1
|
McElroy BD, Li C, McCloskey NS, Alberici AR, Kirby LG. Exploring the effects of adolescent social isolation stress on the serotonin system and ethanol-motivated behaviors. Psychopharmacology (Berl) 2025; 242:763-781. [PMID: 39903245 PMCID: PMC11890253 DOI: 10.1007/s00213-025-06749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
RATIONALE Alcohol is one of the most frequently used drugs of abuse and has a major impact on human health worldwide. People assigned female at birth and those with adverse childhood experiences are stress-vulnerable and more likely to report drinking as a means of "self-medication." Prior studies in our laboratory showed that adolescent social isolation stress (SIS) increases vulnerability to ethanol (EtOH) intake and consumption despite negative consequences in female rats. OBJECTIVES Here, we explored modulation of the dorsal raphe nucleus (DRN)-serotonin (5-HT) system, a sexually dimorphic neurotransmitter system involved in stress-reward interactions, to determine its contribution to EtOH-motivated behaviors in rats that have undergone SIS. RESULTS We employed electrophysiological and functional neuroanatomy strategies to show that both SIS and EtOH exposure induce persistent hypofunction of the DRN 5-HT system, particularly in females. Chemogenetic activation of DRN 5-HT neurons attenuated reward value for both EtOH and sucrose and elevated punished responding for EtOH in a stress-dependent manner. CONCLUSIONS Our results highlight an inverse relationship between EtOH consumption and the 5-HT system, the sex- and stress-dependent nature of this relationship, and a connection between DRN 5-HT signaling and acute responding to rewards and punishment. These data support the DRN 5-HT system as a potential target to treat aberrant alcohol consumption and drinking despite negative consequences in stress-vulnerable populations.
Collapse
Affiliation(s)
- Bryan D McElroy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Amber R Alberici
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St, MERB Room 857, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Saroj N, Shanker S, Serrano-Hernández E, Manjarrez-Gutiérrez G, Mondragón JA, Moreno-Martínez S, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress. Psychoneuroendocrinology 2025; 171:107219. [PMID: 39467477 DOI: 10.1016/j.psyneuen.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
It has been shown that chronic restraint stress (CRS) increases adrenal 5-HT levels and turnover through a mechanism that appears unrelated to tryptophan hydroxylase (TPH). In the present study we re-analyzed the effects of CRS (20 min/day) for 14 days relative to control (CTRL) conditions on TPH expression, distribution, and activity in rat adrenal glands. On day 15, adrenal glands were collected for TPH1 and TPH2 immunohistochemistry, Western blot, and RT-PCR; TPH activity was estimated by quantification of 5-hydroxytryptophan (5-HTP) and, indirectly, through measurement of 5-HT and 5-hydroxindolacetic acid (5-HIAA) levels and turnover (5-HIAA/5-HT ratio) by HPLC. TPH expression and activity in the dorsal raphe nucleus (DRN) were also determined for comparison. TPH1 and TPH2 immunostaining was observed in the adrenal medulla, and measurable levels of TPH1 and TPH2 protein and mRNA were detected in rat adrenal glands from CTRL animals. CRS exposure noticeably increased TPH2- but not THP1-immunostaining in the medulla and the outer adrenocortical areas of left (LAG) but not of right adrenal glands (RAG). In addition, CRS exposure increased TPH2 protein and mRNA levels in LAG; however, both measures decreased in DRN. Finally, CRS treatment produced an increase and a decrease of TPH activity and 5-HT turnover in LAG and DRN, respectively. Results indicate that TPH is indeed expressed in rat adrenal glands. Exposure to CRS upregulates TPH2 in LAG, while inducing downregulation of it in the DRN. Then, the increased levels of 5-HT in LAG from CRS-exposed animals likely results from TPH2-mediated synthesis.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Eduardo Serrano-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Gabriel Manjarrez-Gutiérrez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - José-Antonio Mondragón
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto, La Laguna Ticomán, CP 07340, Mexico
| | - Saidel Moreno-Martínez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México.
| |
Collapse
|
3
|
Bartlett EA, Yttredahl AA, Boldrini M, Tyrer AE, Hill KR, Ananth MR, Milak MS, Oquendo MA, Mann JJ, DeLorenzo C, Parsey RV. In vivo serotonin 1A receptor hippocampal binding potential in depression and reported childhood adversity. Eur Psychiatry 2023; 66:e17. [PMID: 36691786 PMCID: PMC9970152 DOI: 10.1192/j.eurpsy.2023.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reported childhood adversity (CA) is associated with development of depression in adulthood and predicts a more severe course of illness. Although elevated serotonin 1A receptor (5-HT1AR) binding potential, especially in the raphe nuclei, has been shown to be a trait associated with major depression, we did not replicate this finding in an independent sample using the partial agonist positron emission tomography tracer [11C]CUMI-101. Evidence suggests that CA can induce long-lasting changes in expression of 5-HT1AR, and thus, a history of CA may explain the disparate findings. METHODS Following up on our initial report, 28 unmedicated participants in a current depressive episode (bipolar n = 16, unipolar n = 12) and 19 non-depressed healthy volunteers (HVs) underwent [11C]CUMI-101 imaging to quantify 5-HT1AR binding potential. Participants in a depressive episode were stratified into mild/moderate and severe CA groups via the Childhood Trauma Questionnaire. We hypothesized higher hippocampal and raphe nuclei 5-HT1AR with severe CA compared with mild/moderate CA and HVs. RESULTS There was a group-by-region effect (p = 0.011) when considering HV, depressive episode mild/moderate CA, and depressive episode severe CA groups, driven by significantly higher hippocampal 5-HT1AR binding potential in participants in a depressive episode with severe CA relative to HVs (p = 0.019). Contrary to our hypothesis, no significant binding potential differences were detected in the raphe nuclei (p-values > 0.05). CONCLUSIONS With replication in larger samples, elevated hippocampal 5-HT1AR binding potential may serve as a promising biomarker through which to investigate the neurobiological link between CA and depression.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Ashley A Yttredahl
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA
| | - Andrea E Tyrer
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Clinical Genetics Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, OntarioM5S, Canada
| | - Kathryn R Hill
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA
| | - Mala R Ananth
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland20892, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania19104, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York10032, USA.,Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York10032, USA.,Department of Radiology, Columbia University, New York, New York10027, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York11794, USA.,Department of Radiology, Stony Brook University, Stony Brook, New York11794, USA
| |
Collapse
|
4
|
Dunn GA, Thompson JR, Mitchell AJ, Papadakis S, Selby M, Fair D, Gustafsson HC, Sullivan EL. Perinatal Western-style diet alters serotonergic neurons in the macaque raphe nuclei. Front Neurosci 2023; 16:1067479. [PMID: 36704012 PMCID: PMC9872117 DOI: 10.3389/fnins.2022.1067479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The neurotransmitter serotonin is a key regulator of neurotransmission, mood, and behavior and is essential in neurodevelopment. Dysfunction in this important neurotransmitter system is connected to behavioral disorders such as depression and anxiety. We have previously shown that the developing serotonin system is sensitive to perinatal exposure to Western-style diet (WSD). Methods To advance our hypothesis that perinatal WSD has a long-term impact on the serotonergic system, we designed a fluorescent immunohistochemistry experiment using antibodies against tryptophan hydroxylase 2 (TPH2) and vesicular glutamate transporter 3 (VGLUT3) to probe protein expression in the raphe subnuclei in 13-month-old Japanese macaques (Macaca fuscata; n = 22). VGLUT3 has been shown to be coexpressed in TPH2+ cells in the dorsal raphe (DR) and median raphe nucleus (MnR) of rodent raphe nuclei and may provide information about the projection site of serotonergic fibers into the forebrain. We also sought to improve scientific understanding of the heterogeneity of the serotonin production center for the central nervous system, the midbrain raphe nuclei. Results In this immunohistochemical study, we provide the most detailed characterization of the developing primate raphe to date. We utilize multi-level modeling (MLM) to simultaneously probe the contribution of WSD, offspring sex, and raphe anatomical location, to raphe neuronal measurements. Our molecular and morphological characterization revealed that the 13-month-old macaque DR is remarkably similar to that of adult macaques and humans. We demonstrate that vesicular glutamate transporter 3 (VGLUT3), which rodent studies have recently shown can distinguish raphe populations with distinct projection targets and behavioral functions, likewise contributes to the heterogeneity of the primate raphe. Discussion This study provides evidence that perinatal WSD has a long-term impact on the density of serotonin-producing neurons, potentially limiting serotonin availability throughout the brain. Due to the critical involvement of serotonin in development and behavior, these findings provide important insight into the mechanisms by which maternal nutrition and metabolic state influence offspring behavioral outcomes. Finally, these findings could inform future research focused on designing therapeutic interventions to optimize neural development and decrease a child's risk of developing a mental health disorder.
