1
|
Haller J, Faludi G, Kovacs G, Purebl G, Füzesi Z, Freund TF. The Effects of Echinacea (EP107 TM) on Anxiety: A Comparison of Anxiety Measures in a Randomized, Double Blind, Placebo-Controlled Study. Pharmaceuticals (Basel) 2025; 18:264. [PMID: 40006076 PMCID: PMC11858916 DOI: 10.3390/ph18020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Echinacea extracts with unique alkamide profiles (EP107™) have been shown to affect upper respiratory tract infections and reduce anxiety in both animals and humans. However, a recent study found that a similar extract did not reduce anxiety more than a placebo, although it did enhance well-being and produced antidepressant-like effects. We hypothesized that the discrepancy arose from the differences in the anxiety assessment methods used. The study that observed no effects used the Clinically Useful Anxiety Outcome Scale, which focuses on physical symptoms, while earlier studies used the State-Trait Anxiety Inventory, which focuses on psychic symptoms. Methods: To investigate the influence of the anxiety measure on the detectability of anxiolytic effects, we examined the effects of Echinacea EP107TM using the Hospital Anxiety and Depression Scale-anxiety subscale (HADS-A), which focuses on psychic symptoms, and the Hamilton Anxiety Rating Scale (HAM-A), most items of which involve physical symptoms. The study was placebo-controlled, double-blind, and multicenter. Results: The extract significantly alleviated anxiety compared to placebo when measured with HADS-A. HAM-A total scores did not show significant treatment effects. However, Echinacea was superior to placebo in three psychic anxiety items on the HAM-A. Conclusions: These findings suggest that Echinacea EP107TM reduces psychic anxiety without affecting somatic symptoms. This indicates that the extract may be useful in mild or early-phase anxiety when somatic symptoms are not prominent.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1083 Budapest, Hungary
- Mathias Corvinus Collegium, 1113 Budapest, Hungary
- Istvan Nemeskurty Faculty of Teacher Training, Ludovika University of Public Service, 1083 Budapest, Hungary
| | - Gábor Faludi
- Department of Psychiatry and Psychotherapy, Faculty of General Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Kovacs
- Department of Psychiatry, State Health Centre, 1097 Budapest, Hungary
| | - György Purebl
- Institute of Behavioural Sciences, Faculty of General Medicine, Semmelweis University, 1085 Budapest, Hungary
| | | | | |
Collapse
|
2
|
Warner-Levy J, Erridge S, Clarke E, McLachlan K, Coomber R, Asghar M, Bexley K, Bhoskar U, Crews M, De Angelis A, Imran M, Kamal F, Korb L, Mwimba G, Sachdeva-Mohan S, Shaya G, Rucker JJ, Sodergren MH. UK Medical Cannabis Registry: a cohort study of patients prescribed cannabis-based oils and dried flower for generalised anxiety disorder. Expert Rev Neurother 2024; 24:1193-1202. [PMID: 39526700 DOI: 10.1080/14737175.2024.2423634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a common mental health condition. The endocannabinoid system has become a focus for new therapies, increasing interest in cannabis-based medicinal products (CBMPs). This study uses data from the UK Medical Cannabis Registry (UKMCR) to investigate real-world outcomes and safety of different CBMP formulations in GAD patients. METHODS This study analyzed patient-reported outcomes from 302 GAD patients prescribed CBMPs (oil-based, dried flower, or a combination). Anxiety (GAD-7), sleep quality (SQS), and quality of life (EQ-5D-5 L) were assessed at 1, 3, 6, and 12 months. Adverse events were recorded. RESULTS All CBMP formulations were associated with improvements in anxiety, sleep, and quality of life over 12 months (p < 0.050). At 12 months, there were no significant differences in outcomes between formulations (p > 0.050). The majority of reported adverse events (n = 707) were mild (n = 343) or moderate (n = 285) in severity, with no life-threatening events observed. CONCLUSION This study provides real-world evidence supporting the potential of CBMPs for improving GAD symptoms. Patients prescribed both oil-based and dried flower formulations have similar outcomes over 12 months. Further research is needed to determine the optimal CBMP formulation and long-term effects.
