1
|
Ali SH, Fallon N, Giesbrecht T, Stancak A, Roberts CA. Affective touch reduces histamine evoked itch experience. PLoS One 2025; 20:e0319006. [PMID: 40261921 PMCID: PMC12013876 DOI: 10.1371/journal.pone.0319006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/24/2025] [Indexed: 04/24/2025] Open
Abstract
Itch is a commonly experienced symptom of skin diseases such as eczema. Topical corticosteroid medications are widely used in chronic itch conditions but can lead to skin thinning, and in certain cases, topical corticosteroid withdrawal. As such, non-pharmaceutical alternatives are being researched. The present research explored affective touch (slow stroking, gentle touch signalled by C-tactile afferents) as a strategy to reduce histamine induced itch. Whilst experiencing histamine induced itch on the volar side of the forearms/wrist, participants (n = 60) were subjected to 3 experimental conditions of modulatory somatosensation applied to the volar aspect of the same forearm relative to the site of itch induction (18 trials of each); 1) affective touch (stroking the forearm with a soft brush at 3 cm/s), 2) non-affective touch (stroking the forearm with a soft brush at 18 cm/s) and 3) active control (static brush tapping on the forearm at 1Hz). Participants were asked to rate the severity of itch, and pleasantness of touch, after each trial. We also investigated whether changes in itch severity scores during the affective touch condition were moderated by individual differences in somatosensory experiences and attitudes as measured on the Touch Experiences and Attitudes Questionnaire (TEAQ), and the Pain Vigilance and Awareness Questionnaire (PVAQ). A linear mixed effects model indicated a main effect of condition on itch severity, whereby affective touch significantly reduced itch severity compared to non-affective touch (p < .001) and active control (p < .001). The TEAQ and PVAQ scores did not correlate significantly with itch scores in the affective touch condition. These results suggest that affective touch has a relieving effect on histamine-induced itch. Our findings lend further credibility to the idea that affective touch might be able to serve as an effective non-pharmaceutical treatment of itch conditions complementing established approaches.
Collapse
Affiliation(s)
- Syed Hasan Ali
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Fallon
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| | | | - Andrej Stancak
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| | - Carl A Roberts
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Kvetkina AN, Klimovich AA, Deriavko YV, Pislyagin EA, Menchinskaya ES, Bystritskaya EP, Isaeva MP, Lyukmanova EN, Shenkarev ZO, Aminin DL, Leychenko EV. Sea Anemone Kunitz Peptide HCIQ2c1 Reduces Histamine-, Lipopolysaccharide-, and Carrageenan-Induced Inflammation via the Suppression of Pro-Inflammatory Mediators. Int J Mol Sci 2025; 26:431. [PMID: 39796283 PMCID: PMC11721031 DOI: 10.3390/ijms26010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone Heteractis magnifica is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as well as in LPS-induced systemic inflammation and carrageenan-induced paw edema models in CD-1 mice. We found that 10 μM HCIQ2c1 dramatically decreases histamine-induced intracellular Ca2+ release and LPS-induced reactive oxygen species (ROS) production in RAW 264.7 macrophages. Moreover, HCIQ2c1 significantly inhibited the production of LPS-induced tumor necrosis factor α (TNF-α), inducible NO-synthase (iNOS), and 5-lipoxygenase (5-LO) but slightly influenced the IL-1β and cyclooxygenase-2 (COX-2) expression level in macrophages. Furthermore, intravenous administration by HCIQ2c1 at 0.1 mg/kg dose reduced LPS-induced TNF-α, IL-1β, COX-2, and iNOS gene expression in CD-1 mice. The subplantar administration of HCIQ2c1 at 0.1 mg/kg dose to mice significantly reduced carrageenan-induced paw edema by a factor of two, which is comparable to the effect of diclofenac at 1 mg/kg dose. Thus, peptide HCIQ2c1 has a strong anti-inflammatory potential by the attenuation of systemic and local inflammatory effects through the inhibition of intracellular Ca2+ release, the production of ROS and pro-inflammatory cytokines, and enzymes involved in arachidonic acid metabolism.
Collapse
Affiliation(s)
- Aleksandra N. Kvetkina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
- Laboratory of Structural Biology of Ion Channels, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Anna A. Klimovich
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Yulia V. Deriavko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Evgeniy A. Pislyagin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Evgenia P. Bystritskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Marina P. Isaeva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
| | - Ekaterina N. Lyukmanova
- Biological Department, Shenzhen MSU-BIT University, Shenzhen 518172, China;
- Laboratory of Bioengineering of Neuromodulators and Neuroreceptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology” Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Laboratory of Structural Biology of Ion Channels, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitriy L. Aminin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Elena V. Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.N.K.); (A.A.K.); (Y.V.D.); (E.A.P.); (E.S.M.); (E.P.B.); (M.P.I.); (D.L.A.)
- Laboratory of Structural Biology of Ion Channels, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| |
Collapse
|
3
|
Stasiak A, Honkisz-Orzechowska E, Gajda Z, Wagner W, Popiołek-Barczyk K, Kuder KJ, Latacz G, Juszczak M, Woźniak K, Karcz T, Szczepańska K, Jóźwiak-Bębenista M, Kieć-Kononowicz K, Łażewska D. AR71, Histamine H 3 Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int J Mol Sci 2024; 25:8035. [PMID: 39125607 PMCID: PMC11311998 DOI: 10.3390/ijms25158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.
Collapse
Affiliation(s)
- Anna Stasiak
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Zbigniew Gajda
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Waldemar Wagner
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology of Polish Academy of Sciences, 106 Lodowa Str., 93-232 Łódź, Poland
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| |
Collapse
|
4
|
Lian Y, Wu C, Liu L, Li X. Prediction of cell-cell communication patterns of dorsal root ganglion cells: single-cell RNA sequencing data analysis. Neural Regen Res 2024; 19:1367-1374. [PMID: 37905887 PMCID: PMC11467928 DOI: 10.4103/1673-5374.384067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 11/02/2023] Open
Abstract
Dorsal root ganglion neurons transmit peripheral somatic information to the central nervous system, and dorsal root ganglion neuron excitability affects pain perception. Dorsal root ganglion stimulation is a new approach for managing pain sensation. Knowledge of the cell-cell communication among dorsal root ganglion cells may help in the development of new pain and itch management strategies. Here, we used the single-cell RNA-sequencing (scRNA-seq) database to investigate intercellular communication networks among dorsal root ganglion cells. We collected scRNA-seq data from six samples from three studies, yielding data on a total of 17,766 cells. Based on genetic profiles, we identified satellite glial cells, Schwann cells, neurons, vascular endothelial cells, immune cells, fibroblasts, and vascular smooth muscle cells. Further analysis revealed that eight types of dorsal root ganglion neurons mediated proprioceptive, itch, touch, mechanical, heat, and cold sensations. Moreover, we predicted several distinct forms of intercellular communication among dorsal root ganglion cells, including cell-cell contact, secreted signals, extracellular matrix, and neurotransmitter-mediated signals. The data mining predicted that Mrgpra3 -positive neurons robustly express the genes encoding the adenosine Adora2b (A2B) receptor and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα-1). Our immunohistochemistry results confirmed the coexpression of the A2B receptor and GFRα-1. Intrathecal injection of the A2B receptor antagonist PSB-603 effectively prevented histamine-induced scratching behaviour in a dose-dependent manner. Our results demonstrate the involvement of the A2B receptor in the modulation of itch sensation. Furthermore, our findings provide insight into dorsal root ganglion cell-cell communication patterns and mechanisms. Our results should contribute to the development of new strategies for the regulation of dorsal root ganglion excitability.