Collapse
Affiliation(s)
- Geoffrey A. Dunn
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Samantha Papadakis
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Damien Fair
- Masonic Institute of Child Development, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Elinor L. Sullivan,
| |
Collapse
|
5
|
Gaszner T, Farkas J, Kun D, Ujvári B, Berta G, Csernus V, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Fluoxetine treatment supports predictive validity of the three hit model of depression in male PACAP heterozygous mice and underpins the impact of early life adversity on therapeutic efficacy. Front Endocrinol (Lausanne) 2022; 13:995900. [PMID: 36213293 PMCID: PMC9537566 DOI: 10.3389/fendo.2022.995900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Valér Csernus
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Nishimura H, Yoshimura M, Shimizu M, Sanada K, Sonoda S, Nishimura K, Baba K, Ikeda N, Motojima Y, Maruyama T, Nonaka Y, Baba R, Onaka T, Horishita T, Morimoto H, Yoshida Y, Kawasaki M, Sakai A, Muratani M, Conway-Campbell B, Lightman S, Ueta Y. Endogenous oxytocin exerts anti-nociceptive and anti-inflammatory effects in rats. Commun Biol 2022; 5:907. [PMID: 36064593 PMCID: PMC9445084 DOI: 10.1038/s42003-022-03879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn. Hyperalgesia, which is robustly exacerbated in experimental pain models, is significantly attenuated after CNO injection. The analgesic effects of CNO are ablated by co-treatment with oxytocin receptor antagonist. Endogenous oxytocin also exerts anti-inflammatory effects via activation of the hypothalamus-pituitary-adrenal axis. Moreover, inhibition of mast cell degranulation is found to be involved in the response. Taken together, our results suggest that oxytocin may exert anti-nociceptive and anti-inflammatory effects via both neuronal and humoral pathways.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan. .,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naofumi Ikeda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Nonaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Takafumi Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masafumi Muratani
- Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Becky Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
7
|
Vilela FC, Vieira JS, Vitor-Vieira F, Kalil-Cutti B, da Silva JRT, Giusti-Paiva A, da Silva ML. Maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. Neurosci Lett 2021; 748:135734. [PMID: 33596470 DOI: 10.1016/j.neulet.2021.135734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Animals subjected to early life maternal separation exhibit increased sensitivity to chemical, thermal, and mechanical stimuli during adulthood. However, the mechanism by which maternal separation can alter pain sensitivity in adulthood has not yet been investigated. Thus, we aimed to evaluate the activity of serotonergic and noradrenergic neurons and the effect of serotonin (5-HT) and noradrenaline (NA) reuptake inhibitors in male and female Wistar rats subjected to maternal separation. This study consisted of two experiments: 1) to confirm whether maternal separation increased pain sensitivity (n = 8 per group) and to evaluate the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus in animals subjected to maternal separation in comparison to controls (n = 6 per group); and 2) to evaluate the effect of fluoxetine (a selective 5-HT reuptake inhibitor) and desipramine (a NA reuptake inhibitor) on sensitivity to chemical stimulation using formalin in animals subjected to maternal separation (n = 8 per group). Our findings indicated that maternal separation increases an animal's sensitivity to painful chemical stimulation and reduces the activity of 5-HT and NA neurons. In addition, acute pretreatment with a 5-HT or NA reuptake inhibitor prevented the increased response to painful stimulation induced by maternal separation. In conclusion, maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. This study contributes to possible treatments for pain in individuals exposed to early life stress.
Collapse
Affiliation(s)
- Fabiana C Vilela
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.
| | - Jádina S Vieira
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fernando Vitor-Vieira
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Bruna Kalil-Cutti
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Josie R T da Silva
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Marcelo L da Silva
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
8
|
Soga T, Nakajima S, Parhar IS. Expression of Repressor Element 1 Silencing Transcription Factor (REST) in Serotonin Neurons in the Adult Male Nile Tilapia ( Oreochromis niloticus). Front Neuroanat 2021; 14:599540. [PMID: 33776659 PMCID: PMC7990894 DOI: 10.3389/fnana.2020.599540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022] Open
Abstract
Repressor element-1 silencing transcription factor (REST) is highly expressed in the dorsal raphe where serotonin (5-hydroxytryptamine, 5-HT) neurons are located. REST works as a transcription factor for the 5-HT receptor and tryptophan hydroxylase two-gene expression. We hypothesized that REST is co-expressed in 5-HT neurons, which, if demonstrated, would be useful to understand the mechanism of 5-HT dysfunction-related disorders such as negative emotions and depression. Therefore, the present study was designed to examine the expression of the REST gene in the brain (forebrain, midbrain, and hindbrain) of adult male Nile tilapia (Oreochromis niloticus) using rt-PCR. Besides, using immunocytochemistry, co-localization of the REST gene was examined in 5-HT neurons and with neuronal-/glial-cell markers. We found a high expression of the REST gene in the midbrain region of the dorsal raphe, an area of 5-HT neurons. Double-label immunocytochemistry showed neuron-specific expression of REST co-localized in 5-HT neurons in the dorsal and ventral parts of the periventricular pretectal nucleus, paraventricular organ, and dorsal and medial raphe nucleus. Since midbrain 5-HT neurons express REST, we speculate that REST may control 5-HT neuronal activity related to negative emotions, including depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Shingo Nakajima
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
9
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
10
|
Foxx CL, Heinze JD, González A, Vargas F, Baratta MV, Elsayed AI, Stewart JR, Loupy KM, Arnold MR, Flux MC, Sago SA, Siebler PH, Milton LN, Lieb MW, Hassell JE, Smith DG, Lee KAK, Appiah SA, Schaefer EJ, Panitchpakdi M, Sikora NC, Weldon KC, Stamper CE, Schmidt D, Duggan DA, Mengesha YM, Ogbaselassie M, Nguyen KT, Gates CA, Schnabel K, Tran L, Jones JD, Vitaterna MH, Turek FW, Fleshner M, Dorrestein PC, Knight R, Wright KP, Lowry CA. Effects of Immunization With the Soil-Derived Bacterium Mycobacterium vaccae on Stress Coping Behaviors and Cognitive Performance in a "Two Hit" Stressor Model. Front Physiol 2021; 11:524833. [PMID: 33469429 PMCID: PMC7813891 DOI: 10.3389/fphys.2020.524833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.