Collapse
Affiliation(s)
- John Warner-Levy
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon Erridge
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Medicine, Curaleaf Clinic, London, UK
| | | | | | - Ross Coomber
- Department of Medicine, Curaleaf Clinic, London, UK
- Department of Trauma and Orthopaedics, St. George's Hospital NHS Trust, London, UK
| | | | - Karl Bexley
- Department of Medicine, Curaleaf Clinic, London, UK
| | | | | | - Andrea De Angelis
- Department of Medicine, Curaleaf Clinic, London, UK
- Department of Trauma and Orthopaedics, St. George's Hospital NHS Trust, London, UK
| | | | - Fariha Kamal
- Department of Medicine, Curaleaf Clinic, London, UK
| | - Laura Korb
- Department of Medicine, Curaleaf Clinic, London, UK
| | | | | | | | - James J Rucker
- Department of Psychological Medicine, Kings College London, London, UK
- Centre for Affective Disorders, South London & Maudsley NHS Foundation Trust, London, UK
| | - Mikael H Sodergren
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Medicine, Curaleaf Clinic, London, UK
| |
Collapse
|
3
|
Pedrazzi JFC, Silva-Amaral D, Issy AC, Gomes FV, Crippa JA, Guimarães FS, Del Bel E. Cannabidiol attenuates prepulse inhibition disruption by facilitating TRPV1 and 5-HT1A receptor-mediated neurotransmission. Pharmacol Biochem Behav 2024; 245:173879. [PMID: 39305939 DOI: 10.1016/j.pbb.2024.173879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
Individuals with schizophrenia (SCZ) often present sensorimotor gating impairments that can be investigated by the prepulse inhibition test (PPI). PPI disruption can be mimicked experimentally with psychostimulants such as amphetamine and attenuated/reversed by antipsychotics. Cannabidiol (CBD), the main non-psychotomimetic component of the Cannabis sativa plant, produces antipsychotic-like effects in clinical and preclinical studies. CBD can interact with many pharmacological targets, but the mechanisms involved in its antipsychotic activity are unclear. Using amphetamine-induced PPI disruption in mice, we investigated the involvement of four CBD potential pharmacological targets (CB1, CB2 TRPV1, and 5-HT1A receptors) in its antipsychotic properties. CBD effects were blocked by the TRPV1 antagonist capsazepine and, to a greater extent, by the 5-HT1A receptor antagonist WAY100635. No effect was observed with the CB1 (AM251) or CB2 (AM630) receptor antagonists. These results corroborate findings showing the antipsychotic effects of CBD in the PPI model and indicate that they involve the participation of TRPV1 and 5-HT1A receptors.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Danyelle Silva-Amaral
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C Issy
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Del Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
4
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Falvo S, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response. Front Cell Dev Biol 2024; 12:1464773. [PMID: 39512900 PMCID: PMC11541708 DOI: 10.3389/fcell.2024.1464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes. Methods We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis. Results and discussion In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pieter de Lange
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
5
|
Hayase T. Interrelated involvement of the endocannabinoid/endovanilloid (TRPV1) systems and epigenetic processes in anxiety- and working memory impairment-related behavioural effects of nicotine as a stressor. Addict Biol 2024; 29:10.1111/adb.13421. [PMID: 38963015 PMCID: PMC11222983 DOI: 10.1111/adb.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
6
|
de Fátima Dos Santos Sampaio M, de Paiva YB, Sampaio TB, Pereira MG, Coimbra NC. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson's disease and in comorbidity with psychiatric disorders. Basic Clin Pharmacol Toxicol 2024; 134:574-601. [PMID: 38477419 DOI: 10.1111/bcpt.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tuane Bazanella Sampaio
- Pharmacology Post-Graduation Program, Health Sciences Centre, Santa Maria Federal University, Santa Maria, Brazil
| | - Messias Gonzaga Pereira
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Busnardo C, Fassini A, Lopes-Azevedo S, Omena-Giatti L, Goulart MT, Antunes-Rodrigues J, Alves FHF, Corrêa FMA, Crestani CC. ENDOCANNABINOID SYSTEM IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS MODULATES AUTONOMIC AND CARDIOVASCULAR CHANGES BUT NOT VASOPRESSIN RESPONSE IN A RAT HEMORRHAGIC SHOCK MODEL. Shock 2024; 61:294-303. [PMID: 38150372 DOI: 10.1097/shk.0000000000002286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Aline Fassini
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Silvana Lopes-Azevedo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana Omena-Giatti
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Melissa T Goulart
- Department of Health Sciences, Faculty of Medicine-Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando H F Alves
- Department of Health Sciences, Faculty of Medicine-Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Fernando M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Alegre-Zurano L, García-Baos A, Castro-Zavala A, Medrano M, Gallego-Landin I, Valverde O. The FAAH inhibitor URB597 reduces cocaine intake during conditioned punishment and mitigates cocaine seeking during withdrawal. Biomed Pharmacother 2023; 165:115194. [PMID: 37499453 DOI: 10.1016/j.biopha.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Medrano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
9
|
Klein RM, Motomura VN, Debiasi JD, Moreira EG. Gestational paracetamol exposure induces core behaviors of neurodevelopmental disorders in infant rats and modifies response to a cannabinoid agonist in females. Neurotoxicol Teratol 2023; 99:107279. [PMID: 37391024 DOI: 10.1016/j.ntt.2023.107279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Paracetamol (PAR) is an over-the-counter analgesic/antipyretic used during pregnancy worldwide. Epidemiological studies have been associating gestational PAR exposure with neurobehavioral alterations in the progeny resembling autism spectrum disorders and attention-deficit hyperactivity disorder symptoms. The endocannabinoid (eCB) dysfunction was previously hypothesized as one of the modes of action by which PAR may harm the developing nervous system. We aimed to evaluate possible effects of gestational exposure to PAR on male and female rat's offspring behavior and if an acute injection of WIN 55,212-2 (WIN, 0.3 mg/kg), a non-specific cannabinoid agonist, prior to behavioral tests, would induce different effects in PAR exposed and non-exposed animals. Pregnant Wistar rats were gavaged with PAR (350 mg/kg/day) or water from gestational day 6 until delivery. Nest-seeking, open field, apomorphine-induced stereotypy, marble burying and three-chamber tests were conducted in 10-, 24-, 25- or 30-days-old rats, respectively. PAR exposure resulted in increased apomorphine-induced stereotyped behavior and time spent in the central area of the open field in exposed female pups. Additionally, it induced hyperactivity in the open field and increased marble burying behavior in both male and female pups. WIN injection modified the behavioral response only in the nest seeking test, and opposite effects were observed in control and PAR-exposed neonate females. Reported alterations are relevant for the neurodevelopmental disorders that have been associated with maternal PAR exposure and suggest that eCB dysfunction may play a role in the action by which PAR may harm the developing brain.