Collapse
Affiliation(s)
- Yanna Lian
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Cheng Wu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang Province, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangyao Li
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang Province, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Balzulat A, Zhu WF, Flauaus C, Hernandez‐Olmos V, Heering J, Sethumadhavan S, Dubiel M, Frank A, Menge A, Hebchen M, Metzner K, Lu R, Lukowski R, Ruth P, Knapp S, Müller S, Steinhilber D, Hänelt I, Stark H, Proschak E, Schmidtko A. Discovery of a Small Molecule Activator of Slack (Kcnt1) Potassium Channels That Significantly Reduces Scratching in Mouse Models of Histamine-Independent and Chronic Itch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307237. [PMID: 38350720 PMCID: PMC11022729 DOI: 10.1002/advs.202307237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.
Collapse
Affiliation(s)
- Annika Balzulat
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - W. Felix Zhu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Victor Hernandez‐Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Sunesh Sethumadhavan
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Amelie Menge
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Maureen Hebchen
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Robert Lukowski
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Peter Ruth
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Stefan Knapp
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Susanne Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Inga Hänelt
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| |
Collapse
|
6
|
Yeo E, Shim J, Oh SJ, Choi Y, Noh H, Kim H, Park JH, Lee KT, Kim SH, Lee D, Lee JH. Revisiting roles of mast cells and neural cells in keloid: exploring their connection to disease activity. Front Immunol 2024; 15:1339336. [PMID: 38524141 PMCID: PMC10957560 DOI: 10.3389/fimmu.2024.1339336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Background Mast cells (MCs) and neural cells (NCs) are important in a keloid microenvironment. They might contribute to fibrosis and pain sensation within the keloid. However, their involvement in pathological excessive scarring has not been adequately explored. Objectives To elucidate roles of MCs and NCs in keloid pathogenesis and their correlation with disease activity. Methods Keloid samples from chest and back regions were analyzed. Single-cell RNA sequencing (scRNA-seq) was conducted for six active keloids (AK) samples, four inactive keloids (IK) samples, and three mature scar (MS) samples from patients with keloids. Results The scRNA-seq analysis demonstrated notable enrichment of MCs, lymphocytes, and macrophages in AKs, which exhibited continuous growth at the excision site when compared to IK and MS samples (P = 0.042). Expression levels of marker genes associated with activated and degranulated MCs, including FCER1G, BTK, and GATA2, were specifically elevated in keloid lesions. Notably, MCs within AK lesions exhibited elevated expression of genes such as NTRK1, S1PR1, and S1PR2 associated with neuropeptide receptors. Neural progenitor cell and non-myelinating Schwann cell (nmSC) genes were highly expressed in keloids, whereas myelinating Schwann cell (mSC) genes were specific to MS samples. Conclusions scRNA-seq analyses of AK, IK, and MS samples unveiled substantial microenvironmental heterogeneity. Such heterogeneity might be linked to disease activity. These findings suggest the potential contribution of MCs and NCs to keloid pathogenesis. Histopathological and molecular features observed in AK and IK samples provide valuable insights into the mechanisms underlying pain and pruritus in keloid lesions.
Collapse
Affiliation(s)
- Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - YoungHwan Choi
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heeyeon Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Singto T, Filor V, Vidak J, Klopfleisch R, Bäumer W. Dendritic cells under allergic condition enhance the activation of pruritogen-responsive neurons via inducing itch receptors in a co-culture study. BMC Immunol 2024; 25:17. [PMID: 38347451 PMCID: PMC10863282 DOI: 10.1186/s12865-024-00604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Itch sensitization has been reported in patients with chronic allergic skin diseases and observed in a mouse model of allergic contact dermatitis (ACD). There is evidence suggesting that neuroimmune interactions may contribute to itch sensitization, as an increase in dendritic cells (DCs) within ganglia has been observed during allergic conditions. However, how DCs interact with sensory neurons in ganglia during allergic conditions is still not known. This study aims to investigate the role of DCs in dorsal root ganglion (DRG) under ACD conditions, specifically focusing on itch sensitization within the DRG. The tolylene-2,4-diisocyanate (TDI) mouse model for ACD and the co-culture model of DCs and DRG neurons was employed in this study. RESULTS We successfully induced ACD by TDI, as evidenced by the development of edema, elevated total serum IgE levels, and an observed itch reaction in TDI-sensitized mice. Calcium imaging and RT-qPCR analysis revealed that TDI-sensitized mice exhibited signs of peripheral sensitization, including a higher percentage of neurons responding to pruritogens and increased activation and expression of itch receptors in excised DRG of TDI-sensitized mice. Immunofluorescence and flow cytometric analysis displayed an increase of MHCII+ cells, which serves as a marker for DCs, within DRG during ACD. The co-culture study revealed that when DRG neurons were cultured with DCs, there was an increase in the number of neurons responsive to pruritogens and activation of itch receptors such as TRPA1, TRPV1, H1R, and TRPV4. In addition, the immunofluorescence and RT-qPCR study confirmed an upregulation of TRPV4. CONCLUSIONS Our findings indicate that there is an increase of MHCII+ cells and itch peripheral sensitization in DRG under TDI-induced ACD condition. It has been found that MHCII+ cells in DRG might contribute to the itch peripheral sensitization by activating itch receptors, as shown through co-culture studies between DRG neurons and DCs. Further studies are required to identify the specific mediator(s) responsible for peripheral sensitization induced by activated DCs.
Collapse
Affiliation(s)
- Tichakorn Singto
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, Berlin, 14195, Germany
| | - Viviane Filor
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, Berlin, 14195, Germany
| | - Jonathan Vidak
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, Berlin, 14195, Germany
| | - Robert Klopfleisch
- Institute of Animal Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von- Ostertag-Straße 15, Berlin, 14163, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, Berlin, 14195, Germany.
| |
Collapse
|
8
|
Sun SY, Yin X, Ma JY, Wang XL, Xu XM, Wu JN, Zhang CW, Lu Y, Liu T, Zhang L, Kang PP, Wu B, Zhou GK. Histamine H4 receptor and TRPV1 mediate itch induced by cadaverine, a metabolite of the microbiome. Mol Pain 2024; 20:17448069241272149. [PMID: 39079948 DOI: 10.1177/17448069241272149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Cadaverine is an endogenous metabolite produced by the gut microbiome with various activity in physiological and pathological conditions. However, whether cadaverine regulates pain or itch remains unclear. In this study, we first found that cadaverine may bind to histamine 4 receptor (H4R) with higher docking energy score using molecular docking simulations, suggesting cadaverine may act as an endogenous ligand for H4R. We subsequently found intradermal injection of cadaverine into the nape or cheek of mice induces a dose-dependent scratching response in mice, which was suppressed by a selective H4R antagonist JNJ-7777120, transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine and PLC inhibitor U73122, but not H1R antagonist or TRPA1 antagonist or TRPV4 antagonist. Consistently, cadaverine-induced itch was abolished in Trpv1-/- but not Trpa1-/- mice. Pharmacological analysis indicated that mast cells and opioid receptors were also involved in cadaverine-induced itch in mice. scRNA-Seq data analysis showed that H4R and TRPV1 are mainly co-expressed on NP2, NP3 and PEP1 DRG neurons. Calcium imaging analysis showed that cadaverine perfusion enhanced calcium influx in the dissociated dorsal root ganglion (DRG) neurons, which was suppressed by JNJ-7777120 and capsazepine, as well as in the DRG neurons from Trpv1-/- mice. Patch-clamp recordings found that cadaverine perfusion significantly increased the excitability of small diameter DRG neurons, and JNJ-7777120 abolished this effect, indicating involvement of H4R. Together, these results provide evidences that cadaverine is a novel endogenous pruritogens, which activates H4R/TRPV1 signaling pathways in the primary sensory neurons.