Collapse
Affiliation(s)
- Christine L. Foxx
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jared D. Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Fernando Vargas
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Ahmed I. Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jessica R. Stewart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey M. Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Mathew R. Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - M. C. Flux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Saydie A. Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Philip H. Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Lauren N. Milton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Margaret W. Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - James E. Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - David G. Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kyo A. K. Lee
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Sandra A. Appiah
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Evan J. Schaefer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Morgan Panitchpakdi
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nicole C. Sikora
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kelly C. Weldon
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - David A. Duggan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Yosan M. Mengesha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mikale Ogbaselassie
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kadi T. Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Chloe A. Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - K’loni Schnabel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Linh Tran
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Joslynn D. Jones
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Pieter C. Dorrestein
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- inVIVO Planetary Health, Worldwide Universities Network, West New York, NJ, United States
| |
Collapse
|
11
|
Trujillo V, Valentim-Lima E, Mencalha R, Carbalan QSR, Dos-Santos RC, Felintro V, Girardi CEN, Rorato R, Lustrino D, Reis LC, Mecawi AS. Neonatal Serotonin Depletion Induces Hyperactivity and Anxiolytic-like Sex-Dependent Effects in Adult Rats. Mol Neurobiol 2020; 58:1036-1051. [PMID: 33083963 DOI: 10.1007/s12035-020-02181-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg-1) was performed daily on postnatal days 8-16 to deplete brain serotonin content. During adulthood, elevated plus-maze, open field, social interaction, forced swimming, and food, saline, and sucrose intake tests were performed. Relative expression of serotonin neurotransmission components in several brain areas was determined by qPCR. Additionally, serotonin immunofluorescence and neuropeptide mRNA expression were assessed in dorsal raphe (DRN) and paraventricular (PVN) nuclei, respectively. Rat performance in behavioral tests demonstrated a general increase in locomotor activity and active escape behavior as well as decreased anxiety-like behavior after neonatal brain serotonin depletion. The behavioral programming effects due to neonatal serotonin depletion were more pronounced in females than males. At the gene expression level, the mRNA of Tph1 and Tph2 were lower in DRN while Htr2c was higher in the amygdala of pCPA-treated males, while Htr1a, Htr2c, Oxt, Avp, Crh, and Trh were not different in any treatments or sex in PVN. The results indicate that neonatal serotonin depletion has long-term consequences on locomotion and anxiety-like behavior associated with long-lasting molecular changes in the brain serotoninergic system in adult rats.
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
- Departament of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Rodrigo Mencalha
- Department of Natural Sciences, Universidade Federal do Acre, Rio Branco, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Carlos E N Girardi
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Danilo Lustrino
- Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.
| |
Collapse
|
12
|
Lim CH, Soga T, Levavi-Sivan B, Parhar IS. Chronic Social Defeat Stress Up-Regulates Spexin in the Brain of Nile Tilapia (Oreochromis niloticus). Sci Rep 2020; 10:7666. [PMID: 32376994 PMCID: PMC7203209 DOI: 10.1038/s41598-020-64639-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Spexin (SPX), a neuropeptide evolutionarily conserved from fish to mammals, is widely distributed in the brain and peripheral tissues and associated with various physiological functions. Recently SPX has been suggested to be involved in neurological mechanism of stress. The current study investigates the involvement of SPX in chronic social defeat stress, using male teleost, the Nile tilapia (Oreochromis niloticus) as an animal model due to its distinct social hierarchy of dominant and subordinate relationship. The tilapia genome has SPX1a and SPX1b but has no SPX2. In the Nile tilapia, we localized SPX1a and SPX1b in the brain using in-situ hybridization. Next, using qPCR we examined gene expression of SPX1a and SPX1b in chronically stress (socially defeated) fish. SPX1a expressing cells were localized in the semicircular torus of the midbrain region and SPX1b expressing cells in the telencephalon. Chronically stress fish showed elevated plasma cortisol levels; with an upregulation of SPX1a and SPX1b gene expression in the brain compared to non-stress (control) fish. Since social defeat is a source of stress, the upregulated SPX mRNA levels during social defeat suggests SPX as a potentially inhibitory neuropeptide capable of causing detrimental changes in behaviour and physiology.
Collapse
Affiliation(s)
- Chor Hong Lim
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| |
Collapse
|
13
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
14
|
Donner NC, Mani S, Fitz SD, Kienzle DM, Shekhar A, Lowry CA. Crh receptor priming in the bed nucleus of the stria terminalis (BNST) induces tph2 gene expression in the dorsomedial dorsal raphe nucleus and chronic anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109730. [PMID: 31415826 PMCID: PMC6815726 DOI: 10.1016/j.pnpbp.2019.109730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/28/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a nodal structure in neural circuits controlling anxiety-related defensive behavioral responses. It contains neurons expressing the stress- and anxiety-related neuropeptide corticotropin-releasing hormone (Crh) as well as Crh receptors. Repeated daily subthreshold activation of Crh receptors in the BNST is known to induce a chronic anxiety-like state, but how this affects neurotransmitter-relevant gene expression in target regions of the BNST is still unclear. Since the BNST projects heavily to the dorsal raphe nucleus (DR), the main source of brain serotonin, we here tested the hypothesis that such repeated, anxiety-inducing activation of Crh receptors in the BNST alters the expression of serotonergic genes in the DR, including tph2, the gene encoding the rate-limiting enzyme for brain serotonin synthesis, and slc6a4, the gene encoding the serotonin transporter (SERT). For 5 days, adult male Wistar rats received daily, bilateral, intra-BNST microinjections of vehicle (1% bovine serum albumin in 0.9% saline, n = 11) or behaviorally subthreshold doses of urocortin 1 (Ucn1, n = 11), a potent Crh receptor agonist. Priming with Ucn1 increased tph2 mRNA expression selectively within the anxiety-related dorsal part of the DR (DRD) and decreased social interaction (SI) time, a measure of anxiety-related defensive behavioral responses in rodents. Decreased social interaction was strongly correlated with increased tph2 mRNA expression in the DRD. Together with previous studies, our data are consistent with the hypothesis that Crh-mediated control of the BNST/DRD-serotonergic system plays a key role in the development of chronic anxiety states, possibly also contributing to stress-induced relapses in drug abuse and addiction behavior.
Collapse
Affiliation(s)
- Nina C. Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sofia Mani
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Stephanie D. Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Drake M. Kienzle
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA,Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA,Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Treatment with a heat-killed preparation of Mycobacterium vaccae after fear conditioning enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 2019; 81:151-160. [PMID: 31175996 PMCID: PMC6754802 DOI: 10.1016/j.bbi.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for anxiety disorders, affective disorders, and trauma-and stressor-related disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to enhance fear extinction in the fear-potentiated startle paradigm when given prior to fear conditioning. To determine if immunization with M. vaccae after fear conditioning also has protective effects, adult male Sprague Dawley rats underwent fear conditioning on days -37 and -36 followed by immunizations (3x), once per week beginning 24 h following fear conditioning, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1 mg, s.c., in 100 µl borate-buffered saline) or vehicle, and, then, 3 weeks following the final immunization, were tested in the fear-potentiated startle paradigm (n = 12 per group). Rats underwent fear extinction training on days 1 through 6 followed by spontaneous recovery 14 days later (day 20). Rats were euthanized on day 21 and brain tissue was sectioned for analysis of Tph2, Htr1a, Slc6a4, Slc22a3, and Crhr2 mRNA expression throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae did not affect fear expression on day 1. However, M. vaccae-immunized rats showed enhanced enhanced within-session fear extinction on day 1 and enhanced between-session fear extinction beginning on day 2, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle had minimal effects on serotonergic gene expression when assessed 42 days after the final immunization. Together with previous studies, these data are consistent with the hypothesis that immunoregulatory strategies, such as immunization with M. vaccae, have potential for both prevention and treatment of trauma- and stressor-related psychiatric disorders.
Collapse
|
16
|
Lieb MW, Weidner M, Arnold MR, Loupy KM, Nguyen KT, Hassell JE, Schnabel KS, Kern R, Day HEW, Lesch KP, Waider J, Lowry CA. Effects of maternal separation on serotonergic systems in the dorsal and median raphe nuclei of adult male Tph2-deficient mice. Behav Brain Res 2019; 373:112086. [PMID: 31319134 DOI: 10.1016/j.bbr.2019.112086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/18/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Margaret W Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Magdalena Weidner
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kadi T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - K'Loni S Schnabel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Raphael Kern
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany.