Collapse
Affiliation(s)
- Rodrigo Moreno Klein
- Graduation Program in Health Sciences, State University of Londrina, Londrina, PR 86047-610, Brazil
| | | | - Juliana Diosti Debiasi
- Department of Physiological Sciences, State University of Londrina, Londrina, PR 86047-610, Brazil
| | - Estefânia Gastaldello Moreira
- Graduation Program in Health Sciences, State University of Londrina, Londrina, PR 86047-610, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, PR 86047-610, Brazil.
| |
Collapse
|
10
|
Huckleberry KA, Calitri R, Li AJ, Mejdell M, Singh A, Bhutani V, Laine MA, Nastase AS, Morena M, Hill MN, Shansky RM. CB1R blockade unmasks TRPV1-mediated contextual fear generalization in female, but not male rats. Neuropsychopharmacology 2023; 48:1500-1508. [PMID: 37460772 PMCID: PMC10425366 DOI: 10.1038/s41386-023-01650-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Increasing evidence suggests that the neurobiological processes that govern learning and memory can be different in males and females, but many of the specific mechanisms underlying these sex differences have not been fully defined. Here we investigated potential sex differences in endocannabinoid (eCB) modulation of Pavlovian fear conditioning and extinction, examining multiple defensive behaviors, including shock responsivity, conditioned freezing, and conditioned darting. We found that while systemic administration of drugs acting on eCB receptors did not influence the occurrence of darting, females that were classified as Darters responded differently to the drug administration than those classified as Non-darters. Most notably, CB1R antagonist AM251 produced an increase in cue-elicited freezing and context generalization selectively in female Non-darters that persisted across extinction and extinction retrieval tests but was prevented by co-administration of TRPV1R antagonist Capsazepine. To identify a potential synaptic mechanism for these sex differences, we next employed biochemical and neuroanatomical tracing techniques to quantify anandamide (AEA), TRPV1R, and perisomatic CB1R expression, focusing on the ventral hippocampus (vHip) given its known role in mediating contextual fear generalization. These assays identified sex-specific effects of both fear conditioning-elicited AEA release and vHip-BLA circuit structure. Together, our data support a model in which sexual dimorphism in vHip-BLA circuitry promotes a female-specific dependence on CB1Rs for context processing that is sensitive to TRPV1-mediated disruption when CB1Rs are blocked.
Collapse
Affiliation(s)
| | - Roberto Calitri
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Anna J Li
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Mackenna Mejdell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Ashna Singh
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Vasvi Bhutani
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Mikaela A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Andrei S Nastase
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
11
|
Huckleberry KA, Calitri R, Li AJ, Mejdell M, Singh A, Bhutani V, Laine MA, Nastase AS, Morena M, Hill MN, Shansky RM. CB1R blockade unmasks TRPV1-mediated contextual fear generalization in female, but not male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536625. [PMID: 37090594 PMCID: PMC10120634 DOI: 10.1101/2023.04.12.536625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Increasing evidence suggests that the neurobiological processes that govern learning and memory can be different in males and females, and here we asked specifically whether the endocannabinoid (eCB) system could modulate Pavlovian fear conditioning in a sex-dependent manner. Systemic (i.p.) injection of CB1R antagonist AM251 in adult male and female Sprague Dawley rats prior to auditory cued fear conditioning produced a female-specific increase in freezing that persisted across extinction and extinction retrieval tests but was prevented by co-administration of TRPV1R antagonist Capsazepine. Notably, AM251 also produced robust freezing in a novel context prior to auditory cue presentation the day following drug administration, but not the day of, suggesting that CB1R blockade elicited contextual fear generalization in females. To identify a potential synaptic mechanism for these sex differences, we next used liquid chromatography/tandem mass spectrometry, Western Blot, and confocal-assisted immunofluorescence techniques to quantify anandamide (AEA), TRPV1R, and perisomatic CB1R expression, respectively, focusing on the ventral hippocampus (vHip). Fear conditioning elicited increased vHip AEA levels in females only, and in both sexes, CB1R expression around vHip efferents targeting the basolateral amygdala (BLA) was twice that at neighboring vHip neurons. Finally, quantification of the vHip-BLA projections themselves revealed that females have over twice the number of neurons in this pathway that males do. Together, our data support a model in which sexual dimorphism in vHip-BLA circuitry promotes a female-specific dependence on CB1Rs for context processing that is sensitive to TRPV1-mediated disruption when CB1Rs are blocked.
Collapse
|
12
|
Uliana DL, Diniz CRAF, da Silva LA, Borges-Assis AB, Lisboa SF, Resstel LBM. Contextual fear expression engages a complex set of interactions between ventromedial prefrontal cortex cholinergic, glutamatergic, nitrergic and cannabinergic signaling. Neuropharmacology 2023; 232:109538. [PMID: 37024011 DOI: 10.1016/j.neuropharm.2023.109538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Rats re-exposed to an environment previously associated with the onset of shocks evoke a set of conditioned defensive responses in preparation to an eventual flight or fight reaction. Ventromedial prefrontal cortex (vmPFC) is mutually important for controlling the behavioral/physiological consequences of stress exposure and the one's ability to satisfactorily undergo spatial navigation. While cholinergic, cannabinergic and glutamatergic/nitrergic neurotransmissions within the vmPFC are shown as important for modulating both behavioral and autonomic defensive responses, there is a gap on how these systems would interact to ultimately coordinate such conditioned reactions. Then, males Wistar rats had guide cannulas bilaterally implanted to allow drugs to be administered in vmPFC 10 min before their re-exposure to the conditioning chamber where three shocks were delivered at the intensity of 0.85 mA for 2 s two days ago. A femoral catheter was implanted for cardiovascular recordings the day before fear retrieval test. It was found that the increment of freezing behavior and autonomic responses induced by vmPFC infusion of neostigmine (acetylcholinesterase inhibitor) were prevented by prior infusion of a transient receptor potential vanilloid type 1 (TRPV1) antagonist, N-methyl-d-aspartate receptor antagonist, neuronal nitric oxide synthase inhibitor, nitric oxide scavenger and soluble guanylate cyclase inhibitor. A type 3 muscarinic receptor antagonist was unable to prevent the boosting in conditioned responses triggered by a TRPV1 agonist and a cannabinoid receptors type 1 antagonist. Altogether, our results suggest that expression of contextual conditioned responses involves a complex set of signaling steps comprising different but complementary neurotransmitter pathways.
