1
|
Zhou J, Yang H, Zhang Y, Cao Y, Jing Y. Extracellular AMP Inhibits Pollen Tube Growth in Picea meyeri via Disrupted Calcium Gradient and Disorganized Microfilaments. PLANTS (BASEL, SWITZERLAND) 2024; 14:72. [PMID: 39795332 PMCID: PMC11722819 DOI: 10.3390/plants14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified. Our previous studies have demonstrated that extracellular ATP (eATP) is crucial for the normal germination and growth of Picea meyeri pollen tubes. In the present study, we observed that the exogenous addition of ATP to a pollen culture medium could be degraded into AMP and adenosine. Furthermore, the addition of AMP and adenosine to the culture medium was found to inhibit pollen germination and tube elongation. Notably, the addition of an AMP receptor inhibitor into the culture medium mitigated the inhibitory effects of AMP on pollen tube growth. Through intracellular staining for Ca2+ and microfilaments, we discovered that high concentrations of AMP disrupt the Ca2+ concentration gradient and impair microfilament organization, ultimately resulting in inhibited pollen tube elongation. In conclusion, we propose that extracellular AMP, as a hydrolysis product of eATP, also plays a significant role in regulating P. meyeri pollen germination and tube growth in vitro.
Collapse
Affiliation(s)
- Junhui Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| |
Collapse
|
2
|
Li YJ, Lin J, Tang SQ, Zuo WM, Ding GH, Shen XY, Wang LN. CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats. Purinergic Signal 2024:10.1007/s11302-024-10065-4. [PMID: 39542981 DOI: 10.1007/s11302-024-10065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined. Pharmacological tools or adeno-associated viruses were administered at the acupoints to interfere with targeting signals. Protein expression was determined with qRT-PCR, WB, or immunofluorescent labeling. Cultured keratinocytes, HaCaT line, were subjected to hypotonic shock to simulate needling stimulation. Extracellular ATP and adenosine levels were quantified using luciferase-luciferin assay and ELISA, respectively. Acupuncture-induced prompt analgesia was impaired by inhibiting CD39 activities to prevent the degradation of ATP to AMP but was mimicked by using CD39 agonists. Acupuncture-induced ATP accumulation exhibited synchronous changes. Similarly, acupuncture analgesia was hindered by suppressing CD73 to prevent the conversion of AMP to adenosine. Furthermore, the acupuncture effect was replicated by agonism at P2Y2Rs but inhibited by antagonism at them. Acupuncture upregulated CD73 and P2Y2Rs but not CD39. Immunofluorescent labeling demonstrated that keratinocytes were a primary site for these proteins. Shallow acupuncture also demonstrated antinociception. In vitro tests showed that hypotonic shock induced HaCaT cells to release ATP and adenosine, which was impaired by suppressing CD39 and CD73, respectively. Finally, agonism at P2Y2Rs promoted ATP release and [Ca2+]i rise. CD39 at the acupoints contributes to the analgesic mechanism of acupuncture. It may facilitate adenosine signaling in conjunction with CD73 or provide an appropriate ATP milieu for P2Y2Rs. Skin tissue may be one of the scenes for these signalings.
