1
|
Sovateltide Mediated Endothelin B Receptors Agonism and Curbing Neurological Disorders. Int J Mol Sci 2022; 23:ijms23063146. [PMID: 35328566 PMCID: PMC8955091 DOI: 10.3390/ijms23063146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.
Collapse
|
2
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
3
|
Bryche B, Saint-Albin A, Le Poupon Schlegel C, Baly C, Congar P, Meunier N. Endothelin increases the proliferation of rat olfactory mucosa cells. Neural Regen Res 2019; 15:352-360. [PMID: 31552909 PMCID: PMC6905347 DOI: 10.4103/1673-5374.265558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The olfactory mucosa holds olfactory sensory neurons directly in contact with an aggressive environment. In order to maintain its integrity, it is one of the few neural zones which are continuously renewed during the whole animal life. Among several factors regulating this renewal, endothelin acts as an anti-apoptotic factor in the rat olfactory epithelium. In the present study, we explored whether endothelin could also act as a proliferative factor. Using primary culture of the olfactory mucosa, we found that an early treatment with endothelin increased its growth. Consistently, a treatment with a mixture of BQ123 and BQ788 (endothelin receptor antagonists) decreased the primary culture growth without affecting the cellular death level. We then used combined approaches of calcium imaging, reverse transcriptase-quantitative polymerase chain reaction and protein level measurements to show that endothelin was locally synthetized by the primary culture until it reached confluency. Furthermore, in vivo intranasal instillation of endothelin receptor antagonists led to a decrease of olfactory mucosa cell expressing proliferating cell nuclear antigen (PCNA), a marker of proliferation. Only short-term treatment reduced the PCNA level in the olfactory mucosa cells. When the treatment was prolonged, the PCNA level was not statistically affected but the expression level of endothelin was increased. Overall, our results show that endothelin plays a proliferative role in the olfactory mucosa and that its level is dynamically regulated. This study was approved by the Comité d’éthique en expérimentation animale COMETHEA (COMETHEA C2EA -45; protocol approval #12-058) on November 28, 2012.
Collapse
Affiliation(s)
- Bertrand Bryche
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas; Université de Versailles Saint-Quentin en Yvelines, Département de Biologie, Versailles, France
| | - Audrey Saint-Albin
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Le Poupon Schlegel
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Baly
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Patrice Congar
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Meunier
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas; Université de Versailles Saint-Quentin en Yvelines, Département de Biologie, Versailles, France
| |
Collapse
|
4
|
Bryche B, Dewaele A, Saint-Albin A, Le Poupon Schlegel C, Congar P, Meunier N. IL-17c is involved in olfactory mucosa responses to Poly(I:C) mimicking virus presence. Brain Behav Immun 2019; 79:274-283. [PMID: 30776474 DOI: 10.1016/j.bbi.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023] Open
Abstract
At the interface of the environment and the nervous system, the olfactory mucosa (OM) is a privileged pathway for environmental toxicants and pathogens towards the central nervous system. The OM is known to produce antimicrobial and immunological components but the mechanisms of action of the immune system on the OM remain poorly explored. IL-17c is a potent mediator of respiratory epithelial innate immune responses, whose receptors are highly expressed in the OM of mice. We first characterized the presence of the IL-17c and its receptors in the OM. While IL-17c was weakly expressed in the control condition, it was strongly expressed in vivo after intranasal administration of polyinosinic-polycytidylic (Poly I:C), a Toll Like Receptor 3 agonist, mimicking a viral infection. Using calcium imaging and electrophysiological recordings, we found that IL-17c can effectively activate OM cells through the release of ATP. In the longer term, intranasal chronic instillations of IL-17c increased the cellular dynamics of the epithelium and promoted immune cells infiltrations. Finally, IL-17c decreased cell death induced by Poly(I:C) in an OM primary culture. The OM is thus a tissue highly responsive to immune mediators, proving its central role as a barrier against airway pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Patrice Congar
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Meunier
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France; Université de Versailles Saint-Quentin en Yvelines, 78000 Versailles, France.