Collapse
Affiliation(s)
- Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Leandro Antero da Silva
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Sabrina Francesca Lisboa
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil; Department of Biomolecular Sciences, School of Pharmaceutical Sciences, Campus USP, Ribeirão Preto, SP, 14040-9034, Brazil; National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil.
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil; National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil.
| |
Collapse
|
13
|
Inherited pain hypersensitivity and increased anxiety-like behaviors are associated with genetic epilepsy in Wistar Audiogenic Rats: Short- and long-term effects of acute and chronic seizures on nociception and anxiety. Epilepsy Behav 2023; 141:109160. [PMID: 36907082 DOI: 10.1016/j.yebeh.2023.109160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.
Collapse
|
14
|
Iglesias LP, Fernandes HB, de Miranda AS, Perez MM, Faccioli LH, Sorgi CA, Bertoglio LJ, Aguiar DC, Wotjak CT, Moreira FA. TRPV1 modulation of contextual fear memory depends on stimulus intensity and endocannabinoid signalling in the dorsal hippocampus. Neuropharmacology 2023; 224:109314. [PMID: 36336070 DOI: 10.1016/j.neuropharm.2022.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S de Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Malena M Perez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A Sorgi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Fabrício A Moreira
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
16
|
Neostriatum neuronal TRPV 1-signalling mediates striatal anandamide at high concentration facilitatory influence on neostriato-nigral dishinhibitory GABAergic connections. Brain Res Bull 2023; 192:128-141. [PMID: 36414159 DOI: 10.1016/j.brainresbull.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.
Collapse
|
17
|
Zieglgänsberger W, Brenneisen R, Berthele A, Wotjak CT, Bandelow B, Tölle TR, Lutz B. Chronic Pain and the Endocannabinoid System: Smart Lipids - A Novel Therapeutic Option? Med Cannabis Cannabinoids 2022; 5:61-75. [PMID: 35702403 PMCID: PMC9149512 DOI: 10.1159/000522432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 08/05/2023] Open
Abstract
The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).
Collapse
Affiliation(s)
| | | | | | | | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
18
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
19
|
Asth L, Iglesias LP, De Oliveira AC, Moraes MFD, Moreira FA. Exploiting cannabinoid and vanilloid mechanisms for epilepsy treatment. Epilepsy Behav 2021; 121:106832. [PMID: 31839498 DOI: 10.1016/j.yebeh.2019.106832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
This review focuses on the possible roles of phytocannabinoids, synthetic cannabinoids, endocannabinoids, and "transient receptor potential cation channel, subfamily V, member 1" (TRPV1) channel blockers in epilepsy treatment. The phytocannabinoids are compounds produced by the herb Cannabis sativa, from which Δ9-tetrahydrocannabinol (Δ9-THC) is the main active compound. The therapeutic applications of Δ9-THC are limited, whereas cannabidiol (CBD), another phytocannabinoid, induces antiepileptic effects in experimental animals and in patients with refractory epilepsies. Synthetic CB1 agonists induce mixed effects, which hamper their therapeutic applications. A more promising strategy focuses on compounds that increase the brain levels of anandamide, an endocannabinoid produced on-demand to counteract hyperexcitability. Thus, anandamide hydrolysis inhibitors might represent a future class of antiepileptic drugs. Finally, compounds that block the TRPV1 ("vanilloid") channel, a possible anandamide target in the brain, have also been investigated. In conclusion, the therapeutic use of phytocannabinoids (CBD) is already in practice, although its mechanisms of action remain unclear. Endocannabinoid and TRPV1 mechanisms warrant further basic studies to support their potential clinical applications. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Laila Asth
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lia P Iglesias
- Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Antônio C De Oliveira
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Marcio F D Moraes
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Fabrício A Moreira
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
20
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
21
|
Morena M, Nastase AS, Santori A, Cravatt BF, Shansky RM, Hill MN. Sex-dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br J Pharmacol 2021; 178:983-996. [PMID: 33314038 PMCID: PMC8311789 DOI: 10.1111/bph.15341] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/05/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Women are twice as likely as men to develop post-traumatic stress disorder (PTSD) making the search for biological mechanisms underlying these gender disparities especially crucial. One of the hallmark symptoms of PTSD is an alteration in the ability to extinguish fear responses to trauma-associated cues. In male rodents, the endocannabinoid system can modulate fear extinction and has been suggested as a therapeutic target for PTSD. However, whether and how the endocannabinoid system may modulate fear expression and extinction in females remains unknown. EXPERIMENTAL APPROACH To answer this question, we pharmacologically manipulated endocannabinoid signalling in male and female rats prior to extinction of auditory conditioned fear and measured both passive (freezing) and active (darting) conditioned responses. KEY RESULTS Surprisingly, we found that acute systemic inhibition of the endocannabinoid anandamide (AEA) or 2-arachidonoyl glycerol (2-AG) hydrolysis did not significantly alter fear expression or extinction in males. However, the same manipulations in females produced diverging effects. Increased AEA signalling at vanilloid TRPV1 receptors impaired fear memory extinction. In contrast, inhibition of 2-AG hydrolysis promoted active over passive fear responses acutely via activation of cannabinoid1 (CB1 ) receptors. Measurement of AEA and 2-AG levels after extinction training revealed sex- and brain region-specific changes. CONCLUSION AND IMPLICATIONS We provide the first evidence that AEA and 2-AG signalling affect fear expression and extinction in females in opposite directions. These findings are relevant to future research on sex differences in mechanisms of fear extinction and may help develop sex-specific therapeutics to treat trauma-related disorders.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| | - Andrei S. Nastase