Collapse
Affiliation(s)
- Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Lin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Qi Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Min Zuo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (21DZ2271800), Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
3
|
Xu JW, Tang SQ, Lin J, Li YJ, Shen D, Ding GH, Shen XY, Wang LN. NTPDase1-ATP-P2Y2Rs axis in the sciatic nerve contributes to acupuncture at "Zusanli" (ST36)-induced analgesia in ankle arthritis rats. Brain Res Bull 2024; 209:110909. [PMID: 38402994 DOI: 10.1016/j.brainresbull.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The efficacy of acupuncture at Zusanli (ST36) in alleviating lower-limb pain is widely acknowledged in clinical practice, while its underlying mechanism remains incompletely elucidated. Our previous research had revealed that the prompt analgesia induced by needling-ST36 was accompanied by expression alterations in certain exco-nucleotidases within the sciatic nerve. Building upon this finding, the current work focused on NTPDase1, the primary ecto-nucleotidase in the human body, which converts ATP into AMP. METHODS A 20-min acupuncture was administered unilaterally at the ST36 on rats with acute ankle arthritis. The pain thresholds of the injured hind paws were determined. Pharmacological interference was carried out by introducing the corresponding reagents to the sciatic nerve. ATP levels around the excised nerve were measured using a luciferase-luciferin assay. Live calcium imaging, utilizing the Fura 2-related-F340/F380 ratio, was conducted on Schwann cells in excised nerves and cultured rat SCs line, RSC96 cells. RESULTS The analgesic effect induced by needling-ST36 was impaired when preventing ATP degradation via inhibiting NTPDase1 activities with ARL67156 or Ticlopidine. Conversely, increasing NTPDase1 activities with Apyrase duplicated the acupuncture effect. Similarly, preventing the conversion of AMP to adenosine via suppression of NT5E with AMP-CP hindered the acupuncture effect. Unexpectedly, impeded ATP hydrolysis ability and diminished NTPDase1 expression were observed in the treated group. Agonism at P2Y2Rs with ATP, UTP, or INS365 resulted in anti-nociception. Contrarily, antagonism at P2Y2Rs with Suramin or AR-C 118925xx prevented acupuncture analgesia. Immunofluorescent labeling demonstrated that the treated rats expressed more P2Y2Rs that were predominant in Schwann cells. Suppression of Schwann cells by inhibiting ErbB receptors also prevented acupuncture analgesia. Finally, living imaging on the excised nerves or RSC96 cells showed that agonism at P2Y2Rs indeed led to [Ca2+]i rise. CONCLUSION These findings strongly suggest that the analgesic mechanism of needling-ST36 on the hypersensation in the lower limb partially relies on NTPDase1 activities in the sciatic nerve. In addition to facilitating adenosine signaling in conjunction with NT5E, most importantly, NTPDase1 may provide an appropriate low-level ATP milieu for the activation of P2Y2R in the sciatic nerve, particularly in Schwann cells.
Collapse
Affiliation(s)
- Jing-Wen Xu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Si-Qi Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jie Lin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Dan Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (21DZ2271800), Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
4
|
Grković I, Mitrović N, Dragić M, Zarić Kontić M. Enzyme histochemistry: a useful tool for examining the spatial distribution of brain ectonucleotidases in (patho)physiological conditions. Histol Histopathol 2022; 37:919-936. [PMID: 35575291 DOI: 10.14670/hh-18-471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adenosine 5'-triphosphate (ATP) and other nucleotides and nucleosides, such as adenosine, are versatile signaling molecules involved in many physiological processes and pathological conditions in the nervous system, especially those with an inflammatory component. They can be released from nerve cells, glial cells, and vascular cells into the extracellular space where they exert their function via ionotropic (P2X) or metabotropic (P2Y) receptors. Signaling via extracellular nucleotides and adenosine is regulated by cell-surface located enzymes ectonucleotidases that hydrolyze the nucleotide to the respective nucleoside. This review summarizes a histochemical approach for detection of ectonucleotidase activities in the cryo-sections of brain tissue. The enzyme histochemistry (EHC) might be used as suitable replacement for immunohistochemistry, since it gives information about both localization and activity, thus adding a functional component to a classical histological approach. With this technique, it is possible to visualize spatial distribution and cell-specific localization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (eN/CD73) activities during brain development, after different hormonal manipulations, during neurodegeneration, etc. EHC is also suitable for investigation of microglial morphology in different (patho)physiological conditions. Furthermore, the review describes how to quantify EHC results.