| |
Collapse
|
5
|
|
6
|
Gobé C, Elzaiat M, Meunier N, André M, Sellem E, Congar P, Jouneau L, Allais-Bonnet A, Naciri I, Passet B, Pailhoux E, Pannetier M. Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesis. PLoS Genet 2019; 15:e1007909. [PMID: 30735494 PMCID: PMC6383954 DOI: 10.1371/journal.pgen.1007909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
Gonad differentiation is a crucial step conditioning the future fertility of individuals and most of the master genes involved in this process have been investigated in detail. However, transcriptomic analyses of developing gonads from different animal models have revealed that hundreds of genes present sexually dimorphic expression patterns. DMXL2 was one of these genes and its function in mammalian gonads was unknown. We therefore investigated the phenotypes of total and gonad-specific Dmxl2 knockout mouse lines. The total loss-of-function of Dmxl2 was lethal in neonates, with death occurring within 12 hours of birth. Dmxl2-knockout neonates were weak and did not feed. They also presented defects of olfactory information transmission and severe hypoglycemia, suggesting that their premature death might be due to global neuronal and/or metabolic deficiencies. Dmxl2 expression in the gonads increased after birth, during follicle formation in females and spermatogenesis in males. DMXL2 was detected in both the supporting and germinal cells of both sexes. As Dmxl2 loss-of-function was lethal, only limited investigations of the gonads of Dmxl2 KO pups were possible. They revealed no major defects at birth. The gonadal function of Dmxl2 was then assessed by conditional deletions of the gene in gonadal supporting cells, germinal cells, or both. Conditional Dmxl2 ablation in the gonads did not impair fertility in males or females. By contrast, male mice with Dmxl2 deletions, either throughout the testes or exclusively in germ cells, presented a subtle testicular phenotype during the first wave of spermatogenesis that was clearly detectable at puberty. Indeed, Dmxl2 loss-of-function throughout the testes or in germ cells only, led to sperm counts more than 60% lower than normal and defective seminiferous tubule architecture. Transcriptomic and immunohistochemichal analyses on these abnormal testes revealed a deregulation of Sertoli cell phagocytic activity related to germ cell apoptosis augmentation. In conclusion, we show that Dmxl2 exerts its principal function in the testes at the onset of puberty, although its absence does not compromise male fertility in mice.
Collapse
Affiliation(s)
- Clara Gobé
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Maëva Elzaiat
- UMR 7592 Institut Jacques Monod, Université Paris Diderot/CNRS, Paris, France
| | - Nicolas Meunier
- NBO, INRA, Université Paris Saclay, Jouy en Josas, France
- Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Marjolaine André
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Eli Sellem
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
- R&D Department, ALLICE, Paris, France
| | - Patrice Congar
- NBO, INRA, Université Paris Saclay, Jouy en Josas, France
| | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Aurélie Allais-Bonnet
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
- R&D Department, ALLICE, Paris, France
| | - Ikrame Naciri
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, UMR 7216 CNRS, Paris, France
| | - Bruno Passet
- UMR-GABI 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Pailhoux
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Esvelt MA, Freeman ZT, Pearson AT, Harkema JR, Clines GA, Clines KL, Dyson MC, Hoenerhoff MJ. The Endothelin-A Receptor Antagonist Zibotentan Induces Damage to the Nasal Olfactory Epithelium Possibly Mediated in Part through Type 2 Innate Lymphoid Cells. Toxicol Pathol 2019; 47:150-164. [PMID: 30595110 PMCID: PMC7357205 DOI: 10.1177/0192623318816295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zibotentan, an endothelin-A receptor antagonist, has been used in the treatment of various cardiovascular disorders and neoplasia. Castrated athymic nude mice receiving zibotentan for a preclinical xenograft efficacy study experienced weight loss, gastrointestinal bloat, and the presence of an audible respiratory click. Human side effects have been reported in the nasal cavity, so we hypothesized that the nasal cavity is a target for toxicity in mice receiving zibotentan. Lesions in the nasal cavity predominantly targeted olfactory epithelium in treated mice and were more pronounced in castrated animals. Minimal lesions were present in vehicle control animals, which suggested possible gavage-related reflux injury. The incidence, distribution, and morphology of lesions suggested direct exposure to the nasal mucosa and a possible systemic effect targeting the olfactory epithelium, driven by a type 2 immune response, with group 2 innate lymphoid cell involvement. Severe nasal lesions may have resulted in recurrent upper airway obstruction, leading to aerophagia and associated clinical morbidity. These data show the nasal cavity is a target of zibotentan when given by gavage in athymic nude mice, and such unanticipated and off-target effects could impact interpretation of research results and animal health in preclinical studies.
