1
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, Panis M, Ruiz A, tenOever BR, Zachariou V. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model. Sci Signal 2023; 16:eade4984. [PMID: 37159520 PMCID: PMC10422867 DOI: 10.1126/scisignal.ade4984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2-infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2-infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2-infected animals, which coincided with SARS-CoV-2-specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Zimering
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilinca M. Giosan
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kerri D. Pryce
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maryline Panis
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Ruiz
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venetia Zachariou
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, Panis M, Ruiz A, tenOever B, Zachariou V. SARS-CoV-2 Airway Infection Results in Time-dependent Sensory Abnormalities in a Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.19.504551. [PMID: 36032984 PMCID: PMC9413707 DOI: 10.1101/2022.08.19.504551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite being largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and long-lasting phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster infection model to characterize the effects of SARS-CoV-2 versus Influenza A virus (IAV) infection on the sensory nervous system. Efforts to detect the presence of virus in the cervical/thoracic spinal cord and dorsal root ganglia (DRGs) demonstrated detectable levels of SARS-CoV-2 by quantitative PCR and RNAscope uniquely within the first 24 hours of infection. SARS-CoV-2-infected hamsters demonstrated mechanical hypersensitivity during acute infection; intriguingly, this hypersensitivity was milder, but prolonged when compared to IAV-infected hamsters. RNA sequencing (RNA-seq) of thoracic DRGs from acute infection revealed predominantly neuron-biased signaling perturbations in SARS-CoV-2-infected animals as opposed to type I interferon signaling in tissue derived from IAV-infected animals. RNA-seq of 31dpi thoracic DRGs from SARS-CoV-2-infected animals highlighted a uniquely neuropathic transcriptomic landscape, which was consistent with substantial SARS-CoV-2-specific mechanical hypersensitivity at 28dpi. Ontology analysis of 1, 4, and 30dpi RNA-seq revealed novel targets for pain management, such as ILF3. Meta-analysis of all SARS-CoV-2 RNA-seq timepoints against preclinical pain model datasets highlighted both conserved and unique pro-nociceptive gene expression changes following infection. Overall, this work elucidates novel transcriptomic signatures triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities while also highlighting several therapeutic targets for alleviation of infection-induced hypersensitivity. One Sentence Summary SARS-CoV-2 infection results in an interferon-associated transcriptional response in sensory tissues underlying time-dependent hypersensitivity.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box #1124, New York, NY, 10029
- Department of Microbiology, New York University Langone, 430-450 E. 29 St., New York, NY 10016
| | - Jeffrey Zimering
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box #1136, New York, NY, 10029
| | - Ilinca M. Giosan
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
| | - Kerri D. Pryce
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
| | - Ilona Golynker
- Department of Microbiology, New York University Langone, 430-450 E. 29 St., New York, NY 10016
| | - Maryline Panis
- Department of Microbiology, New York University Langone, 430-450 E. 29 St., New York, NY 10016
| | - Anne Ruiz
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
| | - Benjamin tenOever
- Department of Microbiology, New York University Langone, 430-450 E. 29 St., New York, NY 10016
| | - Venetia Zachariou
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1022, New York, NY, 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box #1677, New York, New York 10029
| |
Collapse
|
4
|
Singh S, Winkelstein BA. Inhibiting the β1integrin subunit increases the strain threshold for neuronal dysfunction under tensile loading in collagen gels mimicking innervated ligaments. Biomech Model Mechanobiol 2022; 21:885-898. [DOI: 10.1007/s10237-022-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
5
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
6
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
7
|