Collapse
Affiliation(s)
- Shi-Yu Sun
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xi Yin
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Jun-Yi Ma
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Xue-Mei Xu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Jing-Ni Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Cheng-Wei Zhang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Ying Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Li Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pei-Pei Kang
- Department of Anesthesiology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Bin Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Guo-Kun Zhou
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| |
Collapse
|
9
|
Seldeslachts A, Peigneur S, Tytgat J. Histamine Receptors: Ex Vivo Functional Studies Enabling the Discovery of Hits and Pathways. MEMBRANES 2023; 13:897. [PMID: 38132901 PMCID: PMC10744718 DOI: 10.3390/membranes13120897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Histamine receptors (HRs) are G-protein-coupled receptors involved in diverse responses triggered by histamine release during inflammation or by encounters with venomous creatures. Four histamine receptors (H1R-H4R) have been cloned and extensively characterized. These receptors are distributed throughout the body and their activation is associated with clinical manifestations such as urticaria (H1R), gastric acid stimulation (H2R), regulation of neurotransmitters in neuronal diseases (H3R), and immune responses (H4R). Despite significant homologous overlap between H3R and H4R, much remains unknown about their precise roles. Even though some drugs have been developed for H1R, H2R, and H3R, not a single H4R antagonist has been approved for clinical use. To enhance our understanding and advance innovative therapeutic targeting of H1R, H2R, H3R, and H4R, we established a robust ex vivo functional platform. This platform features the successful heterologous expression of H1R-H4R in Xenopus laevis oocytes, utilizing an electrophysiological readout. Our findings contribute to a deeper understanding of the function and pharmacological properties of the histamine receptors. Researchers can benefit from the utility of this platform when investigating the effects of histamine receptors and exploring potential therapeutic targets. In doing so, it broadens the horizon of drug discovery, offering new perspectives for therapeutic interventions.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
10
|
Mogilski S, Kubacka M, Świerczek A, Wyska E, Szczepańska K, Sapa J, Kieć-Kononowicz K, Łażewska D. Efficacy of the Multi-Target Compound E153 in Relieving Pain and Pruritus of Different Origins. Pharmaceuticals (Basel) 2023; 16:1481. [PMID: 37895952 PMCID: PMC10609854 DOI: 10.3390/ph16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or μ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| |
Collapse
|
11
|
Uluckan Ö, Bruno S, Wang Y, Wack N, Wilzopolski J, Goetschy JF, Delucis-Bronn C, Urban B, Fehlmann D, Stark H, Hauchard A, Roussel E, Kempf D, Kaupmann K, Raulf F, Bäumer W, Röhn TA, Zerwes HG. Adriforant is a functional antagonist of histamine receptor 4 and attenuates itch and skin inflammation in mice. Eur J Pharmacol 2023; 945:175533. [PMID: 36690055 DOI: 10.1016/j.ejphar.2023.175533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Histamine has been postulated to play a role in atopic dermatitis via histamine receptor 4, mediating pruritic and inflammatory effects. The H4R antagonist adriforant (PF-3893787 or ZPL389) indicated clinical efficacy in a Ph2a study in atopic dermatitis. Preclinical investigations of adriforant had been scarce as experiments in transfectants with H4R from several species suggested partial agonism, not seen in human cells. OBJECTIVE During the Ph2b trial in AD, we performed experiments to understand the pharmacology of adriforant in primary murine cells and in vivo models. We assessed its effects on ERK phosphorylation and transcriptional changes in bone marrow-derived mast cells, histamine-dependent Ca2+ flux in neurons and histamine-induced itch response. In addition, its impact on MC903-induced skin inflammation was evaluated. RESULTS We show that, contrary to transfectants, adriforant is a competitive antagonist of the murine histamine receptor 4, antagonizes histamine-induced ERK phosphorylation, normalizes histamine-induced transcriptional changes in mast cells and reduces histamine-dependent Ca2+ flux in neurons. Administration to mice reduces acute histamine-induced itch response. In addition, adriforant ameliorates inflammation in the mouse MC903 model. CONCLUSIONS Our results suggest that functional inhibition of histamine receptor 4 by adriforant reduces itch and inflammation in vivo. The effects observed in mice, however, did not translate to clinical efficacy in patients as the Ph2b clinical trial with adriforant did not meet pre-specified efficacy endpoints. Given the complex pathogenesis of AD, antagonism of histamine receptor 4 alone appears insufficient to reduce disease severity in AD patients, despite the effects seen in mouse models.
Collapse
Affiliation(s)
- Özge Uluckan
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Sandro Bruno
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Yichen Wang
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Nathalie Wack
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Jenny Wilzopolski
- Institut für Pharmakologie und Toxikologie, Veterinärmedizin, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany; Bundesinstitut für Risikobewertung, Experimentelle Toxikologie und ZEBET, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Jean-Francois Goetschy
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Corinne Delucis-Bronn
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Beatrice Urban
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Dominique Fehlmann
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Alice Hauchard
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Elsa Roussel
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Dominique Kempf
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Klemens Kaupmann
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Wolfgang Bäumer
- Institut für Pharmakologie und Toxikologie, Veterinärmedizin, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Till A Röhn
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland
| | - Hans Günter Zerwes
- Novartis Institutes for BioMedical Research, Autoimmunity, Transplantation and Inflammation; Novartis Pharma AG, CH-4056, Basel, Switzerland.
| |
Collapse
|
12
|
Chiocchetti R, Salamanca G, De Silva M, Gobbo F, Aspidi F, Cunha RZ, Galiazzo G, Tagliavia C, Sarli G, Morini M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front Vet Sci 2022; 9:987132. [PMID: 36187821 PMCID: PMC9521433 DOI: 10.3389/fvets.2022.987132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Aspidi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, Teramo, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
14
|
Seldeslachts A, Peigneur S, Mebs D, Tytgat J. Unraveling the venom chemistry with evidence for histamine as key regulator in the envenomation by caterpillar Automeris zaruma. Front Immunol 2022; 13:972442. [PMID: 36091066 PMCID: PMC9448982 DOI: 10.3389/fimmu.2022.972442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, envenomation by caterpillars of Automeris spp. became an increasing health problem in Latin America. Accidental contact with the stinging spines of these caterpillars cause acute local pain, itching, inflammation and skin rashes that persists for days. Even when the cause is obvious, the exact molecular mechanisms responsible for the observed symptoms are yet to be elucidated. Here, we describe for the first time, an active compound in the venom and the study of the bioactivity of the venom extracted from the spines of the caterpillar Automeris zaruma. Electrophysiological screening of a library of membrane proteins important for pain and itch enabled us to investigate and reveal the mode of action of the venom of A. zaruma. Further mass spectrometric analysis (Q-TOF-MS) made it possible to establish a link between the bioactivity and the components found in the venom. We show that the spine extract of A. zaruma contains histamine that potently activates the four types of the human histamine receptors (H1R, H2R, H3R and H4R) with a selectivity preference towards H3R and H4R. Furthermore, a modulation of the target MRGPRX2 was found. Together, these findings are the first to explain the symptomology of A. zaruma envenomation, enabling us a better understanding of caterpillar envenomation and predict that the hurdle of the scarce efficacy of the currently used antihistaminic drugs can be overcome by including H3R and H4R blockers in the clinical used medication. Such an approach might be used for other caterpillar envenomation in the world and represent a significant improvement for the well-being of the patient.