Collapse
Affiliation(s)
- Marian A Esvelt
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Alexander T Pearson
- Section of Hematology/Oncology, The University of Chicago Medicine & Biological Sciences, Chicago, IL, 60637
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Gregory A Clines
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109
- Endocrinology Section, Ann Arbor VA Medical Center, Ann Arbor, Michigan 48105
| | - Katrina L Clines
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Melissa C Dyson
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
- In Vivo Animal Core, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
8
|
Endothelin impacts on olfactory processing in rats. Behav Brain Res 2018; 362:1-6. [PMID: 30597250 DOI: 10.1016/j.bbr.2018.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023]
Abstract
In the olfactory epithelium, olfactory sensitive neurons and their axons are surrounded by glia-like cells called sustentacular cells, which maintain both the structural and ionic integrity of the olfactory mucosa. We have previously found that endothelin-1 (ET-1) can uncouple sustentacular cell gap junctions in vitro similarly as carbenoxolone, a known gap junction uncoupling agent. The role of gap junctions in odorant transduction remains controversial and we explored here if ET-1 naturally produced by the olfactory mucosa could impact odorant detection. Using calcium imaging on olfactory mucosa explant, we first confirmed that ET-1 uncouples gap junctions in an olfactory mucosa preparation preserving the tissue integrity. We next measured the olfactory epithelium responses to odorant stimulation using electro-olfactogram recordings. While the amplitude of the response was not modified by application of ET-1 and carbenoxolone, its repolarizing phase was slower after both treatments. We finally examined the behavioral performances of rat pups in an orientation test based on maternal odor recognition after intranasal instillations of ET-1 or carbenoxolone. While rat pups performances were decreased after ET-1 treatment, it was unchanged after carbenoxolone treatment. Overall, our results indicate that ET-1 modulates olfactory responses at least partly through gap junction uncoupling.
Collapse
|
9
|
Nakamuta S, Kusuda S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Immunohistochemical analysis of the development of olfactory organs in two species of turtles Pelodiscus sinensis and Mauremys reevesii. Acta Histochem 2018; 120:806-813. [PMID: 30236832 DOI: 10.1016/j.acthis.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023]
Abstract
The nasal cavity of turtles is composed of the upper and lower chambers, lined by the upper and lower chamber epithelia, respectively. In many turtles including the Reeve's turtle Mauremys reevesii, the upper chamber epithelium contains ciliated olfactory receptor neurons (ORNs) and the lower chamber epithelium contains microvillous ORNs. However, in the olfactory organ of the Chinese soft-shelled turtle Pelodiscus sinensis, both the upper and lower chamber epithelia contain ciliated ORNs. In the present study, we immunohistochemically examined the developmental process of olfactory organs in soft-shelled turtle and the Reeve's turtle to clarify the developmental origins of the lower chamber epithelium in these turtles. Obtained data indicate that olfactory organs of these turtles have identical origin and follow similar process of development, suggesting that, in the lower chamber epithelium of the nasal cavity, ciliated ORNs differentiate in soft-shelled turtle whereas microvillous ORNs differentiate in the Reeve's turtle.
Collapse
|
10
|
Francois A, Bombail V, Jarriault D, Acquistapace A, Grebert D, Grosmaitre X, Meunier N. Daily oscillation of odorant detection in rat olfactory epithelium. Eur J Neurosci 2017; 45:1613-1622. [PMID: 28452078 DOI: 10.1111/ejn.13600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Most of biological variables follow a daily rhythm. It holds true as well for sensory capacities as two decades of research have demonstrated that the odorant induced activity in the olfactory bulbs oscillates during the day. Olfactory bulbs are the first central nervous system structures, which receive inputs from the olfactory neurons located in the nose olfactory epithelium in vertebrates. So far, data on variation in odorant detection in the olfactory epithelium throughout the day are missing. Using electroolfactogram recordings in rats housed under daily light and dark cycles, we found that the olfactory epithelium responsiveness varies during the day with a maximum in the beginning of the light phase. This fluctuation was consistent with cycling of transduction pathway gene expression in the olfactory epithelium examined by qPCR. It was also consistent with the levels of two transduction pathway proteins (olfactory-type G protein and adenylyl cyclase III) examined by western blot. Daily variations were also observed at the level of olfactory sensory neurons responses recorded by patch-clamp. To rule out a potential effect of the feeding status of the animal, we examined the variation in odorant response in starved animals during the day. We observed a similar pattern to ad libidum fed animals. Taken together, our results reveal that the olfactory epithelium sensitivity varies during the day in part due to modulation of the very first step of odorant detection.
