi K, Lőrincz K, Horváth R, Gyimesi C, Szekeres-Paraczky C, Horváth Z, Janszky J, Dóczi T, Seress L, Ábrahám H. Investigation of synapses in the cortical white matter in human temporal lobe epilepsy. Brain Res 2022; 1779:147787. [PMID: 35041843 DOI: 10.1016/j.brainres.2022.147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common focal pharmacotherapy-resistant epilepsy in adults. Previous studies have shown significantly higher numbers of neurons in the neocortical white matter in TLE patients than in controls. The aim of this work was to investigate whether white matter neurons are part of the neuronal circuitry. Therefore, we studied the distribution and density of synapses in surgically resected neocortical tissue of pharmacotherapy-resistant TLE patients. Neocortical white matter of temporal lobe from non-epileptic patients were used as controls. Synapses and neurons were visualized with immunohistochemistry using antibodies against synaptophysin and NeuN, respectively. The presence of synaptophysin in presynaptic terminals was verified by electron microscopy. Quantification of immunostaining was performed and the data of the patients' cognitive tests as well as clinical records were compared to the density of neurons and synapses. Synaptophysin density in the white matter of TLE patients was significantly higher than in controls. In TLE, a significant correlation was found between synaptophysin immunodensity and density of white matter neurons. Neuronal as well as synaptophysin density significantly correlated with scores of verbal memory of TLE patients. Neurosurgical outcome of TLE patients did not significantly correlate with histological data, although, higher neuronal and synaptophysin densities were observed in patients with favorable post-surgical outcome. Our results suggest that white matter neurons in TLE patients receive substantial synaptic input and indicate that white matter neurons may be integrated in epileptic neuronal networks responsible for the development or maintenance of seizures.
Collapse
Affiliation(s)
- Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Zsófia Richter
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, University of Pécs Medical School Szigeti u. 12. Pécs, 7624, Hungary
| | - Katalin Lőrincz
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Réka Horváth
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Cecília Szekeres-Paraczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH Szigony u. 43. Budapest, 1083, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary.
| |
Collapse
|
38
|
Liu J, Deng Z, Yu Z, Zhou W, Yuan Q. The circRNA circ-Nbea participates in regulating diabetic encephalopathy. Brain Res 2022; 1774:147702. [PMID: 34695392 DOI: 10.1016/j.brainres.2021.147702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation. Compared with db/m mice, spatial learning/memory, dendritic spines, and synaptic plasticity were all impaired in the hippocampus of the db/db mice. In addition, the dendritic spine density of neurons was significantly decreased after treatment with advanced glycation end-products (AGEs). We used high-throughput RNA sequencing (RNA-Seq) to detect circRNA expression in DE, and the results revealed that 183 circRNAs were significantly altered in primary hippocampal neurons treated with AGEs. Three circRNAs were chosen for detection using quantitative real-time polymerase chain reaction (qRT-PCR), including circ-Smox (chr2: 131511984-131516443), circ-Nbea (mmu-chr3: 56079859-56091120), and circ-Setbp1 (chr18: 79086551-79087180), and circ-Nbea expression was significantly decreased. According to the bioinformatics prediction and detection using qRT-PCR and double luciferase assays, circ-Nbea sponges miR-128-3p. Based on these results, we speculated that a newly identified circRNA, circ-Nbea, may play an important role in the development of DE, and the mechanism is mediated by sponging miR-128-3p. This study provides new insight into the treatment of DE.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China.