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Neuroscience Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| | - Alessia Santori
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Rebecca M. Shansky
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Mathison Centre for Mental Health Research, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
- Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, 3330 Hospital Dr. NW, T2N 4N1 Calgary, AB, Canada
| |
Collapse
|
22
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
23
|
Uliana DL, Antero LS, Borges-Assis AB, Rosa J, Vila-Verde C, Lisboa SF, Resstel LB. Differential modulation of the contextual conditioned emotional response by CB1 and TRPV1 receptors in the ventromedial prefrontal cortex: Possible involvement of NMDA/nitric oxide-related mechanisms. J Psychopharmacol 2020; 34:1043-1055. [PMID: 32638638 DOI: 10.1177/0269881120928201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blockade of cannabinoid CB1 or vanilloid TRPV1 receptors in the ventromedial prefrontal cortex of rats respectively increases or decreases the conditioned emotional response during re-exposure to a context previously paired with footshocks. Although these mechanisms are unknown, they may involve local modulation of glutamatergic and nitrergic signaling. AIM We investigated whether these mechanisms are involved in the reported effects of CB1 and TRPV1 modulation in the ventromedial prefrontal cortex. METHODS Freezing behavior and autonomic parameters were recorded during the conditioned response expression. RESULTS The CB1 receptors antagonist NIDA, or the TRPV1 agonist capsaicin (CPS) in the ventromedial prefrontal cortex increased the conditioned emotional response expression, and these effects were prevented by TRPV1 and CB1 antagonism, respectively. The increased conditioned emotional response evoked by NIDA and CPS were prevented by an NMDA antagonist or a neuronal nitric oxide synthase inhibitor. A nitric oxide scavenger or a soluble guanylate cyclase inhibitor prevented only the NIDA effects and the CPS effect was prevented by a non-selective antioxidant drug, as nitric oxide can also induce reactive oxygen species production. CONCLUSION Our results suggest that CB1 and TRPV1 receptors in the ventromedial prefrontal cortex differently modulate the expression of conditioned emotional response through glutamatergic and nitrergic mechanisms, although different pathways may be involved.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, USA.,Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Leandro S Antero
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Anna B Borges-Assis
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Jessica Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| | - Leonardo Bm Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| |
Collapse
|
24
|
Endocannabinoid neuromodulation in the neostriatum decreases the GABAergic striato-nigral disinhibitory function and increases the nigro-collicular inhibitory pathway activity. J Neural Transm (Vienna) 2020; 127:1199-1208. [DOI: 10.1007/s00702-020-02217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
25
|
Oliveira AB, Ribeiro RT, Mello MT, Tufik S, Peres MFP. Anandamide Is Related to Clinical and Cardiorespiratory Benefits of Aerobic Exercise Training in Migraine Patients: A Randomized Controlled Clinical Trial. Cannabis Cannabinoid Res 2019; 4:275-284. [PMID: 31872062 DOI: 10.1089/can.2018.0057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction: Since endocannabinoids have been implicated in migraine pathophysiology, we conducted a randomized, controlled clinical trial to test the effects of a 12-week aerobic exercise intervention on plasma anandamide (AEA) and its relation with clinical, psychological, and cardiorespiratory outcomes. Materials and Methods: Episodic migraine patients taking no preventive drugs and nonheadache individuals were recruited from Hospital São Paulo and a tertiary headache clinic between March 2012 and March 2015. Participants were randomly assigned to receive aerobic exercise or enter the waitlist. Primary outcome was changes in plasma AEA; secondary outcome was number of days with migraine/month; and other clinical variables, mood scores, and cardiorespiratory fitness were chosen as tertiary outcomes. Measurements were taken on headache-free days. Data were analyzed by generalized linear models. Discussion: Fifty participants concluded the study (mean±SD age=36.2±10.9, and BMI=26.5±4.5). The plasma AEA reduced in migraine exercise (p<0.05) and control exercise groups (p<0.01). The number of days with migraine (p<0.01), migraine attacks (p<0.05), and abortive medication used (p<0.05) reduced in the migraine exercise group, whereas cardiorespiratory fitness increased in migraine exercise and control exercise groups (both p<0.05). Anxiety, depression, anger, and fatigue scores improved in the migraine exercise group (p<0.05 for all). Significant correlations between reduction in abortive medication used and cardiorespiratory fitness (r=-0.81 p<0.001), and reduced AEA (r=0.68 p<0.05) were found. Conclusions: This study suggests that peripheral AEA metabolism may be partly linked to the clinical and cardiorespiratory benefits of regular aerobic exercise in migraine patients. Trials registration: #NCT01972607.