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zarić Kontić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D, Shen X, Wang L. Mechanosensitive TRPV4 Channel-Induced Extracellular ATP Accumulation at the Acupoint Mediates Acupuncture Analgesia of Ankle Arthritis in Rats. Life (Basel) 2021; 11:513. [PMID: 34073103 PMCID: PMC8228741 DOI: 10.3390/life11060513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Acupuncture (AP) is a safe and effective analgesic therapy. Understanding how fine needles trigger biological signals can help us optimize needling manipulation to improve its efficiency. Adenosine accumulation in treated acupoints is a vital related event. Here, we hypothesized that extracellular ATP (eATP) mobilization preceded adenosine accumulation, which involved local activation of mechanosensitive channels, especially TRPV4 protein. (2) Methods: AP was applied at the injured-side Zusanli acupoint (ST36) of acute ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in microdialysate from the acupoints was determined by luminescence assay. (3) Results: AP analgesic effect was significantly suppressed by pre-injection of GdCl3 or ruthenium red in ST36, the wide-spectrum inhibitors of mechanosensitive channels, or by HC067047, a specific antagonist of TRPV4 channels. Microdialysate determination revealed a needling-induced transient eATP accumulation that was significantly decreased by pre-injection of HC067047. Additionally, preventing eATP hydrolysis by pre-injection of ARL67156, a non-specific inhibitor of ecto-ATPases, led to the increase in eATP levels and the abolishment of AP analgesic effect. (4) Conclusions: These observations indicate that needling-induced transient accumulation of eATP, due to the activation of mechanosensitive TRPV4 channels and the activities of ecto-ATPases, is involved in the trigger mechanism of AP analgesia.
Collapse
Affiliation(s)
- Yawen Zheng
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weimin Zuo
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaiyu Cui
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xueyong Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Lina Wang
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| |
Collapse
|
6
|
Shen D, Zheng YW, Zhang D, Shen XY, Wang LN. Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 2021; 17:411-424. [PMID: 33934245 DOI: 10.1007/s11302-021-09777-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague-Dawley rats underwent acute inflammatory pain by injecting Complete Freund's Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.
Collapse
Affiliation(s)
- Dan Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- School of Traditional Chinese Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Ya-Wen Zheng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433, China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
7
|
Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR. Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 2020; 256:117862. [PMID: 32473244 DOI: 10.1016/j.lfs.2020.117862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências UFRGS, Porto Alegre, RS, Brazil
| | | | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, UFCSPA, Porto Alegre, RS, Brazil; Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
9
|
Nishida K, Nomura Y, Kawamori K, Ohishi A, Nagasawa K. ATP metabolizing enzymes ENPP1, 2 and 3 are localized in sensory neurons of rat dorsal root ganglion. Eur J Histochem 2018; 62:2877. [PMID: 29943954 PMCID: PMC6038112 DOI: 10.4081/ejh.2018.2877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
In dorsal root ganglion (DRG) neurons, ATP is an important neurotransmitter in nociceptive signaling through P2 receptors (P2Rs) such as P2X2/3R, and adenosine is also involved in anti-nociceptive signaling through adenosine A1R. Thus, the clearance system for adenine nucleotide/nucleoside plays a critical role in regulation of nociceptive signaling, but there is little information on it, especially ectoenzyme expression profiles in DRG. In this study, we examined expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPPs), by which ATP is metabolized to AMP, in rat DRG. The mRNA expression levels of ENPP2 were greater than those of ENPP1 and ENPP3 in rat DRGs. On immunohistochemical analysis, ENPP1, 2 and 3 were found in soma of DRG neurons. Immunopositive rate of ENPP3 was greater than that of ENPP1 and ENPP2 in all DRG neurons. ENPP3, as compared with ENPP1 and ENPP2, was expressed mainly by isolectin B4-positive cells, and slightly by neurofilament 200-positive ones. In this way, the expression profile of ENPP1, 2 and 3 was different in DRGs, and they were mainly expressed in small/medium-sized DRG neurons. Moreover, ENPP1-, 2- and 3-immunoreactivities were colocalized with P2X2R, P2X3R and prostatic acid phosphatase (PAP), as an ectoenzyme for metabolism from AMP to adenosine. Additionally, PAP-immunoreactivity was colocalized with equilibrative nucleoside transporter (ENT) 1, as an adenosine uptake system. These results suggest that the clearance system consisted of ENPPs, PAP and ENT1 plays an important role in regulation of nociceptive signaling in sensory neurons.