Singh S, Kartha S, Bulka BA, Stiansen NS, Winkelstein BA. Physiologic facet capsule stretch can induce pain & upregulate matrix metalloproteinase-3 in the dorsal root ganglia when preceded by a physiological mechanical or nonpainful chemical exposure. Clin Biomech (Bristol, Avon) 2019; 64:122-130. [PMID: 29523370 PMCID: PMC6067996 DOI: 10.1016/j.clinbiomech.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neck pain from cervical facet loading is common and induces inflammation and upregulation of nerve growth factor (NGF) that can sensitize the joint afferents. Yet, the mechanisms by which these occur and whether afferents can be pre-conditioned by certain nonpainful stimuli are unknown. This study tested the hypothesis that a nonpainful mechanical or chemical insult predisposes a facet joint to generate pain after a later exposure to typically nonpainful distraction. METHODS Rats were exposed to either a nonpainful distraction or an intra-articular subthreshold dose of NGF followed by a nonpainful distraction two days later. Mechanical hyperalgesia was measured daily and C6 dorsal root ganglia (DRG) tissue was assayed for NGF and matrix metalloproteinase-3 (MMP-3) expression on day 7. FINDINGS The second distraction increased joint displacement and strains compared to its first application (p = 0.0011). None of the initial exposures altered behavioral sensitivity in either of the groups being pre-conditioned or in controls; but, sensitivity was established in both groups receiving a second distraction within one day that lasted until day 7 (p < 0.024). NGF expression in the DRG was increased in both groups undergoing a pre-conditioning exposure (p < 0.0232). Similar findings were observed for MMP-3 expression, with a pre-conditioning exposure increasing levels after an otherwise nonpainful facet distraction. INTERPRETATION These findings suggest that nonpainful insults to the facet joint, when combined, can generate painful outcomes, possibly mediated by upregulation of MMP-3 and mature NGF.
Collapse
Affiliation(s)
- Sagar Singh
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ben A Bulka
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Nicholas S Stiansen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Kartha S, Bulka BA, Stiansen NS, Troche HR, Winkelstein BA. Repeated High Rate Facet Capsular Stretch at Strains That are Below the Pain Threshold Induces Pain and Spinal Inflammation With Decreased Ligament Strength in the Rat. J Biomech Eng 2018; 140:2679583. [PMID: 30003250 PMCID: PMC6056195 DOI: 10.1115/1.4040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Repeated loading of ligamentous tissues during repetitive occupational and physical tasks even within physiological ranges of motion has been implicated in the development of pain and joint instability. The pathophysiological mechanisms of pain after repetitive joint loading are not understood. Within the cervical spine, excessive stretch of the facet joint and its capsular ligament has been implicated in the development of pain. Although a single facet joint distraction (FJD) at magnitudes simulating physiologic strains is insufficient to induce pain, it is unknown whether repeated stretching of the facet joint and ligament may produce pain. This study evaluated if repeated loading of the facet at physiologic nonpainful strains alters the capsular ligament's mechanical response and induces pain. Male rats underwent either two subthreshold facet joint distractions (STFJDs) or sham surgeries each separated by 2 days. Pain was measured before the procedure and for 7 days; capsular mechanics were measured during each distraction and under tension at tissue failure. Spinal glial activation was also assessed to probe potential pathophysiologic mechanisms responsible for pain. Capsular displacement significantly increased (p = 0.019) and capsular stiffness decreased (p = 0.008) during the second distraction compared to the first. Pain was also induced after the second distraction and was sustained at day 7 (p < 0.048). Repeated loading weakened the capsular ligament with lower vertebral displacement (p = 0.041) and peak force (p = 0.014) at tissue rupture. Spinal glial activation was also induced after repeated loading. Together, these mechanical, physiological, and neurological findings demonstrate that repeated loading of the facet joint even within physiologic ranges of motion can be sufficient to induce pain, spinal inflammation, and alter capsular mechanics similar to a more injurious loading exposure.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Ben A. Bulka
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Nick S. Stiansen
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Harrison R. Troche
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Beth A. Winkelstein
- Fellow ASME
Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall 210,
South 33rd Street,
Philadelphia, PA 19104
e-mail:
| |
Collapse
|
9
|
Weisshaar CL, Kras JV, Pall PS, Kartha S, Winkelstein BA. Ablation of IB4 non-peptidergic afferents in the rat facet joint prevents injury-induced pain and thalamic hyperexcitability via supraspinal glutamate transporters. Neurosci Lett 2017; 655:82-89. [PMID: 28689926 DOI: 10.1016/j.neulet.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