Collapse
Affiliation(s)
- Adrien Francois
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France.,NBO, UVSQ, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Bombail
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France
| | - David Jarriault
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Denise Grebert
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France.,NBO, UVSQ, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
11
|
Fouda MA, Abdel-Rahman AA. Endothelin Confers Protection against High Glucose-Induced Neurotoxicity via Alleviation of Oxidative Stress. J Pharmacol Exp Ther 2017; 361:130-139. [PMID: 28179472 PMCID: PMC5363775 DOI: 10.1124/jpet.116.238659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
Recent findings linked the inhibition in the neuromodulator peptide endothelin-1 (ET-1) level to the high glucose-evoked neurotoxicity. However, definitive neuroprotective role for ET-1 and the major neuronal ET (ET-3) against high glucose-evoked toxicity and the implicated neurochemical responses triggered by their ET-A and ET-B receptors remain unknown. Here, we tested the hypothesis that ET-B activation alleviates high glucose-evoked oxidative stress and cell death. High glucose (100 mM for 48 hours)-evoked cell death was associated with elevation in reactive oxygen species, inhibition of catalase activity, and a paradoxical upregulation of hemeoxygenase-1 expression along with ET-A and ET-B receptors were downregulated and upregulated, respectively. ET-1 or ET-3, in concentrations that had no effect on PC12 cell viability in normal glucose medium, alleviated all high glucose-evoked neurochemical responses, except for the reduction in ET-A receptor expression. Prior (4 hours) incubation with a selective ET-A (BQ123) or ET-B (BQ788) receptor blocker abrogated the neuroprotection conferred by ET-1 or ET-3. However, the ET-B receptor played a greater role because BQ788 abrogated the favorable ET-1- or ET-3-mediated reversal of the ERK1/2 phosphorylation and the inhibition in catalase activity caused by high glucose. These findings suggest that endothelin exerts ET-B receptor-dependent favorable redox and neuroprotective effects against high glucose-evoked oxidative damage and neurotoxicity.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| |
Collapse
|
12
|
Gulati A. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia. Curr Neuropharmacol 2017; 14:619-26. [PMID: 26786146 PMCID: PMC4981738 DOI: 10.2174/1570159x14666160119094959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/11/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Neurogenesis is most active during pre-natal development, however, it persists throughout the human lifespan. The putative role of mitochondria in neurogenesis and angiogenesis is gaining importance. Since, ETB receptor mediated neurogenesis and angiogenesis has been identified, the role of these receptors with relevance to mitochondrial functions is of interest. Methods: In addition to work from our laboratory, we undertook an extensive search of bibliographic databases for peer-reviewed research literature. Specific technical terms such as endothelin, mitochondria and neurogenesis were used to seek out and critically evaluate literature that was relevant. Results: The ET family consists of three isopeptides (ET-1, ET-2 and ET-3) that produce biological actions by acting on two types of receptors (ETA and ETB). In the central nervous system (CNS) ETA receptors are potent constrictors of the cerebral vasculature and appear to contribute in the causation of cerebral ischemia. ETA receptor antagonists have been found to be effective in animal model of cerebral ischemia; however, clinical studies have shown no efficacy. Mitochondrial functions are critically important for several neural development processes such as neurogenesis, axonal and dendritic growth, and synaptic formation. ET appears to impair mitochondrial functions through activation of ETA receptors. On the other hand, blocking ETB receptors has been shown to trigger apoptotic processes by activating intrinsic mitochondrial pathway. Mitochondria are important for their role in molecular regulation of neurogenesis and angiogenesis. Stimulation of ETB receptors in the adult ischemic brain has been found to promote angiogenesis and neurogenesis mediated through vascular endothelial growth factor and nerve growth factor. It will be interesting to investigate the effect of ETB receptor stimulation on mitochondrial functions in the CNS following cerebral ischemia. Conclusion: The findings of this review implicate brain ETB receptors in angiogenesis and neurogenesis following cerebral ischemia, it is possible that the positive effect of stimulating ETB receptors in cerebral ischemia may be mediated through mitochondrial functions.
Collapse
Affiliation(s)
- Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL 60515-1235.
| |
Collapse
|
13
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
14
|
Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 2016; 6:34011. [PMID: 27659313 PMCID: PMC5034277 DOI: 10.1038/srep34011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease.