Collapse
Affiliation(s)
- Arão Belitardo Oliveira
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Marco Tulio Mello
- Departamento de Ciências do Esporte, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mario Fernando Prieto Peres
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Attenuation of glutamatergic and nitrergic system contributes to the antidepressant-like effect induced by capsazepine in the forced swimming test. Behav Pharmacol 2019; 30:59-66. [PMID: 30299277 DOI: 10.1097/fbp.0000000000000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) can modulate stress-related behaviours, thus representing an interesting target for new antidepressant drugs. TRPV1 can trigger glutamate release and nitric oxide synthesis in the brain, mechanisms also involved in the neurobiology of depression. However, it is not known if these mechanisms are involved in TRPV1-induced behavioural effects. Therefore, the aim of this study was to verify if the antidepressant-like effect induced by a TRPV1 antagonist in mice submitted to the forced swimming test (FST) would be facilitated by combined treatment with neuronal nitric oxide synthase (nNOS) inhibition and N-methyl-D-aspartate (NMDA) blockade. Male Swiss mice were given (intracerebroventricular) injections of capsazepine (CPZ) (TRPV1 antagonist - 0.05/0.1/0.3/0.6 nmol/µl), and AP7 (NMDA antagonist - 1/3/10 nmol/µl) or N-propyl-L-arginine (NPA, nNOS inhibitor - 0.001/0.01/0.1 nmol/µl), and 10 min later, submitted to an open field test, and immediately afterwards, to the FST. An additional group received coadministration of CPZ and AP7 or CPZ and NPA, in subeffective doses. The results demonstrated that CPZ (0.1 nmol/µl), AP7 (3 nmol/µl) and NPA (0.01/0.1 nmol/µl) induced antidepressant-like effects. Moreover, coadministration of subeffective doses of CPZ and AP7 or CPZ and NPA induced significant antidepressant-like effects. Altogether, the data indicate that blockade of TRPV1 receptors by CPZ induces antidepressant-like effects and that both nNOS inhibition and NMDA blockade facilitate CPZ effects in the FST.
Collapse
|
27
|
Ilie MA, Caruntu C, Tampa M, Georgescu SR, Matei C, Negrei C, Ion RM, Constantin C, Neagu M, Boda D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Exp Ther Med 2019; 18:916-925. [PMID: 31384324 PMCID: PMC6639979 DOI: 10.3892/etm.2019.7513] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Capsaicin is a natural protoalkaloid recognized as the main pungent component in hot peppers (Capsicum annuum L.). The capsaicin receptor is highly expressed in the unmyelinated type C nerve fibers originating from small diameter sensory neurons in dorsal root ganglia and cranial nerve ganglia correspondents. Capsaicin and related vanilloids have a variety of effects on primary sensory neurons function, from sensory neuron excitation characterized by local burning sensation and neurogenic inflammation, followed by conduction blockage accompanied by reversible ultrastructural changes of peripheral nociceptive endings (desensitization), going as far as irreversible degenerative changes (neurotoxicity). The main role in capsaicin-induced neurogenic inflammation relies on the capsaicin sensitive, small diameter primary sensory neurons, therefore its evaluation could be used as a diagnostic instrument in functional alterations of cutaneous sensory nerve fibers. Moreover, capsaicin-induced desensitization and neurotoxicity explain the analgesic/anti-nociceptive and anti-inflammatory effects of topical capsaicin and its potential use in the management of painful and inflammatory conditions. In this study, we describe the effects of capsaicin on neurogenic inflammation and nociception, as well as its potential diagnostic value and therapeutic impact in various conditions involving impairment of sensory nerve fibers.
Collapse
Affiliation(s)
- Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Simona-Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Rodica-Mariana Ion
- The National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Bucharest 060021, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Biochemistry, Faculty of Biology, University of Bucharest, Bucharest 020125, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| |
Collapse
|
28
|
Dos Anjos-Garcia T, Coimbra NC. Opposing roles of dorsomedial hypothalamic CB1 and TRPV1 receptors in anandamide signaling during the panic-like response elicited in mice by Brazilian rainbow Boidae snakes. Psychopharmacology (Berl) 2019; 236:1863-1874. [PMID: 30694375 DOI: 10.1007/s00213-019-5170-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE The endocannabinoid system plays an important role in the organization of panic-like defensive behavior. Threatening situations stimulate brain areas, such as the dorsomedial hypothalamus (DMH). However, there is a lack of studies addressing the role of the DMH endocannabinoid system in panic-like responses. OBJECTIVES We aimed to verify which mechanisms underlie anandamide-mediated responses in the DMH. METHODS To test the hypothesis that the anandamide produces panicolytic-like effects, we treated mice with intra-DMH microinjections of vehicle or increasing doses of anandamide (0.5, 5, or 50 pmol) and then performed confrontation with the South American snake Epicrates cenchria assisi. RESULTS Intra-DMH anandamide treatment yielded a U-shaped dose-response curve with no effect of the lowest (0.5 pmol) or the highest (50 pmol) dose and significant inhibition of panic-like responses at the intermediate (5 pmol) dose. In addition, this panicolytic-like effect was prevented by pretreatment of the DMH with the CB1 receptor antagonist AM251 (100 pmol). However, pretreatment of the DMH with the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin (3 nmol) restored the panicolytic-like effect of the highest dose of anandamide. Immunohistochemistry revealed that CB1 receptors were present primarily on axonal fibers, while TRPV1 receptors were found almost exclusively surrounding the perikarya in DMH. CONCLUSIONS The present results suggest that anandamide exerts a panicolytic-like effect in the DMH by activation of CB1 receptors and that TRPV1 receptors are related to the lack of effect of the highest dose of anandamide.