The facet joint is a common source of neck pain, particularly after excessive stretch of its capsular ligament. Peptidergic afferents have been shown to have an important role in the development and maintenance of mechanical hyperalgesia, dysregulated nociceptive signaling, and spinal hyperexcitability that develop after mechanical injury to the facet joint. However, the role of non-peptidergic isolectin-B4 (IB4) cells in mediating joint pain is unknown. Isolectin-B4 saporin (IB4-SAP) was injected into the facet joint to ablate non-peptidergic cells, and the facet joint later underwent a ligament stretch known to induce pain. Behavioral sensitivity, thalamic glutamate transporter expression, and thalamic hyperexcitability were evaluated up to and at day 7. Administering IB4-SAP prior to a painful injury prevented the development of mechanical hyperalgesia that is typically present. Intra-articular IB4-SAP also prevented the upregulation of the glutamate transporters GLT-1 and EAAC1 in the ventral posterolateral nucleus of the thalamus and reduced thalamic neuronal hyperexcitability at day 7. These findings suggest that a painful facet injury induces changes extending to supraspinal structures and that IB4-positive afferents in the facet joint may be critical for the development and maintenance of sensitization in the thalamus after a painful facet joint injury.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Parul S Pall
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
The Physiological Basis of Cervical Facet-Mediated Persistent Pain: Basic Science and Clinical Challenges. J Orthop Sports Phys Ther 2017. [PMID: 28622486 DOI: 10.2519/jospt.2017.7255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis Chronic neck pain is a common condition and a primary clinical symptom of whiplash and other spinal injuries. Loading-induced neck injuries produce abnormal kinematics between the vertebrae, with the potential to injure facet joints and the afferent fibers that innervate the specific joint tissues, including the capsular ligament. Mechanoreceptive and nociceptive afferents that innervate the facet have their peripheral terminals in the capsule, cell bodies in the dorsal root ganglia, and terminal processes in the spinal cord. As such, biomechanical loading of these afferents can initiate nociceptive signaling in the peripheral and central nervous systems. Their activation depends on the local mechanical environment of the joint and encodes the neural processes that initiate pain and lead to its persistence. This commentary reviews the complex anatomical, biomechanical, and physiological consequences of facet-mediated whiplash injury and pain. The clinical presentation of facet-mediated pain is complex in its sensory and emotional components. Yet, human studies are limited in their ability to elucidate the physiological mechanisms by which abnormal facet loading leads to pain. Over the past decade, however, in vivo models of cervical facet injury that reproduce clinical pain symptoms have been developed and used to define the complicated and multifaceted electrophysiological, inflammatory, and nociceptive signaling cascades that are involved in the pathophysiology of whiplash facet pain. Integrating the whiplash-like mechanics in vivo and in vitro allows transmission of pathophysiological mechanisms across scales, with the hope of informing clinical management. Yet, despite these advances, many challenges remain. This commentary further describes and highlights such challenges. J Orthop Sports Phys Ther 2017;47(7):450-461. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7255.
Collapse
|
11
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Zhang S, Cao X, Stablow AM, Shenoy VB, Winkelstein BA. Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction. J Biomech Eng 2016; 138:021013. [PMID: 26549105 DOI: 10.1115/1.4031975] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 12/26/2022]
Abstract
Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a "switchlike" fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2-13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local collagen fiber kinematics, may be associated with mechanotransduction signaling in neurons.
Collapse
|
13
|
Abstract
A response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress. Here we report that eIF2α is instrumental in the control of noxious heat sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A) exhibit reduced responses to noxious heat. Pharmacological attenuation of eIF2α phosphorylation decreases thermal, but not mechanical, pain sensitivity, whereas increasing eIF2α phosphorylation has the opposite effect on thermal nociception. The impact of eIF2α phosphorylation (p-eIF2α) on thermal thresholds is dependent on the transient receptor potential vanilloid 1. Moreover, we show that induction of eIF2α phosphorylation in primary sensory neurons in a chronic inflammation pain model contributes to thermal hypersensitivity. Our results demonstrate that the cellular stress response pathway, mediated via p-eIF2α, represents a mechanism that could be used to alleviate pathological heat sensation.