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav Brain Res 2019; 365:26-35. [DOI: 10.1016/j.bbr.2019.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
|
18
|
Weidner MT, Lardenoije R, Eijssen L, Mogavero F, De Groodt LPMT, Popp S, Palme R, Förstner KU, Strekalova T, Steinbusch HWM, Schmitt-Böhrer AG, Glennon JC, Waider J, van den Hove DLA, Lesch KP. Identification of Cholecystokinin by Genome-Wide Profiling as Potential Mediator of Serotonin-Dependent Behavioral Effects of Maternal Separation in the Amygdala. Front Neurosci 2019; 13:460. [PMID: 31133792 PMCID: PMC6524554 DOI: 10.3389/fnins.2019.00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2 -/-) and heterozygous (Tph2 +/-) mice, and their wildtype littermates (Tph2 +/+) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2 -/- mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2 +/- mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2 +/- mice when compared to their Tph2 -/- littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.
Collapse
Affiliation(s)
- Magdalena T. Weidner
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roy Lardenoije
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen, Germany
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Lars Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Departments of Bioinformatics, Psychiatry & Neuro Psychology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Floriana Mogavero
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | | | - Sandy Popp
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Konrad U. Förstner
- Core Unit Systems Medicine, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- ZB MED – Information Centre for Life Sciences, Cologne, Germany
- TH Köln, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University and Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Harry W. M. Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Angelika G. Schmitt-Böhrer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jeffrey C. Glennon
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Daniel L. A. van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University and Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
19
|
Arnold MR, Williams PH, McArthur JA, Archuleta AR, O'Neill CE, Hassell JE, Smith DG, Bachtell RK, Lowry CA. Effects of chronic caffeine exposure during adolescence and subsequent acute caffeine challenge during adulthood on rat brain serotonergic systems. Neuropharmacology 2019; 148:257-271. [PMID: 30579884 PMCID: PMC6438184 DOI: 10.1016/j.neuropharm.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/09/2023]
Abstract
Caffeine is the most commonly used drug in the world. However, animal studies suggest that chronic consumption of caffeine during adolescence can result in enhanced anxiety-like behavioral responses during adulthood. One mechanism through which chronic caffeine administration may influence subsequent anxiety-like responses is through actions on brainstem serotonergic systems. In order to explore potential effects of chronic caffeine consumption on brainstem serotonergic systems, we evaluated the effects of a 28-day exposure to chronic caffeine (0.3 g/L; postnatal day 28-56) or vehicle administration in the drinking water, followed by 24 h caffeine withdrawal, and subsequent challenge with caffeine (30 mg/kg; s.c.) or vehicle in adolescent male rats. In Experiment 1, acute caffeine challenge induced a widespread activation of serotonergic neurons throughout the dorsal raphe nucleus (DR); this effect was attenuated in rats that had been exposed to chronic caffeine consumption. In Experiment 2, acute caffeine administration profoundly decreased tph2 and slc22a3 mRNA expression throughout the DR, with no effects on htr1a or slc6a4 mRNA expression. Chronic caffeine exposure for four weeks during adolescence was sufficient to decrease tph2 mRNA expression in the DR measured 28 h after caffeine withdrawal. Chronic caffeine administration during adolescence did not impact the ability of acute caffeine to decrease tph2 or slc22a3 mRNA expression. Together, these data suggest that both chronic caffeine administration during adolescence and acute caffeine challenge during adulthood are important determinants of serotonergic function and serotonergic gene expression, effects that may contribute to chronic effects of caffeine on anxiety-like responses.
Collapse
Affiliation(s)
- M R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - P H Williams
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - J A McArthur
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - A R Archuleta
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - C E O'Neill
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - J E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - D G Smith
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - R K Bachtell
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO, 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, 80220, USA.
| |
Collapse
|
20
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
21
|
Faye C, McGowan JC, Denny CA, David DJ. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr Neuropharmacol 2018; 16:234-270. [PMID: 28820053 PMCID: PMC5843978 DOI: 10.2174/1570159x15666170818095105] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stress is a common reaction to an environmental adversity, but a dysregulation of the stress response can lead to psychiatric illnesses such as major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety disorders. Yet, not all individuals exposed to stress will develop psychiatric disorders; those with enhanced stress resilience mechanisms have the ability to adapt successfully to stress without developing persistent psychopathology. Notably, the potential to enhance stress resilience in at-risk populations may prevent the onset of stress-induced psychiatric disorders. This novel idea has prompted a number of studies probing the mechanisms of stress resilience and how it can be manipulated. METHODS Here, we review the neurobiological factors underlying stress resilience, with particular focus on the serotoninergic (5-HT), glutamatergic, and γ-Aminobutyric acid (GABA) systems, as well as the hypothalamic-pituitary axis (HPA) in rodents and in humans. Finally, we discuss stress resiliency in the context of aging, as the likelihood of mood disorders increases in older adults. RESULTS Interestingly, increased resiliency has been shown to slow aging and improved overall health and quality of life. Research in the neurobiology of stress resilience, particularly throughout the aging process, is a nascent, yet, burgeoning field. CONCLUSION Overall, we consider the possible methods that may be used to induce resilient phenotypes, prophylactically in at-risk populations, such as in military personnel or in older MDD patients. Research in the mechanisms of stress resilience may not only elucidate novel targets for antidepressant treatments, but also provide novel insight about how to prevent these debilitating disorders from developing.
Collapse
Affiliation(s)
- Charlène Faye
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Josephine C. McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Christine A. Denny
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, Inc., New York, NY, USA
| | - Denis J. David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| |
Collapse
|
22
|
Two models of inescapable stress increase tph2 mRNA expression in the anxiety-related dorsomedial part of the dorsal raphe nucleus. Neurobiol Stress 2018. [PMID: 29520369 PMCID: PMC5842308 DOI: 10.1016/j.ynstr.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Expression of TPH2, the rate-limiting enzyme for brain serotonin synthesis, is elevated in the dorsal raphe nucleus (DR) of depressed suicide victims. One hypothesis is that this increase in TPH2 expression is stress-induced. Here, we used an established animal model to address whether exposure to an acute stressor, inescapable tail shock (IS), increases tph2 mRNA and Tph2 protein expression, and if IS sensitizes the DR to a subsequent, heterotypic stressor. In Experiment 1, we measured tph2 mRNA expression 4 h after IS or home cage (HC) control conditions in male rats, using in situ hybridization histochemistry. In Experiment 2, we measured Tph2 protein expression 12 h or 24 h after IS using western blot. In Experiment 3, we measured tph2 mRNA expression following IS on Day 1, and cold swim stress (10 min, 15 °C) on Day 2. Inescapable tail shock was sufficient to increase tph2 mRNA expression 4 h and 28 h later, selectively in the dorsomedial DR (caudal aspect of the dorsal DR, cDRD; an area just rostral to the caudal DR, DRC) and increased Tph2 protein expression in the DRD (rostral and caudal aspects of the dorsal DR combined) 24 h later. Cold swim increased tph2 mRNA expression in the dorsomedial DR (cDRD) 4 h later. These effects were associated with increased immobility during cold swim, elevated plasma corticosterone, and a proinflammatory plasma cytokine milieu (increased interleukin (IL)-6, decreased IL-10). Our data demonstrate that two models of inescapable stress, IS and cold swim, increase tph2 mRNA expression selectively in the anxiety-related dorsomedial DR (cDRD).