Collapse
Affiliation(s)
- Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
29
|
Diniz CR, Biojone C, Joca SR, Rantamäki T, Castrén E, Guimarães FS, Casarotto PC. Dual mechanism of TRKB activation by anandamide through CB1 and TRPV1 receptors. PeerJ 2019; 7:e6493. [PMID: 30809460 PMCID: PMC6387754 DOI: 10.7717/peerj.6493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Administration of anandamide (AEA) or 2-arachidonoylglycerol (2AG) induces CB1 coupling and activation of TRKB receptors, regulating the neuronal migration and maturation in the developing cortex. However, at higher concentrations AEA also engages vanilloid receptor TRPV1, usually with opposed consequences on behavior. METHODS AND RESULTS Using primary cell cultures from the cortex of rat embryos (E18) we determined the effects of AEA on phosphorylated TRKB (pTRK). We observed that AEA (at 100 and 200 nM) induced a significant increase in pTRK levels. Such effect of AEA at 100 nM was blocked by pretreatment with the CB1 antagonist AM251 (200 nM) and, at the higher concentration of 200 nM by the TRPV1 antagonist capsazepine (200 nM), but mildly attenuated by AM251. Interestingly, the effect of AEA or capsaicin (a TRPV1 agonist, also at 200 nM) on pTRK was blocked by TRKB.Fc (a soluble form of TRKB able to bind BDNF) or capsazepine, suggesting a mechanism dependent on BDNF release. Using the marble-burying test (MBT) in mice, we observed that the local administration of ACEA (a CB1 agonist) into the prelimbic region of prefrontal cortex (PL-PFC) was sufficient to reduce the burying behavior, while capsaicin or BDNF exerted the opposite effect, increasing the number of buried marbles. In addition, both ACEA and capsaicin effects were blocked by previous administration of k252a (an antagonist of TRK receptors) into PL-PFC. The effect of systemically injected CB1 agonist WIN55,212-2 was blocked by previous administration of k252a. We also observed a partial colocalization of CB1/TRPV1/TRKB in the PL-PFC, and the localization of TRPV1 in CaMK2+ cells. CONCLUSION Taken together, our data indicate that anandamide engages a coordinated activation of TRKB, via CB1 and TRPV1. Thus, acting upon CB1 and TRPV1, AEA could regulate the TRKB-dependent plasticity in both pre- and postsynaptic compartments.
Collapse
Affiliation(s)
- Cassiano R.A.F. Diniz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Caroline Biojone
- Neuroscience Center—HILIFE, University of Helsinki, Helsinki, Finland
- Department of Physics and Chemistry, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samia R.L. Joca
- Department of Physics and Chemistry, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Translational Neuropsychiatric Unit, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Tomi Rantamäki
- Division of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center—HILIFE, University of Helsinki, Helsinki, Finland
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Plinio C. Casarotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Neuroscience Center—HILIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Belitardo de Oliveira A, de Mello MT, Tufik S, Peres MFP. Weight loss and improved mood after aerobic exercise training are linked to lower plasma anandamide in healthy people. Physiol Behav 2018; 201:191-197. [PMID: 30578894 DOI: 10.1016/j.physbeh.2018.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Anandamide, a major endocannabinoid, participates in energy metabolism homeostasis and neurobehavioral processes. In a secondary analysis of an open-label, randomized controlled trial, we investigated the long-term effect of aerobic exercise on resting plasma anandamide, and explored its relationship with changes in body weight, cardiorespiratory fitness, and mood status in healthy, physically inactive individuals. Participants recruited between March 2013 to August 2015 at the UNIFESP's Neurology/Psychobiology Department were randomly allocated into a 12-weeks supervised moderate exercise program, or into waitlist, control condition. Thirty-four participants (age = 38 ± 11.5, BMI = 26.6 ± 3.6) were intention to treat-analysed (Exercise: n = 17; Control: n = 17). After intervention, there were significant decreases in plasma anandamide (p < .01), anger, anxiety, and body weight (all p < .05), whereas cardiorespiratory fitness increased (p < .05) in the exercise group. There were no significant changes in any variable for the control group. In the whole cohort, adjusted R2 of multiple linear regressions showed that 12.2% of change body weight was explained by changes in anandamide (β = 0.391, p = .033), while 27% of change in mood disturbance (β = 0.546, p = .003), and 13.1% of change in anger (β = 0.404, p = .03) was explained by changes in anandamide. Our data suggest that the weight loss and mood improvement through regular moderate exercise may involve changes in anandamide metabolism/signaling. Trials registration: #NCT01972607.
Collapse
Affiliation(s)
- Arão Belitardo de Oliveira
- Universidade Federal de São Paulo, Departament of Neurology and Neurosurgery, 669, Pedro de Toledo, CEP 04039-032 São Paulo, Brazil.
| | - Marco Tulio de Mello
- Universidade Federal de Minas Gerais, Departament of Sports Science, 6627, Pres. Antônio Carlos Av, CEP 31270-901 Belo Horizonte, Brazil
| | - Serio Tufik
- Universidade Federal de São Paulo, Departament of Psychobiology, 862, Botucatu, CEP 04032-030 São Paulo, SP, Brazil
| | - Mario Fernando Prieto Peres
- Albert Einstein Israeli Hospital, Brain Institute, 627/701, Avenida Albert Einstein, CEP 05652-900 São Paulo, Brazil; Universidade de São Paulo, Medical School, Psychiatry Institute, 785, Rua Dr. Ovídio Pires de Campos: CEP 05403-903 São Paulo, SP, Brazil
| |
Collapse
|
31
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
32
|
Bajic D, Monory K, Conrad A, Maul C, Schmid RM, Wotjak CT, Stein-Thoeringer CK. Cannabinoid Receptor Type 1 in the Brain Regulates the Affective Component of Visceral Pain in Mice. Neuroscience 2018; 384:397-405. [PMID: 29885522 DOI: 10.1016/j.neuroscience.2018.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022]
Abstract
Endocannabinoids acting through cannabinoid receptor type 1 (CB1) are major modulators of peripheral somatic and visceral nociception. Although only partially studied, some evidence suggests a particular role of CB1 within the brain in nociceptive processes. As the endocannabinoid system regulates affect and emotional behaviors, we hypothesized that cerebral CB1 influences affective processing of visceral pain-related behaviors in laboratory animals. To study nocifensive responses modulated by supraspinal CB1, we used conditional knock-out mice lacking CB1 either in cortical glutamatergic neurons (Glu-CB1-KO), or in forebrain GABAergic neurons (GABA-CB1-KO), or in principal neurons of the forebrain (CaMK-CB1-KO). These mutant mice and mice treated with the CB1 antagonist SR141716 were tested for different pain-related behaviors. In an acetic acid-induced abdominal constriction test, supraspinal CB1 deletions did not affect nocifensive responses. In the cerulein-model of acute pancreatitis, mechanical allodynia or hyperalgesia were not changed, but Glu-CB1- and CaMK-CB1-KO mice showed significantly increased facial grimacing scores indicating increased affective responses to this noxious visceral stimulus. Similarly, these brain-specific CB1 KO mice also showed significantly changed thermal nociception in a hot-plate test. These results reveal a novel, and important role of CB1 expressed by cortical glutamatergic neurons in the affective component of visceral nociception.