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Weipin Zhou
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China.
| |
Collapse
|
39
|
Hippocampal injury and learning deficits following non-convulsive status epilepticus in periadolescent rats. Epilepsy Behav 2021; 125:108415. [PMID: 34788732 DOI: 10.1016/j.yebeh.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The effects of non-convulsive status epilepticus (NCSE) on the developing brain remain largely elusive. Here we investigated potential hippocampal injury and learning deficits following one or two episodes of NCSE in periadolescent rats. Non-convulsive status epilepticus was induced with subconvulsive doses of intrahippocampal kainic acid (KA) under continuous EEG monitoring in postnatal day 43 (P43) rats. The RKA group (repeated KA) received intrahippocampal KA at P43 and P44, the SKA group (single KA injection) received KA at P43 and an intrahippocampal saline injection at P44. Controls were sham-treated with saline. The modified two-way active avoidance (MAAV) test was conducted between P45 and P52 to assess learning of context-cued and tone-signaled electrical foot-shock avoidance. Histological analyses were performed at P52 to assess hippocampal neuronal densities, as well as potential reactive astrocytosis and synaptic dysfunction with GFAP (glial fibrillary acidic protein) and synaptophysin (Syp) staining, respectively. Kainic acid injections resulted in electroclinical seizures characterized by behavioral arrest, oromotor automatisms and salivation, without tonic-clonic activity. Compared to controls, both the SKA and RKA groups had lower rates of tone-signaled shock avoidance (p < 0.05). In contextual testing, SKA rats were comparable to controls (p > 0.05), but the RKA group had learning deficits (p < 0.05). Hippocampal neuronal densities were comparable in all groups. Compared to controls, both the SKA and RKA groups had higher hippocampal GFAP levels (p < 0.05). The RKA group also had lower hippocampal Syp levels compared to the SKA and control groups (p < 0.05), which were comparable (p > 0.05). We show that hippocampal NCSE in periadolescent rats results in a seizure burden-dependent hippocampal injury accompanied by cognitive deficits. Our data suggest that the diagnosis and treatment of NCSE should be prompt.
Collapse
|
40
|
LEE TM, LEE CC, HARN HJ, Chiou TW, CHUANG MH, CHEN CH, CHUANG CH, LIN PC, LIN SZ. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction. J Mol Med (Berl) 2021; 99:1815-1827. [PMID: 34633469 PMCID: PMC8599314 DOI: 10.1007/s00109-021-02135-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is a serious side effect of post-myocardial infarction (MI) course. We have recently demonstrated that human adipose-derived stem cells (hADSCs) ameliorated myocardial injury after MI by attenuating reactive oxygen species (ROS) levels. Here, we studied whether the beneficial effects of intramyocardial hADSC transplantation can extend to the brain and how they may attenuate cognitive dysfunction via modulating ROS after MI. After coronary ligation, male Wistar rats were randomized via an intramyocardial route to receive either vehicle, hADSC transplantation (1 × 106 cells), or the combination of hADSCs and 3-Morpholinosydnonimine (SIN-1, a peroxynitrite donor). Whether hADSCs migrated into the hippocampus was assessed by using human-specific primers in qPCR reactions. Passive avoidance test was used to assess cognitive performance. Postinfarction was associated with increased oxidative stress in the myocardium, circulation, and hippocampus. This was coupled with decreased numbers of dendritic spines as well as a significant downregulation of synaptic plasticity consisting of synaptophysin and PSD95. Step-through latency during passive avoidance test was impaired in vehicle-treated rats after MI. Intramyocardial hADSC injection exerted therapeutic benefits in improving cardiac function and cognitive impairment. None of hADSCs was detected in rat's hippocampus at the 3rd day after intramyocardial injection. The beneficial effects of hADSCs on MI-induced histological and cognitive changes were abolished after adding SIN-1. MI-induced ROS attacked the hippocampus to induce neurodegeneration, resulting in cognitive deficit. The remotely intramyocardial administration of hADSCs has the capacity of improved synaptic neuroplasticity in the hippocampus mediated by ROS, not the cell engraftment, after MI. KEY MESSAGES: Human adipose-derived stem cells (hADSCs) ameliorated injury after myocardial infarction by attenuating reactive oxygen species (ROS) levels. Intramyocardial administration of hADSCs remotely exerted therapeutic benefits in improving cognitive impairment after myocardial infarction. The improved synaptic neuroplasticity in the hippocampus was mediated by hADSC-inhibiting ROS, not by the stem cell engraftment.