Collapse
|
14
|
Manchikanti L, Hirsch JA, Kaye AD, Boswell MV. Cervical zygapophysial (facet) joint pain: effectiveness of interventional management strategies. Postgrad Med 2015; 128:54-68. [PMID: 26653406 DOI: 10.1080/00325481.2016.1105092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diagnostic facet joint nerve blocks have been utilized in the diagnosis of cervical facet joint pain in patients without disk herniation or radicular pain due to a lack of reliable noninvasive diagnostic measures. Therapeutic interventions include intra-articular injections, facet joint nerve blocks and radiofrequency neurotomy. The diagnostic accuracy and effectiveness of facet joint interventions have been assessed in multiple diagnostic accuracy studies, randomized controlled trials (RCTs), and systematic reviews in managing chronic neck pain. This assessment shows there is Level II evidence based on a total of 11 controlled diagnostic accuracy studies for diagnosing cervical facet joint pain in patients without disk herniation or radicular pain utilizing controlled diagnostic blocks. Due to significant variability and internal inconsistency regarding prevalence in a heterogenous population; despite 11 studies, evidence is determined as Level II. Prevalence ranged from 36% to 67% with at least 80% pain relief as the criterion standard with a false-positive rate ranging from 27% to 63%. The evidence is Level II for the long-term effectiveness of radiofrequency neurotomy and facet joint nerve blocks in managing cervical facet joint pain. There is Level III evidence for cervical intra-articular injections.
Collapse
Affiliation(s)
- Laxmaiah Manchikanti
- a Pain Management Center of Paducah , Paducah , KY , USA.,b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| | - Joshua A Hirsch
- c Neuroendovascular Program , Massachusetts General Hospital , Boston , MA , USA
| | - Alan D Kaye
- d Department of Anesthesia , LSU Health Science Center , New Orleans , LA , USA
| | - Mark V Boswell
- b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| |
Collapse
|
15
|
Klessinger S. Zygapophysial joint pain in selected patients. World J Anesthesiol 2015; 4:49-57. [DOI: 10.5313/wja.v4.i3.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/10/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
The zygapophysial joints (z-joints), together with the intervertebral disc, form a functional spine unit. The joints are typical synovial joints with an innervation from two medial branches of the dorsal rami. The joint capsule and the surrounding structures have an extensive nerve supply. The stretching of the capsule and loads being transmitted through the joint can cause pain. The importance of the z-joints as a pain generator is often underestimated because the prevalence of z-joint pain (10%-80%) is difficult to specify. Z-joint pain is a somatic referred pain. Morning stiffness and pain when moving from a sitting to a standing position are typical. No historic or physical examination variables exist to identify z-joint pain. Also, radiologic findings do not have a diagnostic value for pain from z-joints. The method with the best acceptance for diagnosing z-joint pain is controlled medial branch blocks (MBBs). They are the most validated of all spinal interventions, although false-positive and false-negative results exist and the degree of pain relief after MBBs remains contentious. The prevalence of z-joint pain increases with age, and it often comes along with other pain sources. Degenerative changes are commonly found. Z-joints are often affected by osteoarthritis and inflammatory processes. Often additional factors including synovial cysts, spondylolisthesis, spinal canal stenosis, and injuries are present. The only truly validated treatment is medial branch neurotomy. The available technique vindicates the use of radiofrequency neurotomy provided that the correct technique is used and patients are selected rigorously using controlled blocks.
Collapse
|
16
|
Kras JV, Weisshaar CL, Pall PS, Winkelstein BA. Pain from intra-articular NGF or joint injury in the rat requires contributions from peptidergic joint afferents. Neurosci Lett 2015; 604:193-8. [PMID: 26240991 DOI: 10.1016/j.neulet.2015.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 02/06/2023]
Abstract
Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis.
Collapse
Affiliation(s)
- Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parul S Pall
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Yang ES, Bae JY, Kim TH, Kim YS, Suk K, Bae YC. Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain. Exp Neurobiol 2014; 23:372-80. [PMID: 25548537 PMCID: PMC4276808 DOI: 10.5607/en.2014.23.4.372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway.