Collapse
|
23
|
Fox JH, Hassell JE, Siebler PH, Arnold MR, Lamb AK, Smith DG, Day HEW, Smith TM, Simmerman EM, Outzen AA, Holmes KS, Brazell CJ, Lowry CA. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 2017; 66:70-84. [PMID: 28888667 DOI: 10.1016/j.bbi.2017.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- James H Fox
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Andrew K Lamb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tessa M Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Emma M Simmerman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Alexander A Outzen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Kaley S Holmes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher J Brazell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA.
| |
Collapse
|
24
|
Baratta MV, Maier SF. New tools for understanding coping and resilience. Neurosci Lett 2017; 693:54-57. [PMID: 28963058 DOI: 10.1016/j.neulet.2017.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Abstract
In humans, many of the factors determining vulnerability and resilience to the impact of an adverse event revolve around coping factors. This mini-review focuses on the neural mechanisms by which coping reduces the impact of adverse events, as studied in an animal model, and discusses some of the challenges of linking neural circuit activity with stressor outcome. We highlight several approaches for probing circuit function with cell-type and pathway-specificity that overcome some of the limitations of traditional neuroscience techniques and will likely yield a more detailed and comprehensive understanding of how the brain regulates stress-responsive structures when coping behaviors are engaged.
Collapse
Affiliation(s)
- Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
25
|
Early life stress and later peer distress on depressive behavior in adolescent female rats: Effects of a novel intervention on GABA and D2 receptors. Behav Brain Res 2017; 330:37-45. [PMID: 28499915 DOI: 10.1016/j.bbr.2017.04.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Early life adversity (ELA) increases the risk of depression during adolescence that may result from a decline in parvalbumin (PVB) secondary to increased neuroinflammation. In this study, we investigated depressive-like behavior following exposure to two different types of stressors that are relevant for their developmental period: 1) chronic ELA (maternal separation; MS) and 2) an acute emotional stressor during adolescence (witnessing their peers receive multiple shocks; WIT), and their interaction. We also determined whether reducing inflammation by cyclooxygenase-2 (COX-2) inhibition would prevent the onset of depressive-like behavior. Female Sprague-Dawley rat pups underwent MS for four-hours/day or received typical care (CON) between postnatal days (P) 2 and P20. A COX-2 inhibitor (COX-2I) or vehicle was administered every other day between P30 and P38. Subjects were tested for learned helplessness to assess depressive-like behavior at P40 (adolescence). MS females demonstrated increased escape latency and decreased PVB in the prefrontal cortex (PFC) and dorsal raphe that were attenuated by COX-2I intervention. Helplessness was also associated with an increase in D2 receptors in the accumbens. In contrast, WIT elevated escape latency in CON, but reduced latency in MS females. Furthermore, COX-2I intervention decreased escape latency in both CON and MS after WIT. WIT reduced PVB levels in the basolateral amygdala and increased PFC levels to CON levels. Our data suggest that decreased PVB in the PFC is important for the expression of depressive-like behavior and suggest that COX-2I intervention may provide a novel prevention for depression.
Collapse
|
26
|
Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience 2017; 354:11-29. [PMID: 28450265 DOI: 10.1016/j.neuroscience.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.
Collapse
|
27
|
Karanović J, Ivković M, Jovanović VM, Šviković S, Pantović-Stefanović M, Brkušanin M, Damjanović A, Brajušković G, Savić-Pavićević D. Effect of childhood general traumas on suicide attempt depends on TPH2 and ADARB1 variants in psychiatric patients. J Neural Transm (Vienna) 2017; 124:621-629. [PMID: 28084537 DOI: 10.1007/s00702-017-1677-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
Suicidal behavior has been associated with a deficient serotonin neurotransmission which is likely a consequence of individual genetic architecture, exposure to environmental factors and interactions of those factors. We examined whether the interaction of child abuse, TPH2 (tryptophan hydroxylase 2) variant rs4290270, affecting alternative splicing and editing of TPH2 pre-mRNAs, and ADARB1 (adenosine deaminase acting on RNA B1) variants rs4819035 and rs9983925 may influence the risk for suicide attempt in psychiatric patients. TPH2 rs4290270 was genotyped in 165 suicide attempters and 188 suicide non-attempters diagnosed with major depressive disorder, bipolar disorder and schizophrenia. Genotyping data for ADARB1 variants were taken over from our previous study. Child abuse before the age of 18 years was assessed using the Early Trauma Inventory-Self Report. Generalized linear models and backward selection were applied to identify the main and interacting effects of environmental and genetic factors, including psychiatric diagnoses, patients' gender and age as covariates. Childhood general traumas were independently associated with suicide attempt. Two-way interaction between TPH2 rs4290270 and general traumas revealed that TT homozygotes with a history of general traumas had an increased risk for suicide attempt. Three-way interaction of general traumas, TPH2 rs4290270 and ADARB1 rs4819035 indicated that the highest predisposition to suicide attempt was observed in individuals who experienced general traumas and were TT homozygote for rs4290270 and TT homozygote for rs4819035. Our findings suggest that the risk for suicide attempt in psychiatric patients exposed to an adverse childhood environment may depend on TPH2 and ADARB1 variants.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Saša Šviković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | | | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Aleksandar Damjanović
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
| |
Collapse
|
28
|
Vasconcelos M, Stein DJ, de Almeida RMM. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016. [PMID: 26222297 DOI: 10.1590/2237-6089-2014-0034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. METHODS A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. RESULTS Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. CONCLUSION The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.
Collapse
Affiliation(s)
- Mailton Vasconcelos
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Rosa Maria M de Almeida
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Bach H, Arango V, Kassir SA, Dwork AJ, Mann JJ, Underwood MD. Cigarette Smoking and Tryptophan Hydroxylase 2 mRNA in the Dorsal Raphe Nucleus in Suicides. Arch Suicide Res 2016; 20:451-62. [PMID: 26954509 PMCID: PMC4920715 DOI: 10.1080/13811118.2015.1048398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cigarette smoking is associated with suicide and mood disorders and stimulates serotonin release. Tryptophan hydroxylase (TPH2) synthesizes serotonin and is over-expressed in suicides. We determined whether smoking is associated with TPH2 mRNA in suicides and controls. TPH2 mRNA was measured postmortem in the dorsal raphe nucleus (DRN) of controls (N = 26, 17 nonsmokers and nine smokers) and suicides (N = 23, 5 nonsmokers and 18 smokers). Psychiatric history was obtained by psychological autopsy. TPH2 mRNA was greater in suicide nonsmokers than suicide smokers, control smokers and control nonsmokers (p = 0.006). There was more TPH2 mRNA throughout the DRN. Smoking interferes with the TPH2 mRNA increase observed in suicide nonsmokers. The absence of altered TPH2 expression in non-suicide smokers suggests no pharmacological effect of smoking.
Collapse
|
30
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
31
|
Ragan CM, Harding KM, Lonstein JS. Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Horm Behav 2016; 77:62-71. [PMID: 26219576 PMCID: PMC7005883 DOI: 10.1016/j.yhbeh.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
This article is part of a Special Issue "Parental Care". The effects of differential maternal care received on offspring phenotype in rodents has been extensively studied between litters, but the consequences of differential mothering within litters on offspring neurobehavioral development have been rarely examined. We here investigated how variability in maternal care received among female rat siblings (measured four times daily on postnatal days 4, 6, 8, and 10) relates to the siblings' later emotional and maternal behaviors. As previously reported, we found that some female pups received up to three times more maternal licking bouts compared to their sisters; this difference was positively correlated with the pups' body weights. The number of maternal licking bouts that females received was negatively correlated with their later neophobic behaviors in an open field during periadolescence, but positively correlated with their anxiety-related behavior in an elevated plus maze during adulthood. Licking received was also positively correlated with females' later likelihood to retrieve pups in a maternal sensitization paradigm. In addition, females' neophobia during adolescence and anxiety-related behavior during adulthood predicted some aspects of both postpartum and sensitized maternal responsiveness. Medial prefrontal cortex expression of tryptophan hydroxylase-2 (TPH2; enzyme necessary for serotonin synthesis) was negatively associated with early maternal licking received. Interestingly, cortical TPH2 was positively associated with the maternal responsiveness of sensitized virgins but negatively associated with it in postpartum females. These results indicate that within-litter differences in maternal care received is an often neglected, but important, contributor to individual differences in offspring socioemotional behaviors as well as to the cortical serotonin neurochemistry that may influence these behaviors.