Collapse
Affiliation(s)
- Sébastien Rivière
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Vanessa Soubeyre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - David Jarriault
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Adrien Molinas
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Elise Léger-Charnay
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Lucie Desmoulins
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Denise Grebert
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France.,Université de Versailles Saint Quentin en Yvelines, F-78000 Versailles, France
| | - Xavier Grosmaitre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| |
Collapse
|
15
|
Sakai S, Maruyama H, Kimura T, Tajiri K, Honda J, Homma S, Aonuma K, Miyauchi T. Antagonists to endothelin receptor type B promote apoptosis in human pulmonary arterial smooth muscle cells. Life Sci 2016; 159:116-120. [DOI: 10.1016/j.lfs.2016.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022]
|
16
|
François A, Grebert D, Rhimi M, Mariadassou M, Naudon L, Rabot S, Meunier N. Olfactory epithelium changes in germfree mice. Sci Rep 2016; 6:24687. [PMID: 27089944 PMCID: PMC4835764 DOI: 10.1038/srep24687] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 01/15/2023] Open
Abstract
Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration.
Collapse
Affiliation(s)
- Adrien François
- NBO, UVSQ, INRA, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Denise Grebert
- NBO, INRA, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Moez Rhimi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | | | - Laurent Naudon
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Nicolas Meunier
- NBO, UVSQ, INRA, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
Le Bourhis M, Rimbaud S, Grebert D, Congar P, Meunier N. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa. Eur J Neurosci 2014; 40:2878-87. [PMID: 24995882 DOI: 10.1111/ejn.12665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated.
Collapse
Affiliation(s)
- Mikaël Le Bourhis
- Université d'Evry Val d'Essone, Evry, France; Domaine de Vilvert, INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Biologie de l'Olfaction et Biosenseurs, Jouy en Josas, France; Neuro-Sud, IFR 144, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats. Pharmacol Biochem Behav 2014; 120:65-72. [DOI: 10.1016/j.pbb.2014.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 01/21/2023]
|
19
|
Ranno E, D'Antoni S, Spatuzza M, Berretta A, Laureanti F, Bonaccorso CM, Pellitteri R, Longone P, Spalloni A, Iyer AM, Aronica E, Catania MV. Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death. Neurobiol Dis 2014; 65:160-71. [PMID: 24423643 DOI: 10.1016/j.nbd.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/13/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of motor neurons (MNs) and astrogliosis. Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.
Collapse
Affiliation(s)
- Eugenia Ranno
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; PhD Program in Neurobiology, University of Catania, Catania, Italy
| | - Simona D'Antoni
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Antonio Berretta
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Floriana Laureanti
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
20
|
François A, Laziz I, Rimbaud S, Grebert D, Durieux D, Pajot-Augy E, Meunier N. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival. Front Cell Neurosci 2013; 7:271. [PMID: 24399931 PMCID: PMC3870945 DOI: 10.3389/fncel.2013.00271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.
Collapse
Affiliation(s)
- Adrien François
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France ; Université de Versailles Saint-Quentin en Yvelines Versailles, France
| | - Iman Laziz
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France ; Université de Versailles Saint-Quentin en Yvelines Versailles, France
| | - Stéphanie Rimbaud
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France ; Université de Versailles Saint-Quentin en Yvelines Versailles, France
| | - Denise Grebert
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France
| | - Didier Durieux
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France
| | - Edith Pajot-Augy
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie Jouy-en-Josas, France ; IFR144, NeuroSud Paris Gif-Sur-Yvette, France ; Université de Versailles Saint-Quentin en Yvelines Versailles, France
| |
Collapse
|
21
|
Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors. J Neurosci 2013; 33:2849-59. [PMID: 23407944 DOI: 10.1523/jneurosci.3229-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.