Collapse
Affiliation(s)
- Kentaro Nishida
- Kyoto Pharmaceutical University, Department of Environmental Biochemistry.
| | | | | | | | | |
Collapse
|
10
|
Rocha JN. Extracellular adenosine 5'-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study. EINSTEIN-SAO PAULO 2017; 14:541-546. [PMID: 28076603 PMCID: PMC5221382 DOI: 10.1590/s1679-45082016ao3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
Objective To determine adenosine 5’-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. Methods A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5’-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Results Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5’-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5’-triphosphate levels and no further increase in adenosine 5’-triphosphate was observed during bladder distension. Conclusion Adenosine 5’-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5’-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5’-triphosphate itself.
Collapse
Affiliation(s)
- Jeová Nina Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Liu X, Ma L, Zhang S, Ren Y, Dirksen RT. CD73 Controls Extracellular Adenosine Generation in the Trigeminal Nociceptive Nerves. J Dent Res 2017; 96:671-677. [PMID: 28530470 DOI: 10.1177/0022034517692953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purinergic signaling is involved in pain generation and modulation in the nociceptive sensory nervous system. Adenosine triphosphate (ATP) induces pain via activation of ionotropic P2X receptors while adenosine mediates analgesia via activation of metabotropic P1 receptors. These purinergic signaling are determined by ecto-nucleotidases that control ATP degradation and adenosine generation. Using enzymatic histochemistry, we detected ecto-AMPase activity in dental pulp, trigeminal ganglia (TG) neurons, and their nerve fibers. Using immunofluorescence staining, we confirmed the expression of ecto-5'-nucleotidase (CD73) in trigeminal nociceptive neurons and their axonal fibers, including the nociceptive nerve fibers projecting into the brainstem. In addition, we detected the existence of CD73 and ecto-AMPase activity in the nociceptive lamina of the trigeminal subnucleus caudalis (TSNC) in the brainstem. Furthermore, we demonstrated that incubation with specific anti-CD73 serum significantly reduced the ecto-AMPase activity in the nociceptive lamina in the brainstem. Our results indicate that CD73 might participate in nociceptive modulation by affecting extracellular adenosine generation in the trigeminal nociceptive pathway. Disruption of TG neuronal ecto-nucleotidase expression and axonal terminal localization under certain circumstances such as chronic inflammation, oxidant stress, local constriction, and injury in trigeminal nerves may contribute to the pathogenesis of orofacial neuropathic pain.
Collapse
Affiliation(s)
- X Liu
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,2 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - L Ma
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,3 Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - S Zhang
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Y Ren
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R T Dirksen
- 2 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
12
|
Grković I, Bjelobaba I, Mitrović N, Lavrnja I, Drakulić D, Martinović J, Stanojlović M, Horvat A, Nedeljković N. Expression of ecto-nucleoside triphosphate diphosphohydrolase3 (NTPDase3) in the female rat brain during postnatal development. J Chem Neuroanat 2016; 77:10-18. [DOI: 10.1016/j.jchemneu.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022]
|
13
|
Ma L, Trinh T, Ren Y, Dirksen RT, Liu X. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway. PLoS One 2016; 11:e0164028. [PMID: 27706204 PMCID: PMC5051867 DOI: 10.1371/journal.pone.0164028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023] Open
Abstract
ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Lihua Ma
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Thu Trinh
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Yanfang Ren
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Xiuxin Liu
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Chronic pain is one of the most debilitating and expensive diseases, yet current therapies are often insufficient in bringing about long-term relief. Further, many treatments for chronic pain also carry significant side effects. The molecule adenosine has long been identified as a potent inhibitor of nociceptive circuits in the spinal cord; however, the widespread expression of adenosine receptors in many organ systems has limited its use as an analgesic. Recently several 5' ectonucleotidases, including tissue non-specific alkaline phosphatase (TNAP), have been characterized for their ability to generate endogenous adenosine in nociceptive circuitry of the dorsal spinal cord. These ectonucleotidases have the ability to hydrolyze the endogenous pronociceptive nucleotides like adenosine triphosphate (ATP) into the antinociceptive nucleoside adenosine. This chapter discusses the role of TNAP and other ectonucleotidases in nociceptive circuits, and their potential as future targets of new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Sarah E Street
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,
| | | |
Collapse
|
15
|
Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 2015; 362:163-76. [PMID: 25959293 DOI: 10.1007/s00441-015-2179-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
Abstract
Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5'-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5'-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.