Collapse
Affiliation(s)
- Christina M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Kaitlyn M Harding
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Joseph S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Ma J, Xiao H, Yang Y, Cao D, Wang L, Yang X, Qiu X, Qiao Z, Song J, Liu Y, Wang P, Zhou J, Zhu X. Interaction of tryptophan hydroxylase 2 gene and life events in susceptibility to major depression in a Chinese Han population. J Affect Disord 2015; 188:304-9. [PMID: 26386440 DOI: 10.1016/j.jad.2015.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Major depression (MD) results from a complex synergy between genetic and environmental factors. The aim of this study is to analyze the interaction of tryptophan hydroxylase 2 gene (TPH2) variation and negative life events in the pathogenesis of MD. Three TPH2 polymorphisms, -703G/T (rs4570625), -473T/A (rs11178997), and 1463G/A (rs120074175), were selected based on previous findings of associations with MD. METHODS In this study, 289 patients with MD and 289 age- and sex-matched control subjects were genotyped. The frequency and severity of negative life events were assessed by the Life Events Scale (LES). Gene-environment interactions (G×E) were assessed using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS Differences in rs11178997 and rs120074175 allele frequencies and genotype distributions were observed between MD patients and controls. Significant G×E interactions between negative life events and allelic variation of rs4570625, rs11178997, and rs120074175 were also observed. Individuals carrying the T(-) genotype of rs4570625 (GG), T(-) genotype of rs11178997 (AA), or A(-) genotype of rs120074175 (GG) were susceptible to MD only when exposed to high-negative life events. However, individuals with the T(+) genotypes of rs11178997 (TA, TT) and A(+) genotypes of rs120074175 (AG, AA) were susceptible to MD when exposed to low-negative life events. LIMITATION Assessment of negative life events was influenced by subjective interpretation. CONCLUSIONS Interactions between multiple TPH2 gene alleles and negative life events were revealed by GMDR analysis. Chinese Han individuals with at least one rs11178997 T allele or rs120074175 A allele are susceptible to MD even in the relative absence of high-negative life events.
Collapse
Affiliation(s)
- Jingsong Ma
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Hai Xiao
- Harbin Medical University, Heilongjiang Province, China
| | - Yanjie Yang
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China.
| | - Depin Cao
- Harbin Medical University, Heilongjiang Province, China.
| | - Lin Wang
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Xiuxian Yang
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Xiaohui Qiu
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Zhengxue Qiao
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Junyao Song
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Yuexi Liu
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Peng Wang
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Jiawei Zhou
- Psychology Department of the Public Health Institute of Harbin Medical University, Heilongjiang Province, China
| | - Xiongzhao Zhu
- Medical Psychological Institute of the Second Xiang Ya Hospital of Central South University, Hunan Province, China
| |
Collapse
|
33
|
Zhang Y, Chang Z, Chen J, Ling Y, Liu X, Feng Z, Chen C, Xia M, Zhao X, Ying W, Qing X, Li G, Zhang C. Methylation of the tryptophan hydroxylase‑2 gene is associated with mRNA expression in patients with major depression with suicide attempts. Mol Med Rep 2015; 12:3184-90. [PMID: 25955598 DOI: 10.3892/mmr.2015.3748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Zaohuo Chang
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Jionghua Chen
- Department of Brain, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yang Ling
- Clinical Oncology Laboratory, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213002, P.R. China
| | - Xiaowei Liu
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Zhang Feng
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Caixia Chen
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Minghua Xia
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Xingfu Zhao
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Wang Ying
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Xu Qing
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Guilin Li
- Department of Geriatric Psychiatry, Wuxi Psychiatric Hospital, Nanjing Medical University, Wuxi, Jiangsu 214151, P.R. China
| | - Changsong Zhang
- Clinical Oncology Laboratory, Changzhou Cancer Hospital of Soochow University, Changzhou, Jiangsu 213002, P.R. China
| |
Collapse
|
34
|
Näslund J, Studer E, Pettersson R, Hagsäter M, Nilsson S, Nissbrandt H, Eriksson E. Differences in Anxiety-Like Behavior within a Batch of Wistar Rats Are Associated with Differences in Serotonergic Transmission, Enhanced by Acute SRI Administration, and Abolished By Serotonin Depletion. Int J Neuropsychopharmacol 2015; 18:pyv018. [PMID: 25716782 PMCID: PMC4571633 DOI: 10.1093/ijnp/pyv018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The anxiety-reducing effect of long-term administration of serotonin reuptake inhibitors is usually seen only in subjects with anxiety disorders, and such patients are also abnormally inclined to experience a paradoxical anxiety-enhancing effect of acute serotonin reuptake inhibition. These unique responses to serotonin reuptake inhibitors in anxiety-prone subjects suggest, as do genetic association studies, that inter-individual differences in anxiety may be associated with differences in serotonergic transmission. METHODS The one-third of the animals within a batch of Wistar rats most inclined to spend time on open arms in the elevated plus maze were compared with the one-third most inclined to avoid them with respect to indices of brain serotonergic transmission and how their behavior was influenced by serotonin-modulating drugs. RESULTS "Anxious" rats displayed higher expression of the tryptophan hydroxylase-2 gene and higher levels of the tryptophan hydroxylase-2 protein in raphe and also higher levels of serotonin in amygdala. Supporting these differences to be important for the behavioral differences, serotonin depletion obtained by the tryptophan hydroxylase-2 inhibitor p-chlorophenylalanine eliminated them by reducing anxiety in "anxious" but not "non-anxious" rats. Acute administration of a serotonin reuptake inhibitor, paroxetine, exerted an anxiety-enhancing effect in "anxious" but not "non-anxious" rats, which was eliminated by long-term pretreatment with another serotonin reuptake inhibitor, escitalopram. CONCLUSIONS Differences in an anxiogenic impact of serotonin, which is enhanced by acute serotonin reuptake inhibitor administration, may contribute to differences in anxiety-like behavior amongst Wistar rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden (Dr Näslund, Mr Studer, Mr Pettersson, Drs Hagsäter, Nissbrandt, and Eriksson); Institute of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden (Dr Nilsson).
| |
Collapse
|
35
|
Chen S, Huang X, Yu T, Li X, Cao Y, Li X, Xu F, Yang F, Jesse FF, Xu M, Li W, He L, He G. Association study of TPH2 polymorphisms and bipolar disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:97-100. [PMID: 25152196 DOI: 10.1016/j.pnpbp.2014.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/26/2014] [Accepted: 08/16/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bipolar disorder (BPD) is a serious and common mental disorder with high heritability. The serotonergic system is known to be implicated in the etiology of the disorder. Tryptophan hydroxylase isoform-2 (TPH2), which controls the synthesis of serotonin in the brain, has been suggested as a candidate gene for BDP. The aim of this study was to examine the association between the polymorphisms in TPH2 and BPD. METHODS We conducted a case-control study by genotyping six SNPs (rs10784941, rs1386494, rs2171363, rs4760816, rs1386486, and rs1872824) in 506 bipolar patients and 507 controls of Chinese Han origin. RESULTS rs10784941 was not in the Hardy-Weinberg equilibrium and therefore excluded from further analysis. rs1386486 and rs1872824 showed statistically significant differences between cases and controls in genotype frequencies (rs1386486: p=0.043351; rs1872824: p=0.016563), but no association in allele frequencies. Strong LD was found among rs1386494, rs2171363 and rs4760816, but no positive association with BPD was found for haplotypes. CONCLUSION Our results indicate that in the Han Chinese population TPH2 may be a potential susceptibility gene for bipolar disorder. Further studies are needed to validate this association.