Collapse
|
22
|
Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res 2012; 1464:14-23. [PMID: 22580085 DOI: 10.1016/j.brainres.2012.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022]
Abstract
We have earlier shown that stimulation of endothelin B receptors by IRL-1620 provides significant neuroprotection at 24h following cerebral ischemia. However, the effect of IRL-1620 is not known in the subacute phase of cerebral ischemia, where development of cerebral edema further contributes towards brain damage. This study was designed to determine the effect of IRL-1620 on neurological functions, infarct volume, oxidative stress, and endothelin receptors following permanent middle cerebral artery occlusion for 7 days. Rats received three intravenous injections of either vehicle or IRL-1620 [Suc-[Glu9,Ala11,15]-Endothelin-1(8-12)] at 2, 4, and 6h post occlusion. Treatment with IRL-1620 reduced infarct volume (54.06 ± 14.12 mm(3) vs. 177.06 ± 13.21 mm(3)), prevented cerebral edema and significantly improved all neurological and motor function parameters when compared to the vehicle-treated group. Vehicle-treated middle cerebral artery occluded rats demonstrated high levels of malondialdehyde and low levels of reduced glutathione and superoxide dismutase; these effects were reversed in IRL-1620 treated rats. No change in expression of endothelin A receptor was observed 7 days after induction of cerebral ischemia in vehicle or IRL-1620 treated rats. Rats receiving IRL-1620 demonstrated an upregulation of endothelin B receptor only in the infarcted hemisphere 7 days following occlusion. All effects of IRL-1620 were blocked by endothelin B receptor antagonist, BQ788. Results of the present study demonstrate that IRL-1620, administered on day 1, provides significant neuroprotection till 7 days after the induction of cerebral ischemia in rats. Selective endothelin B receptor activation may prove to be a novel therapeutic target in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Mary G Leonard
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
23
|
Joseph EK, Levine JD. Sexual dimorphism in endothelin-1 induced mechanical hyperalgesia in the rat. Exp Neurol 2011; 233:505-12. [PMID: 22155617 DOI: 10.1016/j.expneurol.2011.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/26/2011] [Accepted: 11/22/2011] [Indexed: 01/20/2023]
Abstract
While the onset of mechanical hyperalgesia induced by endothelin-1 was delayed in female rats, compared to males, the duration was much longer. Given that the repeated test stimulus used to assess nociceptive threshold enhances hyperalgesia, a phenomenon we have referred to as stimulus-induced enhancement of hyperalgesia, we also evaluated for sexual dimorphism in the impact of repeated application of the mechanical test stimulus on endothelin-1 hyperalgesia. In male and female rats, endothelin-1 induced hyperalgesia is already maximal at 30 min. At this time stimulus-induced enhancement of hyperalgesia, which is observed only in male rats, persisted for 3-4h. In contrast, in females, it develops only after a very long (15 day) delay, and is still present, without attenuation, at 45 days. Ovariectomy eliminated these differences between male and female rats. These findings suggest marked, ovarian-dependent sexual dimorphism in endothelin-1 induced mechanical hyperalgesia and its enhancement by repeated mechanical stimulation.
Collapse
Affiliation(s)
- Elizabeth K Joseph
- Department of Medicine and Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, USA
| | | |
Collapse
|
24
|
Leonard MG, Briyal S, Gulati A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain Res 2011; 1420:48-58. [PMID: 21959172 DOI: 10.1016/j.brainres.2011.08.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 01/25/2023]
Abstract
Endothelin and its receptors have long been considered therapeutic targets in the treatment of ischemic stroke. Recent studies indicate that ET(B) receptors may provide both vasodilatation and neuroprotection. The purpose of this study was to determine the effect of selectively activating the ET(B) receptors following permanent middle cerebral artery occlusion in rats. IRL-1620 [Suc-[Glu9,Ala11,15]-Endothelin-1(8-12)], a highly selective ET(B) agonist, was used alone and in conjunction with BQ788, an ET(B) antagonist, to determine the role of ET(B) receptors in cerebral ischemia. Rats were assessed for neurological deficit and motor function, and their brains were evaluated to determine infarct area, oxidative stress parameters, and ET receptor protein levels. Animals treated with IRL-1620 showed significant improvement in all neurological and motor function tests when compared with both vehicle-treated and BQ788-treated middle cerebral artery occluded groups. In addition, there was a significant decrease in infarct volume 24h after occlusion in animals treated with IRL-1620 (24.47±4.37mm(3)) versus the vehicle-treated group (153.23±32.18mm(3)). Blockade of ET(B) receptors by BQ788 followed by either vehicle or IRL-1620 treatment resulted in infarct volumes similar to those of rats treated with vehicle alone (163.51±25.41 and 139.21±15.20mm(3), respectively). Lipid peroxidation, as measured by malondialdehyde, increased and antioxidants (superoxide dismutase and reduced glutathione) decreased following infarct. Treatment with IRL-1620 reversed these effects, indicating that ET(B) receptor activation reduces oxidative stress injury following ischemic stroke. Animals pretreated with BQ788 showed similar oxidative stress damage as those in the vehicle-treated group. No significant difference was observed in ET(B) receptor levels in any of the groups. The present study demonstrates that ET(B) receptor activation may be a novel neuroprotective therapy in the treatment of focal ischemic stroke.