Collapse
Affiliation(s)
| | | | - Dietrich Mebs
- Institute of Legal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
- *Correspondence: Jan Tytgat,
| |
Collapse
|
15
|
Alrashdi I, Alsubaiyel A, Chan M, Battell EE, Ennaceur A, Nunn MA, Weston-Davies W, Chazot PL, Obara I. Votucalis, a Novel Centrally Sparing Histamine-Binding Protein, Attenuates Histaminergic Itch and Neuropathic Pain in Mice. Front Pharmacol 2022; 13:846683. [PMID: 35350753 PMCID: PMC8957863 DOI: 10.3389/fphar.2022.846683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Votucalis is a biologically active protein in tick (R. appendiculatus) saliva, which specifically binds histamine with high affinity and, therefore, has the potential to inhibit the host's immunological responses at the feeding site. We hypothesized that scavenging of peripherally released endogenous histamine by Votucalis results in both anti-itch and anti-nociceptive effects. To test this hypothesis, adult male mice were subjected to histaminergic itch, as well as peripheral nerve injury that resulted in neuropathic pain. Thus, we selected models where peripherally released histamine was shown to be a key regulator. In these models, the animals received systemic (intraperitoneal, i.p.) or peripheral transdermal (subcutaneous, s.c. or intraplantar, i.pl.) administrations of Votucalis and itch behavior, as well as mechanical and thermal hypersensitivity, were evaluated. Selective histamine receptor antagonists were used to determine the involvement of histamine receptors in the effects produced by Votucalis. We also used the spontaneous object recognition test to confirm the centrally sparing properties of Votucalis. Our main finding shows that in histamine-dependent itch and neuropathic pain models peripheral (s.c. or i.pl.) administration of Votucalis displayed a longer duration of action for a lower dose range, when compared with Votucalis systemic (i.p.) effects. Stronger anti-itch effect was observed after co-administration of Votucalis (s.c.) and antagonists that inhibited peripheral histamine H1 and H2 receptors as well as central histamine H4 receptors indicating the importance of these histamine receptors in itch. In neuropathic mice, Votucalis produced a potent and complete anti-nociceptive effect on mechanical hypersensitivity, while thermal (heat) hypersensitivity was largely unaffected. Overall, our findings further emphasize the key role for histamine in the regulation of histaminergic itch and chronic neuropathic pain. Given the effectiveness of Votucalis after peripheral transdermal administration, with a lack of central effects, we provide here the first evidence that scavenging of peripherally released histamine by Votucalis may represent a novel therapeutically effective and safe long-term strategy for the management of these refractory health conditions.
Collapse
Affiliation(s)
- Ibrahim Alrashdi
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Amal Alsubaiyel
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Michele Chan
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Emma E. Battell
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Abdel Ennaceur
- School of Pharmacy, University of Sunderland, Sunderland, United Kingdom
| | | | | | - Paul L. Chazot
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
16
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
17
|
Shehwana H, Ijaz S, Fatima A, Walton S, Sheikh ZI, Haider W, Naz S. Transcriptome Analysis of Host Inflammatory Responses to the Ectoparasitic Mite Sarcoptes scabiei var. hominis. Front Immunol 2021; 12:778840. [PMID: 34925353 PMCID: PMC8671885 DOI: 10.3389/fimmu.2021.778840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Scabies, a human skin infestation caused by the ectoparasitic mite Sarcoptes scabiei var. hominis, affects more than 200 million people globally. The prevailing knowledge of the disease process and host immune response mechanisms is limited. A better understanding of the host-parasite relationship is essential for the identification of novel vaccine and drug targets. Here we aimed to interrogate the transcriptomic profiles of mite-infested human skin biopsies with clinical manifestations of ordinary scabies subjects ("OS"; n = 05) and subjects naive to scabies ("control"; n = 03) using RNASeq data analysis. A combined clustering, network, and pathway mapping approach enabled us to identify key signaling events in the host immune and pro-inflammatory responses to S. scabiei infestation. The clustering patterns showed various differentially expressed genes including inflammatory responses and innate immunity genes (DEFB4A, IL-19, CXCL8, CSF3, SERPINB4, S100A7A, HRNR) and notably upregulation of the JAK-STAT pathway in scabies-infested samples. Mite-infested human skin biopsies (GSE178563) were compared with an ex-vivo porcine infested model (E-MTAB-6433) and human skin equivalents (GSE48459). Marked enrichment of immune response pathways (JAK-STAT signaling, IL-4 and IL-13 pathway, and Toll receptor cascade), chemokine ligands and receptors (CCL17, CCL18, CCL3L1, CCL3L3, CCR7), and cytokines (IL-13 and IL-20) were observed. Additionally, genes known for their role in psoriasis and atopic dermatitis were upregulated, e.g., IL-19. The detailed transcriptomic profile has provided an insight into molecular functions, biological processes, and immunological responses and increased our understanding about transcriptomic regulation of scabies in human.
Collapse
Affiliation(s)
- Huma Shehwana
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sadaf Ijaz
- Research Centre for Modelling & Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Abeera Fatima
- Research Centre for Modelling & Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Shelley Walton
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Zafar Iqbal Sheikh
- Department of Dermatology, Pak-Emirates Military Hospital, Rawalpindi, Pakistan
| | - Waseem Haider
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
18
|
Guo CJ, Grabinski NS, Liu Q. Peripheral Mechanisms of Itch. J Invest Dermatol 2021; 142:31-41. [PMID: 34838258 DOI: 10.1016/j.jid.2021.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Itch is a universally experienced sensation, and chronic itch can be as diabolically debilitating as pain. Recent advances have not only identified the neuronal itch sensing circuitry, but also have uncovered the intricate interactions between skin and immune cells that work together with neurons to identify itch-inducing irritants. In this review, we will summarize the fundamental mechanisms of acute itch detection in the skin, as well as highlight the recent discoveries relating to this topic.
Collapse
Affiliation(s)
- Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel S Grabinski
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
19
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
20
|
Wimalasena NK, Milner G, Silva R, Vuong C, Zhang Z, Bautista DM, Woolf CJ. Dissecting the precise nature of itch-evoked scratching. Neuron 2021; 109:3075-3087.e2. [PMID: 34411514 PMCID: PMC8497439 DOI: 10.1016/j.neuron.2021.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023]
Abstract
Itch is a discrete and irritating sensation tightly coupled to a drive to scratch. Acute scratching developed evolutionarily as an adaptive defense against skin irritants, pathogens, or parasites. In contrast, the itch-scratch cycle in chronic itch is harmful, inducing escalating itch and skin damage. Clinically and preclinically, scratching incidence is currently evaluated as a unidimensional motor parameter and believed to reflect itch severity. We propose that scratching, when appreciated as a complex, multidimensional motor behavior, will yield greater insight into the nature of itch and the organization of neural circuits driving repetitive motor patterns. We outline the limitations of standard measurements of scratching in rodent models and present new approaches to observe and quantify itch-evoked scratching. We argue that accurate quantitative measurements of scratching are critical for dissecting the molecular, cellular, and circuit mechanisms underlying itch and for preclinical development of therapeutic interventions for acute and chronic itch disorders.
Collapse
Affiliation(s)
- Nivanthika K Wimalasena
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - George Milner
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ricardo Silva
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cliff Vuong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zihe Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Hellen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Comparison of structural components and functional mechanisms within the skin vs. the conjunctival surface. Curr Opin Allergy Clin Immunol 2021; 21:472-479. [PMID: 34387279 DOI: 10.1097/aci.0000000000000775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight and compare the structural and functional differences between the ocular surface and the skin. The goal is to further understand how these components interact from an immunobiological standpoint, which may inform future therapeutic uses. RECENT FINDINGS Treatment agents, such as Dupilumab and Apremilast are traditionally indicated for integumentary conditions, such as atopic dermatitis and psoriasis, respectively. Both were also found to have potent effects on the conjunctival surface and ocular glands, which may be attributed to the similarities in structure. SUMMARY Surfaces of the eyes and the skin are found to have similar composition in terms of immunohistology, steroidogenic properties, and allergic mechanisms. These translate directly into both the adverse effects and therapeutic benefits that overlap when treating these surfaces.