Collapse
Affiliation(s)
| | | | - Horng-Jyh HARN
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi CHUANG
- Department of Technology Management, Chung Hua University, Hsinchu City, Taiwan
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng LIN
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong LIN
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, No.707, Sec. 3, Chung Yang Rd. 970, Hualien, Taiwan
| |
Collapse
|
41
|
Sanchez-Varo R, Sanchez-Mejias E, Fernandez-Valenzuela JJ, De Castro V, Mejias-Ortega M, Gomez-Arboledas A, Jimenez S, Sanchez-Mico MV, Trujillo-Estrada L, Moreno-Gonzalez I, Baglietto-Vargas D, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Front Neurosci 2021; 15:752594. [PMID: 34803589 PMCID: PMC8600261 DOI: 10.3389/fnins.2021.752594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Vanessa De Castro
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastian Jimenez
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Maria Virtudes Sanchez-Mico
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX, United States
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
42
|
Hosseini L, Farazi N, Erfani M, Mahmoudi J, Akbari M, Hosseini SH, Sadigh-Eteghad S. Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl 3 induced brain aging in BALB/c mice. Lasers Med Sci 2021; 37:1787-1798. [PMID: 34596786 DOI: 10.1007/s10103-021-03433-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Brain photobiomodulation (PBM) therapy (PBMT) modulates various biological and cognitive processes in senescence rodent models. This study was designed to investigate the effects of transcranial near-infrared (NIR) laser treatment on D-galactose (D-gal)/aluminum chloride (AlCl3) induced inflammation, synaptic dysfunction, and cognitive impairment in mice. The aged mouse model was induced by subcutaneously injecting D-gal (60 mg/kg/day) followed by intragastrically administering AlCl3 (200 mg/kg/day) for 2 months. NIR PBM (810 nm laser, 32, 16, and 8 J/cm2) was administered transcranially every other day (3 days/week) for 2 months. Social, contextual, and spatial memories were assessed by social interaction test, passive avoidance test, and Lashley III maze, respectively. Then, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and synaptic markers including growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the hippocampus using western blot method. Behavioral results revealed that NIR PBM at fluencies of 16 and 8 J/cm2 could reduce D-gal/AlCl3 impaired social and spatial memories. Treatment with NIR attenuated neuroinflammation through down-regulation of TNF-α and IL-6. Additionally, NIR significantly inhibited the down-regulation of GAP-43 and SYN. The results indicate that transcranial PBM at the fluencies 16 and 8 J/cm2 effectively prevents cognitive impairment in mice model of aging by inhibiting the production of the inflammatory cytokines and enhancing synaptic markers.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Metabolic Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
43
|
de Leeuw FA, Honer WG, Schneider JA, Morris MC. Brain γ-Tocopherol Levels Are Associated with Presynaptic Protein Levels in Elderly Human Midfrontal Cortex. J Alzheimers Dis 2021; 77:619-627. [PMID: 32741813 PMCID: PMC7592653 DOI: 10.3233/jad-200166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Higher vitamin E intake has been widely related to lower risks of cognitive decline and dementia. Animal models suggest that this relationship might be (partially) explained by the protection of vitamin E against presynaptic protein oxidation. OBJECTIVE In this cross-sectional study, we aimed to examine the associations between brain tocopherols and presynaptic protein levels in elderly humans. METHODS We examined associations of α- and γ-tocopherol brain levels with presynaptic protein levels in 113 deceased participants (age 88.5±6.0 years, 45 (40%) female) from the prospective Memory and Aging project. Three distinct presynaptic proteins, a SNARE protein composite, a synaptotagmin synaptophysin composite and the protein-protein interaction between synaptosomal-associated protein 25 (SNAP-25), and syntaxin were measured in two cortical brain regions. Linear regression models assessed associations of brain tocopherols with presynaptic protein levels. RESULTS Higher brain γ-tocopherol levels were associated with higher levels of the SNARE protein composite, complexin-I, complexin-II, the synaptotagmin synaptophysin composite, and septin-5 in the midfrontal cortex (B(SE) = 0.272 to 0.412 (0.084 to 0.091), p < 0.001 to 0.003). When additionally adjusted for global Alzheimer's disease pathology, cerebral infarcts, and Lewy body disease pathology, these associations remained largely similar. No associations were found between α-tocopherol and presynaptic protein levels. CONCLUSION In this cross-sectional study, we found higher brain γ-tocopherol levels were associated with presynaptic protein levels in the midfrontal cortex. These results are consistent with a proposed role of vitamin E to maintain presynaptic protein levels.