Collapse
Affiliation(s)
- Eun Sun Yang
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Tae Heon Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
18
|
Increased interleukin-1α and prostaglandin E2 expression in the spinal cord at 1 day after painful facet joint injury: evidence of early spinal inflammation. Spine (Phila Pa 1976) 2014; 39:207-12. [PMID: 24253784 PMCID: PMC3946680 DOI: 10.1097/brs.0000000000000107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used immunohistochemistry and an enzyme immunoassay to quantify interleukin-1α (IL-1α) and prostaglandin E2 (PGE2) levels in the spinal cord of rats at 1 day after painful cervical facet joint injury. OBJECTIVE The objective of this study was to determine to what extent spinal inflammation is initiated early after a painful loading-induced injury of the C6-C7 facet joint in a rat model. SUMMARY OF BACKGROUND DATA A common source of neck pain, the cervical facet joint is susceptible to loading-induced injury, which can lead to persistent pain. IL-1α and PGE2 are associated with joint inflammation and pain, both locally in the joint and centrally in the spinal cord. Joint inflammation has been shown to contribute to pain after facet joint injury. Although spinal neuronal hyperactivity is evident within 1 day of painful facet injury, it is unknown if inflammatory mediators, such as IL-1α and PGE2, are also induced early after painful injury. METHODS Rats underwent either a painful C6-C7 facet joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical and enzyme immunoassay techniques were used to quantify IL-1α and PGE2 expression in the spinal cord at day 1. RESULTS Both IL-1α and PGE2 were significantly elevated (P≤ 0.04) at day 1 after painful injury. Moreover, although both spinal IL-1α and PGE2 levels were correlated with the withdrawal threshold in response to mechanical stimulation of the forepaw, this correlation was only significant (P = 0.01) for PGE2. CONCLUSION The increased expression of 2 inflammatory markers in the spinal cord at 1 day after painful joint injury suggests that spinal inflammation may contribute to the initiation of pain after cervical facet joint injury. Further studies will help identify functional roles of both spinal IL-1α and PGE2 in loading-induced joint pain. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Baig HA, Guarino BB, Lipschutz D, Winkelstein BA. Whole body vibration induces forepaw and hind paw behavioral sensitivity in the rat. J Orthop Res 2013; 31:1739-44. [PMID: 23832376 DOI: 10.1002/jor.22432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/13/2013] [Indexed: 02/04/2023]
Abstract
Whole body vibration (WBV) has been linked to neck and back pain, but the biomechanical and physiological mechanisms responsible for its development and maintenance are unknown. A rodent model of WBV was developed in which rats were exposed to different WBV paradigms, either daily for 7 consecutive days (repeated WBV) or two single exposures at Day 0 and 7 (intermittent WBV). Each WBV session lasted for 30 min and was imposed at a frequency of 15 Hz and RMS platform acceleration of 0.56 ± 0.07 g. Changes in the withdrawal response of the forepaw and hind paw were measured, and were used to characterize the onset and maintenance of behavioral sensitivity. Accelerations and displacements of the rat and deformations in the cervical and lumbar spines were measured during WBV to provide mechanical context for the exposures. A decrease in withdrawal threshold was induced at 1 day after the first exposure in both the hind paw and forepaw. Repeated WBV exhibited a sustained reduction in withdrawal threshold in both paws and intermittent WBV induced a sustained response only in the forepaw. Cervical deformations were significantly elevated which may explain the more robust forepaw response. Findings suggest that a WBV exposure leads to behavioral sensitivity.