Collapse
|
22
|
Wilzopolski J, Kietzmann M, Mishra SK, Stark H, Bäumer W, Rossbach K. TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules 2021; 11:1166. [PMID: 34439832 PMCID: PMC8391774 DOI: 10.3390/biom11081166] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
Two histamine receptor subtypes (HR), namely H1R and H4R, are involved in the transmission of histamine-induced itch as key components. Although exact downstream signaling mechanisms are still elusive, transient receptor potential (TRP) ion channels play important roles in the sensation of histaminergic and non-histaminergic itch. The aim of this study was to investigate the involvement of TRPV1 and TRPA1 channels in the transmission of histaminergic itch. The potential of TRPV1 and TRPA1 inhibitors to modulate H1R- and H4R-induced signal transmission was tested in a scratching assay in mice in vivo as well as via Ca2+ imaging of murine sensory dorsal root ganglia (DRG) neurons in vitro. TRPV1 inhibition led to a reduction of H1R- and H4R- induced itch, whereas TRPA1 inhibition reduced H4R- but not H1R-induced itch. TRPV1 and TRPA1 inhibition resulted in a reduced Ca2+ influx into sensory neurons in vitro. In conclusion, these results indicate that both channels, TRPV1 and TRPA1, are involved in the transmission of histamine-induced pruritus.
Collapse
Affiliation(s)
- Jenny Wilzopolski
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| | - Santosh K. Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
| | - Holger Stark
- Institute of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany;
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| |
Collapse
|
23
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
24
|
Di Mauro P, Anzivino R, Distefano M, Borzì DD. Systemic mastocytosis: The roles of histamine and its receptors in the central nervous system disorders. J Neurol Sci 2021; 427:117541. [PMID: 34139449 DOI: 10.1016/j.jns.2021.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Mastocytosis is a rare disease of clonal hematological disorders characterized by a pathological accumulation of Mast Cells (MCs) in different tissues, with variable symptomatology and prognosis. Signs and symptoms of Systemic Mastocytosis (SM) are due to pathological infiltration of MCs and to the release of chemical mediators, mainly histamine. Patients with SM may also present with neurological symptoms or complications. The pathophysiology of these neurological disorders remains uncertain to this day, but it can be associated with the infiltration of tissue mastocytes, release of mastocytes' mediators or both. Moreover, there is a lot to understand about the role of neurological symptoms in SM and knowing, for example, what is the real frequency of neurological disorders in SM and if is present a relation between other SM subtypes, because it has been noted that the alteration of the histamine expression may be an initiating factor for susceptibility, gravity and progression of the epigenetic disease. In this review we explain the possible pathophysiological mechanism about neurological symptomatology found in some patients affected by SM, describing the role of histamine and its receptors in the nervous system and, in light of the results, what the future prospects may be for a more specific course of treatment.
Collapse
Affiliation(s)
- Paola Di Mauro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia" A.O.U. "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy.
| | | | | | - Davide Domenico Borzì
- University of Catania, Italy and Italian Federation of Sports Medicine (FMSI), Rome, Italy
| |
Collapse
|
25
|
Yin W, Liu L, Zhou Y, Zhang Y, Kong D, Xu S, Tang D, Huang D, Wen D, Jiao Y, Fan Y, Gao P, Yu W. Complete Freund's adjuvant-induced decrement of pruriceptor-mediated suppression of itch. Acta Biochim Biophys Sin (Shanghai) 2021; 53:538-546. [PMID: 33693534 DOI: 10.1093/abbs/gmab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Peripheral inflammation is always accompanied by a noxious sensation, either pain or itch, providing a protective warning for the occurrence of pathological changes; however, the mechanisms determining whether pain, itch, or both will be elicited under certain inflammatory statuses are still far from clear. Complete Freund's adjuvant (CFA) contains heat killed and dried Mycobacterium tuberculosis widely used to induce inflammatory pain models, but how CFA treatment affects itch sensation and the possible mechanisms are still unclear. In this study, using itch behavior testing and calcium imaging, we showed that both the behaviors and calcium responses associated with Transient Receptor Potential Vanilloid 1 (TRPV1)-mediated histamine-dependent itch and Transient Receptor Potential Ankyrin 1 (TRPA1)-mediated histamine-independent itch were significantly suppressed by CFA treatment. Furthermore, to explore the possible cellular mechanisms, high-throughput single-cell RNA sequencing and real-time PCR were used to detect CFA-induced changes of itch-related genes in dorsal root ganglion (DRG) neurons. Our results revealed that although both nociceptive Trpv1+ and Trpa1+ DRG neurons were increased after CFA treatment, most known pruriceptors, including Hrh1+, Mrgpra3+, Mrgprd+, Htr3a+, Htr1f+, IL31ra+, Osmr+, and Lpar3+ DRG neurons, were significantly decreased, which may explain that CFA treatment caused itch suppression. This study indicated that itch sensation was affected after CFA treatment, although negatively, and comprehensive but not specific suppression of different pruriceptors was observed after CFA treatment, suggesting that a unified adaptive change of increased pain and decreased itch will occur simultaneously under CFA-induced inflammatory conditions.
Collapse
Affiliation(s)
- Wen Yin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Li Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yuxi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Dexu Kong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Dan Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
26
|
Fan J, Mishra SK. The emerging role of neuroimmune interactions in atopic dermatitis and itch. FEBS J 2021; 289:2723-2735. [PMID: 33811449 DOI: 10.1111/febs.15860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/13/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Millions of people globally suffer from allergic diseases, and the cases have been rising in the past decades. One of the major manifestations of allergic diseases is itch, which is an unpleasant symptom that triggers the urge to scratch and greatly affects the quality of life. Thus, research on how sensation of itch is detected/transmitted from the contact of the allergen to the nervous system is crucial in mitigating itch. Recent studies have attempted to elucidate the mechanisms of itch in allergic diseases. Here, we aim to review the endogenous mediators released from immune/nonimmune skin cells (that are indirectly involved in the propagation of itch) and the sensory neurons that express receptors for these itch mediators that are associated with direct transmission of itch in cutaneous allergic diseases. As the mechanisms for allergic itch become clearer, new therapeutic approaches to relieve itch are likely to be developed. Recent clinical trials are testing numerous compounds that target the endogenous mediators and their receptors. These studies provide the possibility of more effective itch treatment for allergic diseases.
Collapse
Affiliation(s)
- Jennifer Fan
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
27
|
A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. J Allergy Clin Immunol 2021; 148:506-522.e8. [PMID: 33617860 DOI: 10.1016/j.jaci.2020.12.655] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions. OBJECTIVES Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus. METHODS To identify novel MRGPR (ant)agonists, we screened a library of pharmacologically active compounds by utilizing a high-throughput calcium mobilization assay. The identified hit compounds were analyzed for their pseudoallergic and pruritogenic effects in mice and human. RESULTS We found a class of commonly used drugs activating MRGPRX2 that, to a large extent, consists of antidepressants, antiallergic drugs, and antipsychotics. Three-dimensional pharmacophore modeling revealed structural similarities of the identified agonists, classifying them as cationic amphiphilic drugs. Mast cell activation was investigated by using the 3 representatively selected antidepressants clomipramine, paroxetine, and desipramine. Indeed, we were able to show a concentration-dependent activation and MRGPRX2-dependent degranulation of the human mast cell line LAD2 (Laboratory of Allergic Diseases-2). Furthermore, clomipramine, paroxetine, and desipramine were able to induce degranulation of human skin and murine peritoneal mast cells. These substances elicited dose-dependent scratching behavior following intradermal injection into C57BL/6 mice but less so in MRGPRB2-mutant mice, as well as wheal-and-flare reactions following intradermal injections in humans. CONCLUSION Our results contribute to the characterization of structure-activity relationships and functionality of MRGPRX2 ligands and facilitate prediction of adverse reactions such as drug-induced pruritus to prevent severe drug hypersensitivity reactions.