Collapse
Affiliation(s)
- Francisca A de Leeuw
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - William G Honer
- Department of Psychiatry, University of British Colombia, Vancouver, British Colombia, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Neurological Sciences and Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Martha Clare Morris
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
44
|
Lee C, Wu D, Chen S, Lin Y, Lee T. Exercise intensities modulate cognitive function in spontaneously hypertensive rats through oxidative mediated synaptic plasticity in hippocampus. J Cell Mol Med 2021; 25:8546-8557. [PMID: 34328702 PMCID: PMC8419173 DOI: 10.1111/jcmm.16816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/13/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative damage in the brain may lead to cognitive impairments. There was considerable debate regarding the beneficial effects of physical exercise on cognitive functions because exercise protocols have varied widely across studies. We investigated whether different exercise intensities alter performance on cognitive tasks. The experiment was performed on spontaneously hypertensive rats (6 months at the established phase of hypertension) distributed into 3 groups: sedentary, low-intensity exercise and high-intensity exercise. Systolic blood pressure measurements confirmed hypertension in spontaneously hypertensive rats. In comparison to normotensive Wistar-Kyoto rats, sedentary spontaneously hypertensive rats had similar escape latencies and a similar preference for the correct quadrant in the probe trial. Compared to the sedentary group, the low-intensity exercise group had significantly better improvements in spatial memory assessed by Morris water maze. Low-intensity exercise was associated with attenuated reactive oxygen species, as measured by dihydroethidine fluorescence and nitrotyrosine staining in the dentate gyrus of the hippocampus. This was coupled with increased numbers of neurons and dendritic spines as well as a significant upregulation of synaptic density. In contrast, the beneficial effects of low-intensity exercise are abolished in high-intensity exercise as shown by increased free radical levels and an impairment in spatial memory. We concluded that exercise is an effective strategy to improve spatial memory in spontaneously hypertensive rats even at an established phase of hypertension. Low-intensity exercise exhibited better improvement on cognitive deficits than high-intensity exercise by attenuating free radical levels and improving downstream synaptic plasticity.
Collapse
Affiliation(s)
| | - De‐Yu Wu
- Catholic Sheng Kung Girls’ High SchoolTainanTaiwan
| | - Syue‐yi Chen
- Cardiovascular InstituteAn Nan HospitalChina Medical UniversityTainanTaiwan
| | - Yi‐Pin Lin
- Department of NeurologyAn Nan HospitalChina Medical UniversityTainanTaiwan
| | - Tsung‐Ming Lee
- Cardiovascular InstituteAn Nan HospitalChina Medical UniversityTainanTaiwan
- Department of MedicineChina Medical UniversityTaichungTaiwan
| |
Collapse
|
45
|
Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry 2021; 26:4702-4718. [PMID: 32488127 DOI: 10.1038/s41380-020-0793-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.
Collapse
|
46
|
Das M, Jaya Balan D, Kasi PD. Mitigation of oxidative stress with dihydroactinidiolide, a natural product against scopolamine-induced amnesia in Swiss albino mice. Neurotoxicology 2021; 86:149-161. [PMID: 34371027 DOI: 10.1016/j.neuro.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The present work describes the neuroprotective efficacy of DHAc under escalated oxidative stress condition in scopolamine-induced amnesic mice. During the toxicity test of DHAc in mice, the acute dose (LD50) is found to be 3.468 mg/kg bw and the sub-acute dose is 0.68 mg/kg bw. Improved cognitive and learning abilities are observed in Morris water maze and Y-maze test in 10 days DHAc (0.68 mg/kg bw) treated scopolamine-induced male Swiss albino mice. In the molecular level these changes are monitored as reduced oxidative load followed by significantly lower lipid peroxidation and protein carbonylation, increased superoxide dismutase, catalase, acetylcholinesterase, caspase-3 activity and glutathione content followed by higher expression of anti apoptotic protein bcl-2 in mice brain as compared to scopolamine (1 mg/kg bw) treated mice. Meanwhile real time PCR shows higher expression of brain derived neurotrophic factor (BDNF) and synaptophysin in DHAc pretreated scopolamine treated mice brain. HPLC analysis suggested its possible blood brain barrier crossing ability. Overall DHAc reversed behavioral anomalies in the scopolamine treated mice via oxidative stress quenching, enhancing antioxidative enzyme activity, enhancing BDNF and synaptophysin mRNA levels and reducing expression of apoptotic protein Bax.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India.