Collapse
Affiliation(s)
- Hassam A Baig
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA, 19104-6321
| | | | | | | |
Collapse
|
20
|
Dong L, Smith JR, Winkelstein BA. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury. J Neurotrauma 2013; 30:818-25. [PMID: 23126437 PMCID: PMC3660109 DOI: 10.1089/neu.2012.2600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenell R. Smith
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
An anatomical and immunohistochemical characterization of afferents innervating the C6-C7 facet joint after painful joint loading in the rat. Spine (Phila Pa 1976) 2013; 38:E325-31. [PMID: 23324931 PMCID: PMC3600108 DOI: 10.1097/brs.0b013e318285b5bb] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used retrograde neuronal tracing and immunohistochemistry to identify neurons innervating the C6-C7 facet joint and those expressing calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE The objective of this study was to characterize the innervation of the C6-C7 facet joint after painful joint injury in the rat. SUMMARY OF BACKGROUND DATA The cervical facet joint is a source of neck pain, and its loading can initiate persistent pain. CGRP is a nociceptive neurotransmitter; peptidergic afferents have been identified in the facet joint's capsule. Although studies suggest that facet joint injury alters CGRP expression in joint afferents, the distribution of neurons innervating the C6-C7 facet joint and their expression of CGRP after a painful joint injury have not been investigated. METHODS Holtzman rats (Harlan Sprague-Dawley, Indianapolis, IN) received an intra-articular injection of cholera toxin subunit B in the C6-C7 facet joints. After injection, subgroups underwent either a painful joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical techniques were used to quantify CGRP expression and cholera toxin subunit B labeling in the C5-C8 DRGs. RESULTS Facet joint distraction-induced (P ≤ 0.0002) hypersensitivity. Neurons labeled by the joint injection were identified in the C5-C8 DRGs. Significantly, more (P ≤ 0.0001) cholera toxin subunit B-positive neurons were identified in the C7 DRG than any other level. At C7, 54.4% ± 15.3% of those neurons were also CGRP-positive, whereas only 41.5% ± 5.4% of all neurons were CGRP-positive; this difference was significant (P = 0.0084). CONCLUSION The greatest number of afferents from the C6-C7 facet joint has cell bodies in the C7 DRG, implicating this level as the most relevant for pain from this joint. In addition, peptidergic afferents seem to have an important role in facet joint-mediated pain.
Collapse
|
22
|
The prostaglandin E2 receptor, EP2, is upregulated in the dorsal root ganglion after painful cervical facet joint injury in the rat. Spine (Phila Pa 1976) 2013; 38:217-22. [PMID: 22789984 PMCID: PMC3500406 DOI: 10.1097/brs.0b013e3182685ba1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE To identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. SUMMARY OF BACKGROUND DATA The cervical facet joint is a common source of neck pain, and nonphysiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest that the EP2 receptor subtype contributes to painful joint disease, the EP2 response has not been investigated for any association with painful mechanical joint injury. METHODS Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. RESULTS Facet joint distraction induced mechanical allodynia that was significant (P < 0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (P = 0.009), which was maintained at day 7 (P < 0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (P = 0.013). CONCLUSION Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury nonneuronal cells may migrate to the DRG, some of which likely express EP2.
Collapse
|
23
|
Dong L, Quindlen JC, Lipschutz DE, Winkelstein BA. Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity. Brain Res 2012; 1461:51-63. [PMID: 22578356 DOI: 10.1016/j.brainres.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 12/25/2022]
Abstract
The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord. Bilateral C6/C7 facet joint distractions were imposed in the rat either to produce behavioral sensitivity or without inducing any sensitivity. Neuronal metabotropic glutamate receptor-5 (mGluR5) and protein kinase C-epsilon (PKCε) expression in the DRG and spinal cord were evaluated on days 1 and 7. Spinal expression of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1), was also quantified at both time points. Painful distraction produced immediate behavioral hypersensitivity that was sustained for 7 days. Increased expression of mGluR5 and PKCε in the DRG was not evident until day 7 and only following painful distraction; this increase was observed in small-diameter neurons. Only painful facet joint distraction produced a significant increase (p<0.001) in neuronal mGluR5 over time, and this increase also was significantly elevated (p≤0.05) over responses in the other groups at day 7. However, there were no differences in spinal PKCε expression on either day or between groups. Spinal EAAC1 expression was significantly increased (p<0.03) only in the nonpainful groups on day 7. Results from this study suggest that spinal glutamatergic plasticity is selectively modulated in association with facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|