Collapse
|
28
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
29
|
Wang T, Tao J, Fang Y, Ma C. The role of pruriceptors in enhancing sensitivity to pruritogens in a murine chronic compression model of dorsal root ganglion. Mol Brain 2021; 14:15. [PMID: 33468207 PMCID: PMC7814616 DOI: 10.1186/s13041-021-00730-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic pruritus is a symptom that commonly observed in neurological diseases. It has been hypothesized that the chronic pruritus may result from sensitization of itch-signaling pathways but the mechanisms remain obscure. In this study, we established a mouse model of chronic compression of dorsal root ganglion (CCD) and injected various pruritogenic and algogenic agents intradermally to the calf skin ipsilateral to the compressed dorsal root ganglion (DRG). Compared to the naïve mice, a significant increase in itch-related behaviors was observed in the CCD mice after the injection of pruritogens including histamine and BAM8-22, but not after the injection of capsaicin, although all the above agents evoked enhanced pain-related behaviors toward the injected site. In addition, we investigated if pruritogen-evoked activities of DRG neurons were enhanced in this model. In vivo calcium imaging revealed that compressed DRG neurons exhibited enhanced responses to histamine and BAM8-22. Immunoflorescent staining also showed that the histamine receptor H1 and the capsaicin receptor TRPV1 were significantly upregulated in DRG neurons. Our findings indicated that the sensitization of primary pruriceptive neurons may underlie the enhanced itch sensation after chronic compression of DRG in the mice, and may play a role in chronic pruritus in neurological diseases.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Capsaicin/adverse effects
- Cattle
- Chronic Disease
- Disease Models, Animal
- Ganglia, Spinal/diagnostic imaging
- Ganglia, Spinal/pathology
- Histamine/adverse effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Compression Syndromes/complications
- Nerve Compression Syndromes/metabolism
- Nerve Compression Syndromes/pathology
- Neurons/metabolism
- Pain/pathology
- Peptide Fragments/adverse effects
- Pruritus/metabolism
- Pruritus/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H4/metabolism
- TRPV Cation Channels/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Tao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Jin Tao
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Yehong Fang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Sharif NA. Discovery to Launch of Anti-allergy (Emadine; Patanol/Pataday/Pazeo) and Anti-glaucoma (Travatan; Simbrinza) Ocular Drugs, and Generation of Novel Pharmacological Tools Such as AL-8810. ACS Pharmacol Transl Sci 2020; 3:1391-1421. [PMID: 33344909 DOI: 10.1021/acsptsci.0c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The eye and eyesight are exquistly designed and are precious, and yet we often take them for granted. Good vision is critical for our long-term survival and for humanity's enduring progress. Unfortunately, since ocular diseases do not culminate in life-and-death scenarios, awareness of the plight of millions of people suffering from such eye ailments is not publicized as other diseases. However, losing eyesight or falling victim to visual impairment is a frightening outlook for most people. Glaucoma, a collection of chronic optic neuropathies, of which the most prevalent form, primary open-angle glaucoma (POAG), is the second leading cause of irreversible blindness. POAG currently afflicts >70 million people worldwide and is an insidious, progressive, silent thief of sight that is asymptomatic. On the other hand, allergic conjunctivitis (AC), and the associated rhinitis ("hay-fever"), frequently victimizes a huge number of people worldwide, especially during seasonal changes. While not life-threatening, sufferers of AC soon learn the value of drugs to treat their signs and symptoms of AC as they desire rapid relief to overcome the ocular itching/pain, redness, and tearing AC causes. Herein, I will describe the collective efforts of many researchers whose industrious, diligent, and dedicated team work resulted in the discovery, biochemical/pharmacological characterization, development and eventual launch of drugs to treat AC (e.g., olopatadine [Patanol/Pataday/Pazeo] and emedastine [Emedine]), and for treating ocular hypertension and POAG (e.g., travoprost [Travatan ] and Simbrinza). This represents a personal perspective.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
31
|
FGF13 Is Required for Histamine-Induced Itch Sensation by Interaction with Na V1.7. J Neurosci 2020; 40:9589-9601. [PMID: 33172979 DOI: 10.1523/jneurosci.0599-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
Itch can be induced by activation of small-diameter DRG neurons, which express abundant intracellular fibroblast growth factor 13 (FGF13). Although FGF13 is revealed to be essential for heat nociception, its role in mediating itch remains to be investigated. Here, we reported that loss of FGF13 in mouse DRG neurons impaired the histamine-induced scratching behavior. Calcium imaging showed that the percentage of histamine-responsive DRG neurons was largely decreased in FGF13-deficient mice; and consistently, electrophysiological recording exhibited that histamine failed to evoke action potential firing in most DRG neurons from these mice. Given that the reduced histamine-evoked neuronal response was caused by knockdown of FGF13 but not by FGF13A deficiency, FGF13B was supposed to mediate this process. Furthermore, overexpression of histamine Type 1 receptor H1R, but not H2R, H3R, nor H4R, increased the percentage of histamine-responsive DRG neurons, and the scratching behavior in FGF13-deficient mice was highly reduced by selective activation of H1R, suggesting that H1R is mainly required for FGF13-mediated neuronal response and scratching behavior induced by histamine. However, overexpression of H1R failed to rescue the histamine-evoked neuronal response in FGF13-deficient mice. Histamine enhanced the FGF13 interaction with NaV1.7. Disruption of this interaction by a membrane-permeable competitive peptide, GST-Flag-NaV1.7CT-TAT, reduced the percentage of histamine-responsive DRG neurons, and impaired the histamine-induced scratching, indicating that the FGF13/NaV1.7 interaction is a key molecular determinant in the histamine-induced itch sensation. Therefore, our study reveals a novel role of FGF13 in mediating itch sensation via the interaction of NaV1.7 in the peripheral nervous system.SIGNIFICANCE STATEMENT Scratching induced by itch brings serious tissue damage in chronic itchy diseases, and targeting itch-sensing molecules is crucial for its therapeutic intervention. Here, we reveal that FGF13 is required for the neuronal excitation and scratching behavior induced by histamine. We further provide the evidence that the histamine-evoked neuronal response is mainly mediated by histamine Type 1 receptor H1R, and is largely attenuated in FGF13-deficent mice. Importantly, we identify that histamine enhances the FGF13/NaV1.7 interaction, and disruption of this interaction reduces histamine-evoked neuronal excitation and highly impairs histamine-induced scratching behavior. Additionally, we also find that FGF13 is involved in 5-hydroxytryptamine-induced scratching behavior and hapten 1-fluoro-2,4-dinitrobenzene-induced chronic itch.
Collapse
|
32
|
Malinowska K, Woźniacka A, Bogaczewicz J. The impact of medium dose UVA1 phototherapy on pruritus, DLQI and SCORAD index in patients with atopic dermatitis. Postepy Dermatol Alergol 2020; 37:962-967. [PMID: 33603617 PMCID: PMC7874877 DOI: 10.5114/ada.2019.88465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is featured by pruritus, which causes diminished quality of life. Little clinical data exists concerning the use, efficacy and side effects of UVA1 phototherapy in AD patients. AIM To determine the effectiveness of medium-dose UVA1 phototherapy in AD treatment. MATERIAL AND METHODS Thirty-six patients with AD were irradiated with medium-dose UVA1 (45 J/cm2) as monotherapy for 4 weeks for a total of 20 sessions (daily irradiations during weekdays only). Clinical status was evaluated with the visual analogue scale for pruritus, Dermatology Life Quality Index (DLQI) for evaluating general well-being and the SCORAD index. All parameters were measured twice: before and after phototherapy. RESULTS UVA1 phototherapy resulted in a significant (p < 0.001) decrease in pruritus, improvement in DLQI (p < 0.001) and SCORAD (p < 0.001). Before phototherapy, the intensity of pruritus and SCORAD index correlated with DLQI (r = 0.34, p < 0.05 and r = 0.61, p < 0.05, respectively). Similarly, after irradiation, pruritus correlated with DLQI, and SCORAD index correlated with DLQI (r = 0.51, p < 0.05 and r = 0.55, p < 0.05, respectively). No severe adverse effects were noted during the study. CONCLUSIONS Phototherapy with medium-dose UVA1 irradiation exerts a significant antipruritic effect, decreases the severity of the disease and improves the quality of life of AD patients. This technique can therefore be used as a safe and effective treatment method.