| |
Collapse
|
47
|
Zheng H, Xu P, Jiang Q, Xu Q, Zheng Y, Yan J, Ji H, Ning J, Zhang X, Li C, Zhang L, Li Y, Li X, Song W, Gao H. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. MICROBIOME 2021; 9:145. [PMID: 34172092 PMCID: PMC8235853 DOI: 10.1186/s40168-021-01088-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Modification of the gut microbiota has been reported to reduce the incidence of type 1 diabetes mellitus (T1D). We hypothesized that the gut microbiota shifts might also have an effect on cognitive functions in T1D. Herein we used a non-absorbable antibiotic vancomycin to modify the gut microbiota in streptozotocin (STZ)-induced T1D mice and studied the impact of microbial changes on cognitive performances in T1D mice and its potential gut-brain neural mechanism. RESULTS We found that vancomycin exposure disrupted the gut microbiome, altered host metabolic phenotypes, and facilitated cognitive impairment in T1D mice. Long-term acetate deficiency due to depletion of acetate-producing bacteria resulted in the reduction of synaptophysin (SYP) in the hippocampus as well as learning and memory impairments. Exogenous acetate supplement or fecal microbiota transplant recovered hippocampal SYP level in vancomycin-treated T1D mice, and this effect was attenuated by vagal inhibition or vagotomy. CONCLUSIONS Our results demonstrate the protective role of microbiota metabolite acetate in cognitive functions and suggest long-term acetate deficiency as a risk factor of cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pengtao Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hui Ji
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jie Ning
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xi Zhang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430070 China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
| | - Xiaokui Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Weihong Song
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
48
|
Salaka RJ, Nair KP, Annamalai K, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment ameliorates chronic temporal lobe epilepsy-induced behavioral hyperexcitability and restores synaptic plasticity in CA3-CA1 synapses in male Wistar rats. J Neurosci Res 2021; 99:1646-1665. [PMID: 33713475 DOI: 10.1002/jnr.24823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacoresistance and comorbidities pose significant challenges to its treatment necessitating the development of non-pharmacological approaches. In an earlier study, exposure to enriched environment (EE) reduced seizure frequency and duration and ameliorated chronic epilepsy-induced depression in rats. However, the cellular basis of beneficial effects of EE remains unknown. Accordingly, in the current study, we evaluated the effects of EE in chronic epilepsy-induced changes in behavioral hyperexcitability, synaptic transmission, synaptophysin (SYN), and calbindin (CB) expression, hippocampal subfield volumes and cell density in male Wistar rats. Epilepsy was induced by lithium-pilocarpine-induced status epilepticus. Chronic epilepsy resulted in behavioral hyperexcitability, decreased basal synaptic transmission, increased paired-pulse facilitation ratio, decreased hippocampal subfields volumes. Moreover, epileptic rats showed decreased synaptophysin and CB expression in the hippocampus. Six weeks post-SE, epileptic rats were exposed to EE for 2 weeks, 6 hr/day. EE significantly reduced the behavioral hyperexcitability and restored basal synaptic transmission correlating with increased expression of SYN and CB. Our results reaffirm the beneficial effects of EE on behavior in chronic epilepsy and establishes some of the putative cellular mechanisms. Since drug resistance and comorbidities are a major concern in TLE, we propose EE as a potent non-pharmacological treatment modality to mitigate these changes in chronic epilepsy.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kiruthiga Annamalai
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
49
|