Collapse
Affiliation(s)
- Mary G Leonard
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515-1235, USA
| | | | | |
Collapse
|
25
|
Lacroix MC, Rodriguez-Enfedaque A, Grébert D, Laziz I, Meunier N, Monnerie R, Persuy MA, Riviere S, Caillol M, Renaud F. Insulin but not leptin protects olfactory mucosa from apoptosis. J Neuroendocrinol 2011; 23:627-40. [PMID: 21554433 DOI: 10.1111/j.1365-2826.2011.02154.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mammalian olfactory mucosa (OM) is continually renewed throughout life. Owing to their position in the nasal cavity, OM cells are exposed to multiple insults, including high levels of odourants that can induce their death. OM regeneration is therefore essential to maintain olfactory function, and requires the tight control of both cell death and proliferation. Apoptosis has been implicated in OM cell death. Olfaction is one of the senses involved in food intake and depends on individual nutritional status. We have previously reported the influence of hormones related to nutritional status on odour perception and have shown that the OM is a target of insulin and leptin, two hormones known for their anti-apoptotic properties. In the present study, we investigated the potential anti-apoptotic effect of these metabolic hormones on OM cells. Both Odora cells (an olfactive cell line) and OM cells treated with etoposide, a p53 activity inducer, exhibited mitochondrial-dependent apoptosis that was inhibited by the pan-caspase inhibitor zVAD-fmk. Insulin, but not leptin, impaired this apoptotic effect. Insulin addition to the culture medium reduced p53 phosphorylation, caspase-3 and caspase-9 cleavage, and caspase-3 enzymatic activity induced by etoposide. The apoptotic wave observed in the OM after interruption of the neuronal connections between the OM and the olfactory bulb by bulbectomy was impaired by intranasal insulin treatment. These findings suggest that insulin may be involved in OM cellular dynamics, through endocrine and/or paracrine-autocrine effects of circulating or local insulin, respectively.
Collapse
Affiliation(s)
- M-C Lacroix
- INRA, UMR 1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Jouy en Josas, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Joseph EK, Gear RW, Levine JD. Mechanical stimulation enhances endothelin-1 hyperalgesia. Neuroscience 2011; 178:189-95. [PMID: 21277948 DOI: 10.1016/j.neuroscience.2011.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/15/2011] [Accepted: 01/20/2011] [Indexed: 11/15/2022]
Abstract
When comparing a cumulative dose-response curve for endothelin-1 (ET-1)-induced mechanical hyperalgesia to the effect of individual doses (1 ng, 10 ng, 100 ng, and 1 μg) administered in separate groups of rats, a marked difference was observed in the peak magnitude of hyperalgesia. Hyperalgesia was measured as decrease in the threshold for mechanically-induced withdrawal of the hind paw. The cumulative dosing protocol produced markedly greater maximum hyperalgesia. To determine whether this was due to the cumulative dosing protocol or to the repeated exposure to the mechanical test stimulus, we evaluated the impact of repeated testing on ET-1-induced mechanical hyperalgesia. While ET-1-induced mechanical hyperalgesia was dose- and time-dependent, repeated testing of nociceptive threshold, at 5 min intervals, following a single dose of ET-1, produced further decrease in nociceptive threshold. This mechanical stimulation-induced enhancement of ET-1 hyperalgesia lasted only 3-4 h, while the hyperalgesia lasted in excess of 5 days. The stimulation-enhanced hyperalgesia also occurred after a second injection of ET-1, administered 24 h after the initial dose. That this phenomenon is unique to ET-1 is suggested by the observation that while five additional, direct-acting hyperalgesic agents-prostaglandin E2 (PGE2), nerve growth factor (NGF), glia-derived neurotrophic factor (GDNF), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα)-induced robust mechanical hyperalgesia, none produced mechanical stimulation-enhanced hyperalgesia.
Collapse
Affiliation(s)
- E K Joseph
- Division of Neuroscience, Department of Oral and Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|