Collapse
Affiliation(s)
- Karolina Malinowska
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | - Jarosław Bogaczewicz
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Itch: A Paradigm of Neuroimmune Crosstalk. Immunity 2020; 52:753-766. [PMID: 32433948 DOI: 10.1016/j.immuni.2020.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.
Collapse
|
34
|
Cox A, Wood K, Coleman G, Stewart AJ, Bertin FR, Owen H, Suen WW, Medina-Torres CE. Essential oil spray reduces clinical signs of insect bite hypersensitivity in horses. Aust Vet J 2020; 98:411-416. [PMID: 32761617 DOI: 10.1111/avj.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the efficacy of an herbal spray combining various essential oils, with a claim of mast cell stabilisation, antipruritic, anti-inflammatory, and insect repellent effects on the clinical presentation of insect bite hypersensitivity (IBH) in horses. DESIGN Double-blinded, placebo-controlled, randomised, cross-over clinical trial. METHODS Twenty adult horses with clinical IBH were treated with a daily application of herbal spray or placebo for 28 days in a randomised, cross-over fashion, separated by a>28-day washout period. Horses were examined and scored prior to and after the completion of each treatment. Histopathology was performed on four horses. Owners kept daily diaries of observations. RESULTS The herbal spray significantly reduced the severity of all assessed parameters (pruritus, excoriations, lichenification and alopecia; P < 0.05) compared with baseline values (pretreatment) and with placebo. Owners reported improvement of pruritus in 19/20 horses (95%) with complete resolution in 17 horses (85%) following treatment. Skin biopsies showed resolution of orthokeratosis in 4/4 horses, reduced thickness of the stratum spinosum in 2/4 horses and complete resolution of histopathological abnormalities in 1/4 horses after treatment, compared with either no change or deterioration of histopathologic lesions after placebo. No side effects were observed. CONCLUSIONS The tested herbal spray may be an effective treatment for the management of equine IBH.
Collapse
Affiliation(s)
- A Cox
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - K Wood
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,School of Integrative Biology, University of Liverpool, Bishoftu, Ethiopia
| | - G Coleman
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - A J Stewart
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - F-R Bertin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - H Owen
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,Vetnostics, QML Pathology, Mansfield, Queensland, Australia
| | - W W Suen
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - C E Medina-Torres
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
35
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
36
|
Erickson S, Heul AV, Kim BS. New and emerging treatments for inflammatory itch. Ann Allergy Asthma Immunol 2020; 126:13-20. [PMID: 32497711 DOI: 10.1016/j.anai.2020.05.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize recent therapeutic developments for chronic pruritus with a focus on allergic and type 2 inflammatory pathways. DATA SOURCES Literature search of PubMed, industry websites, and review of the ClinicalTrials.gov database. STUDY SELECTIONS Peer-reviewed publications and public disclosures by industry relating to chronic pruritus pathophysiology and therapeutics. RESULTS Histamine and immunoglobulin E remain primary targets for the treatment of itch in the setting of chronic urticaria. More recently, blockade of type 2 immune cell-associated cytokines, including interleukin (IL) 4, IL-13, and IL-31, and the epithelial cell-derived cytokines, specifically IL-33 and thymic stromal lymphopoietin, has and is revolutionizing the treatment of chronic pruritic dermatoses, such as atopic dermatitis and prurigo nodularis. Other novel targets include histamine receptor 4, Janus kinases, κ-opioid receptor, neurokinin 1 receptor, and phosphodiesterase 4. CONCLUSION Advances in our understanding of the neuroimmunology of chronic pruritus have led to the identification of new therapeutic targets and the rapid development of cutting-edge clinical trials. Although incredible advances have already been made, chronic itch continues to be an area of great unmet need.
Collapse
Affiliation(s)
- Stephen Erickson
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Aaron Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
37
|
Intra-articular injection of 2-pyridylethylamine produces spinal NPY-mediated antinociception in the formalin-induced rat knee-joint pain model. Brain Res 2020; 1735:146757. [PMID: 32135147 DOI: 10.1016/j.brainres.2020.146757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/27/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022]
Abstract
Low doses of histamine or H1R agonist 2-pyridylethylamine (2-PEA) into the knee-joint were found to decrease formalin-induced articular nociception in rats. In this study, we evaluated the participation of spinal NPY in the antinociceptive effect produced by 2-PEA. Injection of formalin (1.5%) into one of the knee-joints causes the limping of the respective limb due to nociception, which was registered each 5 min over 60 min. Neuropeptide Y1 receptor (Y1R) content in the spinal cord was evaluated by western-blotting. Intrathecal (i.t.) injection of Y1R agonist Leu31, Pro34-NPY (0.7-7 µmol) decreased nociception, while injection of the antagonist BIBO 3304 (4 μmol), increased nociception. Antinociception produced by 2-PEA was reversed by a sub-effective i.t. dose of the Y1R antagonist. Similarly, this antinociceptive effect was prevented by i.t. pretreatment with the neurotoxin NPY-saporin (750 ng), which also reduced immunoblotting for Y1R in spinal cord homogenates. These data support the idea that antinociception induced by H1R agonists in the knee-joint of rats may be mediated by the spinal release of NPY, and this peptide seems to be acting via Y1R.