Granja MG, Alves LP, Leardini-Tristão M, Saul ME, Bortoni LC, de Moraes FM, Ferreira EC, de Moraes BPT, da Silva VZ, Dos Santos AFR, Silva AR, Gonçalves-de-Albuquerque CF, Bambini-Junior V, Weyrich AS, Rondina MT, Zimmerman GA, de Castro-Faria-Neto HC. Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life. J Neuroinflammation 2021; 18:60. [PMID: 33632243 PMCID: PMC7905683 DOI: 10.1186/s12974-021-02106-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1β, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and β-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Rio de Janeiro, Brazil
| | - Letícia Pires Alves
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Rio de Janeiro, Brazil
| | - Marina Leardini-Tristão
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Michelle Edelman Saul
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá - UNESA, Rio de Janeiro, Brazil
| | - Letícia Coelho Bortoni
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá - UNESA, Rio de Janeiro, Brazil
| | - Flávia Maciel de Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Erica Camila Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Neurociências, Universidade Federal Fluminense - UFF, Niterói, Rio de Janeiro, Brazil
| | - Victória Zerboni da Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | | | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, Lancashire, Preston, England, UK
| | - Andrew S Weyrich
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, Lancashire, Preston, England, UK
| | - Matthew T Rondina
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine and GRECC, George E. Wahlen VAMC, Salt Lake City, UT, USA
| | - Guy A Zimmerman
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
50
|
Maiti P, Bowers Z, Bourcier-Schultz A, Morse J, Dunbar GL. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer's amyloidosis. Alzheimers Res Ther 2021; 13:37. [PMID: 33557949 PMCID: PMC7871397 DOI: 10.1186/s13195-021-00769-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer's disease (AD). Preservation of existing synapses and prevention of synaptic loss are promising strategies to preserve cognitive function in AD patients. As a potent natural anti-oxidant, anti-amyloid, and anti-inflammatory polyphenol, curcumin (Cur) shows great promise as a therapy for AD. However, hydrophobicity of natural Cur limits its solubility, stability, bioavailability, and clinical utility for AD therapy. We have demonstrated that solid lipid curcumin particles (SLCP) have greater therapeutic potential than natural Cur in vitro and in vivo models of AD. In the present study, we have investigated whether SLCP has any preservative role on affected dendritic spines and synaptic markers in 5xFAD mice. METHODS Six- and 12-month-old 5xFAD and age-matched wild-type mice received oral administration of SLCP (100 mg/kg body weight) or equivalent amounts of vehicle for 2 months. Neuronal morphology, neurodegeneration, and amyloid plaque load were investigated from prefrontal cortex (PFC), entorhinal cortex (EC), CA1, CA3, and the subicular complex (SC). In addition, the dendritic spine density from apical and basal branches was studied by Golgi-Cox stain. Further, synaptic markers, such as synaptophysin, PSD95, Shank, Homer, Drebrin, Kalirin-7, CREB, and phosphorylated CREB (pCREB) were studied using Western blots. Finally, cognitive and motor functions were assessed using open-field, novel object recognition (NOR) and Morris water maze (MWM) tasks after treatment with SLCP. RESULTS We observed an increased number of pyknotic and degenerated cells in all these brain areas in 5xFAD mice and SLCP treatment partially protected against those losses. Decrease in dendritic arborization and dendritic spine density from primary, secondary, and tertiary apical and basal branches were observed in PFC, EC, CA1, and CA3 in both 6- and 12-month-old 5xFAD mice, and SLCP treatments partially preserved the normal morphology of these dendritic spines. In addition, pre- and postsynaptic protein markers were also restored by SLCP treatment. Furthermore, SLCP treatment improved NOR and cognitive function in 5xFAD mice. CONCLUSIONS Overall, these findings indicate that use of SLCP exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Zackary Bowers
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Ali Bourcier-Schultz
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Jarod Morse
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
| |
Collapse
|