Collapse
|
16
|
Cardoso AM, Schetinger MRC, Correia-de-Sá P, Sévigny J. Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 2015; 191:25-38. [PMID: 26008223 DOI: 10.1016/j.autneu.2015.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| |
Collapse
|
17
|
Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators Inflamm 2015; 2015:630361. [PMID: 25691809 PMCID: PMC4322657 DOI: 10.1155/2015/630361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022] Open
Abstract
Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca2+]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.
Collapse
|
18
|
Expression profile of vesicular nucleotide transporter (VNUT, SLC17A9) in subpopulations of rat dorsal root ganglion neurons. Neurosci Lett 2014; 579:75-9. [DOI: 10.1016/j.neulet.2014.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 11/17/2022]
|
19
|
McCoy E, Street S, Taylor-Blake B, Yi J, Edwards M, Wightman M, Zylka M. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res 2014; 3:163. [PMID: 25717362 PMCID: PMC4329602 DOI: 10.12688/f1000research.4563.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 01/19/2023] Open
Abstract
Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5'-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons. Ectonucleoside triphosphate diphosphohydrolases (ENTPDs) comprise a class of enzymes that dephosphorylate extracellular ATP and ADP. Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3) was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG), in the dorsal horn of the spinal cord, and in free nerve endings in the skin. To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse. This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder. However, DRG and spinal cord tissues from Entpd3 (-/-) mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates. Additionally, using fast-scan cyclic voltammetry (FSCV), adenosine production was not impaired in the dorsal spinal cord of Entpd3 (-/-) mice when the substrate ADP was applied. Further, Entpd3 (-/-) mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3 (-/-) mice showed a modest reduction in β-alanine-mediated itch. Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord. Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.
Collapse
Affiliation(s)
- Eric McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Sarah Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Jason Yi
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Martin Edwards
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Wightman
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
McCoy E, Street S, Taylor-Blake B, Yi J, Edwards M, Wightman M, Zylka M. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res 2014; 3:163. [PMID: 25717362 PMCID: PMC4329602 DOI: 10.12688/f1000research.4563.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 10/21/2024] Open
Abstract
Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5'-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons. Ectonucleoside triphosphate diphosphohydrolases (ENTPDs) comprise a class of enzymes that dephosphorylate extracellular ATP and ADP. Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3) was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG), in the dorsal horn of the spinal cord, and in free nerve endings in the skin. To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse. This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder. However, DRG and spinal cord tissues from Entpd3 (-/-) mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates. Additionally, using fast-scan cyclic voltammetry (FSCV), adenosine production was not impaired in the dorsal spinal cord of Entpd3 (-/-) mice when the substrate ADP was applied. Further, Entpd3 (-/-) mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3 (-/-) mice showed a modest reduction in β-alanine-mediated itch. Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord. Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.
Collapse
Affiliation(s)
- Eric McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Sarah Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Jason Yi
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Martin Edwards
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Wightman
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, Ichinohe T, Tazaki M. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch 2014; 467:843-63. [PMID: 24939701 DOI: 10.1007/s00424-014-1551-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.