Collapse
|
38
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
39
|
Schaper‐Gerhardt K, Rossbach K, Nikolouli E, Werfel T, Gutzmer R, Mommert S. The role of the histamine H 4 receptor in atopic dermatitis and psoriasis. Br J Pharmacol 2020; 177:490-502. [PMID: 30460986 PMCID: PMC7012951 DOI: 10.1111/bph.14550] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are common skin diseases with a high negative impact on patients' quality of life. Both diseases are mediated by a pro-inflammatory infiltrate consisting of several cell types, such as T-cells, antigen-presenting cells and granulocytes and display disturbed keratinocyte differentiation. Given the fact that histamine levels are also highly elevated in inflamed skin, it is likely that histamine plays a relevant role in disease pathology. However, antagonists blocking histamine H1 receptor or H2 receptors are largely ineffective in reducing chronic symptoms in AD and psoriasis. Over the last years, much research has been undertaken to shed light into the mode of action of the most recently discovered histamine H4 receptor. This research has shown that H4 receptor antagonists display antipruritic and anti-inflammatory effects not only in mouse models but also in first human clinical trials, and therefore, H4 receptors might present a novel therapeutic target. In this review, we summarize the effects of the H4 receptors on different cell types, mouse models and clinical studies in regard to AD and psoriasis respectively. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Katrin Schaper‐Gerhardt
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and PharmacyVeterinary School HannoverHannoverGermany
| | - Eirini Nikolouli
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Ralf Gutzmer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Susanne Mommert
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| |
Collapse
|
40
|
Grundy L, Caldwell A, Garcia Caraballo S, Erickson A, Schober G, Castro J, Harrington AM, Brierley SM. Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H1 receptor and TRPV1. Am J Physiol Renal Physiol 2020; 318:F298-F314. [DOI: 10.1152/ajprenal.00435.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited “silent afferents” that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes ( Hrh1– Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Sonia Garcia Caraballo
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Hide M, Suzuki T, Tanaka A, Aoki H. Efficacy of increased dose of rupatadine up to 20 mg on itching in Japanese patients due to chronic spontaneous urticaria, dermatitis, or pruritus: A post hoc analysis of phase III clinical trial. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | | | | | | |
Collapse
|
42
|
Siiskonen H, Harvima I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci 2019; 13:422. [PMID: 31619965 PMCID: PMC6759746 DOI: 10.3389/fncel.2019.00422] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The intimate interaction between mast cells and sensory nerves can be illustrated by the wheal and surrounding flare in an urticarial reaction in human skin. This reaction is typically associated with an intense itch at the reaction site. Upon activation, cutaneous mast cells release powerful mediators, such as histamine, tryptase, cytokines, and growth factors that can directly stimulate corresponding receptors on itch-mediating sensory nerves. These include, e.g., H1- and H4-receptors, protease-activated receptor-2, IL-31 receptor, and the high-affinity receptor of nerve growth factor (TrkA). On the other hand, sensory nerves can release neuropeptides, including substance P and vasoactive intestinal peptide, that are able to stimulate mast cells to release mediators leading to potentiation of the reciprocal interaction, inflammation, and itch. Even though mast cells are well recognized for their role in allergic skin whealing and urticaria, increasing evidence supports the reciprocal function between mast cells and sensory nerves in neurogenic inflammation in chronic skin diseases, such as psoriasis and atopic dermatitis, which are often characterized by distressing itch, and exacerbated by psychological stress. Increased morphological contacts between mast cells and sensory nerves in the lesional skin in psoriasis and atopic dermatitis as well as experimental models in mice and rats support the essential role for mast cell-sensory nerve communication in consequent pruritus. Therefore, we summarize here the present literature pointing to a close association between mast cells and sensory nerves in pruritic skin diseases as well as review the essential supporting findings on pruritic models in mice and rats.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Ilkka Harvima
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Metz M. Treatments for chronic pruritus outside of the box. Exp Dermatol 2019; 28:1476-1481. [DOI: 10.1111/exd.14007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Martin Metz
- Department of Dermatology, Venereology and Allergology Charité ‐ Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
44
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
46
|
Water-Soluble Extract from Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. and Perilla frutescens (L.) Britton, ACTPER, Ameliorates a Dry Skin-Induced Itch in a Mice Model and Promotes Filaggrin Expression by Activating the AhR Signaling in HaCaT Cells. Nutrients 2019; 11:nu11061366. [PMID: 31216667 PMCID: PMC6627490 DOI: 10.3390/nu11061366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
With a complex etiology involving multiple factors, the condition known as itch is a primary symptom of many skin diseases. Current treatment methods are ineffective for addressing itches caused by dry skin, for example. We developed a botanical extract, ACTPER, made from a mixture of Actinidia arguta and Perilla frutescens, which have traditionally been used to treat itch. The quality of ACTPER as a research agent was controlled in our experiment by cell-based bioassays, as well as by high-performance liquid chromatography (HPLC), using two chemical markers. In the acetone-induced dry skin mice model, the oral administration of ACTPER alleviated dry skin-related skin properties and itching behavior. The RNA and protein expression of the filament aggregating protein (filaggrin) gene, a key factor involved in the regulation of skin barrier function, was significantly increased, as measured by quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay. To understand the underlying mechanism(s) at the molecular level, HaCaT cells, a human keratinocyte-derived cell line, were treated with various concentrations of ACTPER. We found that the protein expression of filaggrin was indeed upregulated by ACTPER in a dose dependent manner. Data from experiments involving the reporter plasmid containing the xenobiotic response element (XRE), and the chemical antagonist for the aryl hydrocarbon receptor (AhR), indicated that the ACTPER-mediated upregulation of filaggrin was controlled through the activation of the AhR signaling pathway. The molecular docking simulation study predicted that ACTPER might contain chemical compounds that bind directly to AhR. Taken together, our results suggest that ACTPER may provide the platform, based upon which a variety of safe and effective therapeutic agents can be developed to treat itch.
Collapse
|
47
|
Obara I, Telezhkin V, Alrashdi I, Chazot PL. Histamine, histamine receptors, and neuropathic pain relief. Br J Pharmacol 2019; 177:580-599. [PMID: 31046146 PMCID: PMC7012972 DOI: 10.1111/bph.14696] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
Histamine, acting via distinct histamine H1, H2, H3, and H4 receptors, regulates various physiological and pathological processes, including pain. In the last two decades, there has been a particular increase in evidence to support the involvement of H3 receptor and H4 receptor in the modulation of neuropathic pain, which remains challenging in terms of management. However, recent data show contrasting effects on neuropathic pain due to multiple factors that determine the pharmacological responses of histamine receptors and their underlying signal transduction properties (e.g., localization on either the presynaptic or postsynaptic neuronal membranes). This review summarizes the most recent findings on the role of histamine and the effects mediated by the four histamine receptors in response to the various stimuli associated with and promoting neuropathic pain. We particularly focus on mechanisms underlying histamine‐mediated analgesia, as we aim to clarify the analgesic potential of histamine receptor ligands in neuropathic pain. Linked Articles This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc
Collapse
Affiliation(s)
- Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ibrahim Alrashdi
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
48
|
Velez TE, Byrne AJ, Wechsler JB, Krier-Burris RA, Hulse KE, Bryce PJ. Histamine-driven responses are sustained via a bioactive metabolite. J Allergy Clin Immunol 2019; 143:2287-2290.e1. [PMID: 30738840 DOI: 10.1016/j.jaci.2019.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Tania E Velez
- Northwestern University Feinberg School of Medicine, Allergy and Immunology Division, Chicago, Ill
| | - Adam J Byrne
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Joshua B Wechsler
- Northwestern University Feinberg School of Medicine, Allergy and Immunology Division, Chicago, Ill
| | - Rebecca A Krier-Burris
- Northwestern University Feinberg School of Medicine, Allergy and Immunology Division, Chicago, Ill
| | - Kathryn E Hulse
- Northwestern University Feinberg School of Medicine, Allergy and Immunology Division, Chicago, Ill.
| | - Paul J Bryce
- Northwestern University Feinberg School of Medicine, Allergy and Immunology Division, Chicago, Ill
| |
Collapse
|
49
|
Simon D, Wollenberg A, Renz H, Simon HU. Atopic Dermatitis: Collegium Internationale Allergologicum (CIA) Update 2019. Int Arch Allergy Immunol 2019; 178:207-218. [DOI: 10.1159/000497383] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022] Open
|
50
|
Robering JW, Gebhardt L, Wolf K, Kühn H, Kremer AE, Fischer MJM. Lysophosphatidic acid activates satellite glia cells and Schwann cells. Glia 2019; 67:999-1012. [PMID: 30637823 DOI: 10.1002/glia.23585] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
Pruritus is a common and disabling symptom in patients with hepatobiliary disorders, particularly in those with cholestatic features. Serum levels of lysophosphatidic acid (LPA) and its forming enzyme autotaxin were increased in patients suffering from hepatic pruritus, correlated with itch severity and response to treatment. Here we show that in a culture of dorsal root ganglia LPA 18:1 surprisingly activated a large fraction of satellite glia cells, and responses to LPA 18:1 correlated inversely with responses to neuronal expressed transient receptor potential channels. LPA 18:1 caused only a marginal activation of heterologously expressed TRPV1, and responses in dorsal root ganglion cultures from TRPV1-deficient mice were similar to controls. LPA 18:1 desensitized subsequent responsiveness to chloroquine and TGR5 agonist INT-777. The LPA 18:1-induced increase in cytoplasmatic calcium stems from the endoplasmatic reticulum. LPA receptor expression in dorsal root ganglia and Schwann cells, LPAR1 immunohistochemistry, and pharmacological results indicate a signaling pathway through LPA receptor 1. Peripheral rat Schwann cells, which are of glial lineage as the satellite glia cells, were also responsive to LPA 18:1. Summarizing, LPA 18:1 primarily activates rather glial cells than neurons, which may subsequently modulate neuronal responsiveness and sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Jan W Robering
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gebhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.,Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.,Center for Physiology and Pharmacology, University of Vienna, Vienna, Austria
| |
Collapse
|