Collapse
Affiliation(s)
- Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Forrest Fabian Jesse
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
36
|
Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev 2014; 46 Pt 3:379-96. [PMID: 24661986 PMCID: PMC4170046 DOI: 10.1016/j.neubiorev.2014.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/15/2014] [Accepted: 03/01/2014] [Indexed: 12/20/2022]
Abstract
The Deakin/Graeff hypothesis proposes that different subpopulations of serotonergic neurons through topographically organized projections to forebrain and brainstem structures modulate the response to acute and chronic stressors, and that dysfunction of these neurons increases vulnerability to affective and anxiety disorders, including panic disorder. We outline evidence supporting the existence of a serotonergic system originally discussed by Deakin/Graeff that is implicated in the inhibition of panic-like behavioral and physiological responses. Evidence supporting this panic inhibition system comes from the following observations: (1) serotonergic neurons located in the 'ventrolateral dorsal raphe nucleus' (DRVL) as well as the ventrolateral periaqueductal gray (VLPAG) inhibit dorsal periaqueductal gray-elicited panic-like responses; (2) chronic, but not acute, antidepressant treatment potentiates serotonin's panicolytic effect; (3) contextual fear activates a central nucleus of the amygdala-DRVL/VLPAG circuit implicated in mediating freezing and inhibiting panic-like escape behaviors; (4) DRVL/VLPAG serotonergic neurons are central chemoreceptors and modulate the behavioral and cardiorespiratory response to panicogenic agents such as sodium lactate and CO2. Implications of the panic inhibition system are discussed.
Collapse
Affiliation(s)
- Evan D Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Philip L Johnson
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Anantha Shekhar
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| |
Collapse
|
37
|
Brooks LR, Pals HL, Enix CL, Woolaver RA, Paul ED, Lowry CA, Tsai PS. Fibroblast growth factor 8 deficiency compromises the functional response of the serotonergic system to stress. PLoS One 2014; 9:e101420. [PMID: 24992493 PMCID: PMC4081718 DOI: 10.1371/journal.pone.0101420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.
Collapse
Affiliation(s)
- Leah R Brooks
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Heide L Pals
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Courtney L Enix
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Rachel A Woolaver
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Evan D Paul
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Christopher A Lowry
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Pei-San Tsai
- Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
38
|
Forssman L, Peltola MJ, Yrttiaho S, Puura K, Mononen N, Lehtimäki T, Leppänen JM. Regulatory variant of the TPH2 gene and early life stress are associated with heightened attention to social signals of fear in infants. J Child Psychol Psychiatry 2014; 55:793-801. [PMID: 24304270 DOI: 10.1111/jcpp.12181] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cross-species evidence suggests that genetic and experiential factors act early in development to establish individual emotional traits, but little is known about the mechanisms that emerge during this period to mediate long-term outcomes. Here, we tested the hypothesis that known genetic and environmental risk conditions may heighten infants' natural tendency to attend to threat-alerting stimuli, resulting in a cognitive bias that may contribute to emotional vulnerability. METHODS Data from two samples of 5-7-month-old infants (N = 139) were used to examine whether established candidate variations in the serotonin-system genes, i.e., TPH2 SNP rs4570625 (-703 G/T) and HTR1A SNP rs6295 (-1019 G/C), and early rearing condition (maternal stress and depressive symptoms) are associated with alterations in infants' attention to facial expressions. Infants were tested with a paradigm that assesses the ability to disengage attention from a centrally presented stimulus (a nonface control stimulus or a neutral, happy, or fearful facial expression) toward the location of a new stimulus in the visual periphery (a geometric shape). RESULTS TPH2 -703 T-carrier genotype (i.e., TT homozygotes and heterozygotes), presence of maternal stress and depressive symptoms, and a combination of the T-carrier genotype and maternal depressive symptoms were associated with a relatively greater difficulty disengaging attention from fearful facial expressions. No associations were found with infants' temperamental traits. CONCLUSIONS Alterations in infants' natural attentional bias toward fearful facial expressions may emerge prior to the manifestation of emotional and social behaviors and provide a sensitive marker of early emotional development.
Collapse
Affiliation(s)
- Linda Forssman
- School of Medicine, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
40
|
Paul ED, Lowry CA. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol 2013; 27:1090-106. [PMID: 23704363 DOI: 10.1177/0269881113490328] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.
Collapse
Affiliation(s)
- Evan D Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, USA
| | | |
Collapse
|
41
|
Fox JH, Lowry CA. Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior. Front Neurosci 2013; 7:169. [PMID: 24065880 PMCID: PMC3778254 DOI: 10.3389/fnins.2013.00169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 12/01/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is involved in stress-related physiology and behavior, including control of the hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides, including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding protein (CRFBP) binds both CRF and UCN 1 and can modulate their activities. There are multiple mechanisms through which CRF-related peptides may influence emotional behavior, one of which is through altering the activity of brainstem neuromodulatory systems, including serotonergic systems. CRF and CRF-related peptides act within the dorsal raphe nucleus (DR), the major source for serotonin (5-HT) in the brain, to alter the neuronal activity of specific subsets of serotonergic neurons and to influence stress-related behavior. CRF-containing axonal fibers innervate the DR in a topographically organized manner, which may contribute to the ability of CRF to alter the activity of specific subsets of serotonergic neurons. CRF and CRF-related peptides can either increase or decrease serotonergic neuronal firing rates and serotonin release, depending on their concentrations and on the specific CRF receptor subtype(s) involved. This review aims to describe the interactions between CRF-related peptides and serotonergic systems, the consequences for stress-related behavior, and implications for vulnerability to anxiety and affective disorders.
Collapse
Affiliation(s)
- James H Fox
- Behavioral Neuroendocrinology Laboratory, Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder Boulder, CO, USA
| | | |
Collapse
|
42
|
Bethea CL, Phu K, Reddy AP, Cameron JL. The effect of short-term stress on serotonin gene expression in high and low resilient macaques. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:143-53. [PMID: 23357537 PMCID: PMC3654014 DOI: 10.1016/j.pnpbp.2013.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. When stressed with a paradigm of relocation and diet for 60 days, or 2 menstrual cycles, highly stress resilient monkeys continue to ovulate during both stress cycles (HSR); medium stress resilient monkeys ovulate once (MSR) and stress sensitive monkeys do not ovulate for the entire 60 days (SS). This study examines serotonin-related gene expression in monkeys with different sensitivity to stress and exposed to 5 days of moderate stress. Monkeys were first characterized as HSR, MSR or SS. After resumption of menstrual cycles, each monkey was re-stressed for 5 days in the early follicular phase. The expression of 3 genes pivotal to serotonin neural function was assessed in the 3 groups of monkeys (n=4-5/group). Tryptophan hydroxylase 2 (TPH2), the serotonin reuptake transporter (SERT), and the 5HT1A autoreceptor mRNAs expression were determined at 4 morphological levels of the dorsal raphe nucleus with in situ hybridization (ISH) using digoxigenin-incorporated riboprobes. In addition, cFos was examined with immunohistochemistry. Positive pixel area and/or cell number were measured. All data were analyzed with ANOVA (3 groups) and with a t-test (2 groups). After 5 days of stress, TPH2, SERT, 5HT1A and cFos were significantly lower in the SS group than the HSR group (p<0.05, all). This pattern of expression was the same as the pattern observed in the absence of stress in previous studies. Therefore, the ratio of the HSR/SS expression of each serotonergic gene was calculated in the presence and absence of stress. There was little or no difference in the ratio of HSR/SS gene expression in the presence or absence of stress. Moreover, cFos expression indicates that overall, cell activation in the dorsal raphe nucleus and periaquaductal gray is lower in SS than HSR animals. These data suggest that the serotonin system may set the sensitivity or resilience of the individual, but serotonin-related gene expression may not rapidly respond to moderate stress in nonhuman primates.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | |
Collapse
|
43
|