Collapse
|
22
|
Weng TI, Wu HY, Chen BL, Jhuang JY, Huang KH, Chiang CK, Liu SH. C/EBP homologous protein deficiency aggravates acute pancreatitis and associated lung injury. World J Gastroenterol 2013; 19:7097-7105. [PMID: 24222953 PMCID: PMC3819545 DOI: 10.3748/wjg.v19.i41.7097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the pathophysiological role of C/EBP homologous protein (CHOP) in severe acute pancreatitis and associated lung injury.
METHODS: A severe acute pancreatitis model was induced with 6 injections of cerulein (Cn, 50 μg/kg) at 1-h intervals, then intraperitoneal injection of lipopolysaccharide (LPS, 7.5 mg/kg) in CHOP-deficient (Chop-/-) mice and wild-type (WT) mice. Animals were sacrificed under anesthesia, 3 h or 18 h after LPS injection. Serum amylase, lipase, and cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)-α], pathological changes, acute lung injury, and apoptosis in the pancreas were evaluated. Serum amylase and lipase activities were detected using a medical automatic chemical analyzer. Enzyme-linked immunosorbent assay kits were used to evaluate TNF-α and IL-6 levels in mouse serum and lung tissue homogenates. Apoptotic cells in sections of pancreatic tissues were determined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) analysis. The mouse carotid arteries were cannulated and arterial blood samples were collected for PaO2 analysis. The oxygenation index was expressed as PaO2/FiO2.
RESULTS: Administration of Cn and LPS for 9 and 24 h induced severe acute pancreatitis in Chop-/- and WT mice. When comparing Chop-/- mice and WT mice, we observed that CHOP-deficient mice had greater increases in serum TNF-α (214.40 ± 19.52 pg/mL vs 150.40 ± 16.70 pg/mL; P = 0.037), amylase (4236.40 ± 646.32 U/L vs 2535.30 ± 81.83 U/L; P = 0.041), lipase (1678.20 ± 170.57 U/L vs 1046.21 ± 35.37 U/L; P = 0.008), and IL-6 (2054.44 ± 293.81 pg/mL vs 1316.10 ± 108.74 pg/mL; P = 0.046) than WT mice. The histopathological changes in the pancreases and lungs, decreased PaO2/FiO2 ratio, and increased TNF-α and IL-6 levels in the lungs were greater in Chop-/- mice than in WT mice (pancreas: Chop-/-vs WT mice, hemorrhage, P = 0.005; edema, P = 0.005; inflammatory cells infiltration, P = 0.005; total scores, P = 0.006; lung: hemorrhage, P = 0.017; edema, P = 0.017; congestion, P = 0.017; neutrophil infiltration, P = 0.005, total scores, P = 0.001; PaO2/FiO2 ratio: 393 ± 17.65 vs 453.8, P = 0.041; TNF-α: P = 0.043; IL-6, P = 0.040). Results from TUNEL analysis indicated increased acinar cell apoptosis in mice following the induction of acute pancreatitis. However, Chop-/- mice displayed significantly reduced pancreatic apoptosis compared with the WT mice (201.50 ± 31.43 vs 367.00 ± 47.88, P = 0.016).
CONCLUSION: These results suggest that CHOP can exert protective effects against acute pancreatitis and limit the spread of inflammatory damage to the lungs.
Collapse
|
23
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
24
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Zebisch M, Schäfer P, Lauble P, Sträter N. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:257-62. [PMID: 23519799 PMCID: PMC3606569 DOI: 10.1107/s1744309113001504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 01/16/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map.
Collapse
Affiliation(s)
- Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
26
|
Ectonucleotidases in solid organ and allogeneic hematopoietic cell transplantation. J Biomed Biotechnol 2012; 2012:208204. [PMID: 23125523 PMCID: PMC3482062 DOI: 10.1155/2012/208204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5'-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation.
Collapse
|
27
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
28
|
Takahashi-Iwanaga H, Iwanaga T. Accumulated caveolae constitute subcellular compartments for glial calcium signaling in lanceolate sensory endings innervating rat vibrissae. J Comp Neurol 2012; 520:2053-66. [DOI: 10.1002/cne.23028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|