Own LS, Iqbal R, Patel PD. Maternal separation alters serotonergic and HPA axis gene expression independent of separation duration in c57bl/6 mice. Brain Res 2013; 1515:29-38. [DOI: 10.1016/j.brainres.2013.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/29/2022]
|
44
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
45
|
Chen GL, Miller GM. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders. Biochem Pharmacol 2013; 85:1227-33. [PMID: 23435356 DOI: 10.1016/j.bcp.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) has been long recognized to modulate the stress response, and dysfunction of 5-HT has been implicated in numerous stress disorders. Accordingly, the 5-HT system has been targeted for the treatment of stress disorders. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT synthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. With a decade of extensive investigation, it is now recognized that: (1) TPH2 exhibits a highly flexible gene expression that is modulated by an increasing number of internal and external environmental factors including the biological clock, stressors, endogenous hormones, and antidepressant therapies; and (2) genetically determined TPH2 activity is linked to a growing body of stress-related neuronal correlates and behavioral traits. These findings reveal an active role of TPH2 in the stress response and provide new insights into the long recognized but not yet fully understood 5-HT-stress interaction. As a major modulator of 5-HT neurotransmission and the stress response, TPH2 is of both pathophysiological and pharmacological significance, and is emerging as a new therapeutic target for the treatment of stress disorders. Given that numerous antidepressant therapies influence TPH2 gene expression, TPH2 is already inadvertently targeted for the treatment of stress disorders. With increased understanding of the regulation of TPH2 activity we can now purposely utilize TPH2 as a target to develop new or optimize current therapies, which are expected to greatly improve the prevention and treatment of a wide variety of stress disorders.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, One Pine Hill Drive, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
46
|
Lukkes JL, Kopelman JM, Donner NC, Hale MW, Lowry CA. Development × environment interactions control tph2 mRNA expression. Neuroscience 2013; 237:139-50. [PMID: 23403177 DOI: 10.1016/j.neuroscience.2013.01.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/29/2023]
Abstract
Adverse early life experience is thought to increase an individual's susceptibility to mental health disorders, including anxiety and affective disorders, later in life. Our previous studies have shown that post-weaning social isolation of female rats during a critical period of development sensitizes an anxiety-related serotonergic dorsal raphe nucleus (DR) system in adulthood. Therefore, we investigated how post-weaning social isolation, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor), affects home cage behavior and serotonergic gene expression in the DR of female rats using in situ hybridization histochemistry. Juvenile female rats were reared in isolation or groups of three for a 3-week period from weaning (postnatal day (PD) 21 to mid-adolescence (PD42)), after which all rats were group-reared for an additional 16 days until adulthood. Among vehicle-treated rats, isolation-reared rats had decreased rodent tryptophan hydroxylase 2 (tph2) mRNA expression in ventral and ventrolateral subdivisions of the DR, a pattern observed previously in a rat model of panic disorder. Isolation-reared rats, but not group-reared rats, responded to FG-7142 with increased duration of vigilance and arousal behaviors. In addition, FG-7142 decreased tph2 expression, measured 4h following treatment, in multiple subregions of the DR of group-reared rats but had no effect in isolation-reared rats. No treatment effects were observed on 5-HT1A receptor or serotonin transporter gene expression. These data suggest that adolescent social isolation alters tph2 expression in specific subregions of the DR and alters the effects of stress-related stimuli on behavior and serotonergic systems.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
47
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
48
|
Jasinska AJ, Lowry CA, Burmeister M. Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 2012; 35:395-402. [PMID: 22301434 DOI: 10.1016/j.tins.2012.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/02/2011] [Accepted: 01/01/2012] [Indexed: 12/16/2022]
Abstract
Reports of gene-environment interactions (GxE) between the serotonin transporter gene and stress on risk of depression have generated both excitement and controversy. The controversy persists in part because a mechanistic account of this GxE on serotonergic neurotransmission and risk of depression has been lacking. In this Opinion, we draw on recent discoveries in the functional neuroanatomy of the serotonergic dorsal raphe nucleus (DR) to propose such a mechanistic account. We argue that genetically produced variability in serotonin reuptake during stressor-induced raphe-raphe interactions alters the balance in the amygdala-ventromedial prefrontal cortex (VMPFC)-DR circuitry underlying stressor reactivity and emotion regulation. In particular, the recently characterized stressor-responsive serotonergic interneurons originating from the dorsolateral DR may hold a key to unlocking the GxE mechanism of depression.
Collapse
Affiliation(s)
- Agnes J Jasinska
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
49
|
Dygalo NN, Kalinina TS, Bulygina VV, Shishkina GT. Increased expression of the anti-apoptotic protein Bcl-xL in the brain is associated with resilience to stress-induced depression-like behavior. Cell Mol Neurobiol 2012; 32:767-76. [PMID: 22278304 PMCID: PMC11498427 DOI: 10.1007/s10571-011-9794-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
Clinical observations and the results of animal studies have implicated changes in neuronal survival and plasticity in both the etiology of mood disorders, especially stress-induced depression, and anti-depressant drug action. Stress may predispose individuals toward depression through down-regulation of neurogenesis and an increase in apoptosis in the brain. Substantial individual differences in vulnerability to stress are evident in humans and were found in experimental animals. Recent studies revealed an association between the brain anti-apoptotic protein B cell lymphoma like X, long variant (Bcl-xL) expression and individual differences in behavioral vulnerability to stress. The ability to increase Bcl-xL gene expression in the hippocampus in response to stress may be an important factor for determining the resistance to the development of stress-induced depression. Treatment with anti-depressant drugs may change Bcl-xL response properties. In the rat brainstem, expression of this anti-apoptotic gene becomes sensitive to swim stress during the long-term fluoxetine treatment, an effect that appeared concomitantly with the anti-depressant-like action of the drug in the forced swim test, suggesting that Bcl-xL may be a new target for depression therapy. The processes and pathways linking stress stimuli to behavior via intracellular anti-apoptotic protein are discussed here in the context of Bcl-xL functions in the mechanisms of individual differences in behavioral resilience to stress and anti-depressant-induced effects on the behavioral despair.
Collapse
|
50
|
Vedhara K, Metcalfe C, Brant H, Crown A, Northstone K, Dawe K, Lightman S, Smith GD. Maternal mood and neuroendocrine programming: effects of time of exposure and sex. J Neuroendocrinol 2012; 24:999-1011. [PMID: 22385021 DOI: 10.1111/j.1365-2826.2012.02309.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse exposures that influence growth in prenatal and early postnatal periods are considered to influence vulnerability to chronic diseases via their effects on the neuroendocrine system. In humans, the assessment of the underlying mechanisms has been restricted. The present study aimed to investigate the effects of adverse early-life exposures, specifically maternal mood, on hypothlamic-pituitary-adrenal (HPA) axis, sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) responses to an acute physiological stressor. In addition, we conducted a preliminary examination into whether these effects varied by time of exposure and sex. One hundred and thity-nine individuals (mean age 15.12 years) were recruited from the ALSPAC (Avon Longitudinal Study of Parents and Children) birth cohort. Participants underwent the CO(2) stress test and indices of the PNS, SNS and HPA axis were measured. Pre-existing data on demographic and psychosocial factors of the mothers during pregnancy (18 and 32 weeks) and postnatally (8 weeks and 8 months) were extracted, as were participants' clinical and demographic data at birth. Increases in both pre- and postnatal anxiety and depression were associated with greater SNS reactivity to the stressor and slower recovery, as well as blunted HPA axis responses. Programming effects on the SNS appeared to be restricted to male offspring only. No consistent relationships were evident for any of the measures of pre-stress function. We have found preliminary evidence that both pre- and postnatal maternal anxiety and depression have sustained programming effects on the SNS and HPA axis. Effects on the SNS were restricted to male offspring.
Collapse
Affiliation(s)
- K Vedhara
- IWHO, School of Community Health Sciences, International House, Jubilee Campus, University of Nottingham, Nottingham NG8 1BB, UK. kavita.vedhara@Nottingham
| | | | | | | | | | | | | | | |
Collapse
|