Collapse
Affiliation(s)
- Danica Bajic
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Roland M Schmid
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Christoph K Stein-Thoeringer
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
33
|
Medial prefrontal cortex TRPV1 and CB1 receptors modulate cardiac baroreflex activity by regulating the NMDA receptor/nitric oxide pathway. Pflugers Arch 2018; 470:1521-1542. [PMID: 29845313 DOI: 10.1007/s00424-018-2149-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 12/23/2022]
Abstract
The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB1) and transient receptor potential vanilloid type 1 (TRPV1) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB1 receptors decrease cardiac baroreflex responses, while TRPV1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB1 and TRPV1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV1 agonist injection into the area. Based on these results, we conclude that vMPFC CB1 and TRPV1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.
Collapse
|
34
|
Heinz DE, Genewsky A, Wotjak CT. Enhanced anandamide signaling reduces flight behavior elicited by an approaching robo-beetle. Neuropharmacology 2017; 126:233-241. [DOI: 10.1016/j.neuropharm.2017.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023]
|
35
|
Natividad LA, Buczynski MW, Herman MA, Kirson D, Oleata CS, Irimia C, Polis I, Ciccocioppo R, Roberto M, Parsons LH. Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype. Biol Psychiatry 2017; 82:500-510. [PMID: 28209423 PMCID: PMC5509512 DOI: 10.1016/j.biopsych.2017.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF1) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling. Here, we used genetically selected Marchigian Sardinian P (msP) rats carrying an innate overexpression of CRF1 receptors to study the role of constitutive upregulation in CRF systems on amygdalar eCB function and persistent anxiety-like effects. METHODS We applied behavioral, pharmacological, and biochemical methods to broadly characterize anxiety-like behaviors and amygdalar eCB clearance enzymes in msP versus nonselected Wistar rats. Subsequent studies examined the influence of dysregulated CRF and FAAH systems in altering excitatory transmission in the central amygdala (CeA). RESULTS msPs display an anxious phenotype accompanied by elevations in amygdalar FAAH activity and reduced dialysate N-arachidonoylethanolamine levels in the CeA. Elevations in CRF-CRF1 signaling dysregulate FAAH activity, and this genotypic difference is normalized with pharmacological blockade of CRF1 receptors. msPs also exhibit elevated baseline glutamatergic transmission in the CeA, and dysregulated CRF-FAAH facilitates stress-induced increases in glutamatergic activity. Treatment with an FAAH inhibitor relieves sensitized glutamatergic responses in msPs and attenuates the anxiety-like phenotype. CONCLUSIONS Pathological anxiety and stress hypersensitivity are driven by constitutive increases in CRF1 signaling that dysregulate N-arachidonoylethanolamine signaling mechanisms and reduce neuronal inhibitory control of CeA glutamatergic synapses.
Collapse
Affiliation(s)
- Luis A Natividad
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Matthew W Buczynski
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California; Virginia Tech School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Dean Kirson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Ilham Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California.
| | - Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
36
|
Richards JR, Lapoint JM, Burillo-Putze G. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment. Clin Toxicol (Phila) 2017; 56:15-24. [DOI: 10.1080/15563650.2017.1349910] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John R. Richards
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jeff M. Lapoint
- Department of Emergency Medicine, Southern California Permanente Medical Group, San Diego, CA, USA
| | - Guillermo Burillo-Putze
- Área de Toxicología Clínica, Servicio de Urgencias, Universidad Europea de Canarias, Tenerife, Spain
| |
Collapse
|
37
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
38
|
Almeida-Santos AF, Moreira FA, Guimaraes FS, Aguiar DC. 2-Arachidonoylglycerol endocannabinoid signaling coupled to metabotropic glutamate receptor type-5 modulates anxiety-like behavior in the rat ventromedial prefrontal cortex. J Psychopharmacol 2017; 31:740-749. [PMID: 28440729 DOI: 10.1177/0269881117704986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
2-Arachidonoylglycerol and anandamide are the main endocannabinoids, which act through cannabinoid type-1 and type-2 receptors. Among its many functions, anandamide modulates anxiety-like behaviors in the ventromedial prefrontal cortex. The role of 2-arachidonoylglycerol in this region, however, has remained unclear. Here, we verified whether intra- ventromedial prefrontal cortex injection of 2-arachidonoylglycerol or URB602, a monoacylglycerol lipase inhibitor (responsible for 2-arachidonoylglycerol hydrolysis), induce anxiolytic-like effects in Wistar rats. Since activation of metabotropic glutamate receptor type 5 promotes diacylglycerol lipase-α-mediated 2-arachidonoylglycerol synthesis, we also verified if the blockade of this receptor impairs the anxiolytic-like effect induced by URB 602. 2-Arachidonoylglycerol reduced anxiety-like response in rats exposed to the Elevated Plus Maze test, an effect mimicked by URB602. Cannabinoid type-1 and type-2 receptor antagonists prevented these effects. The pre-treatment with an ineffective dose of MPEP, a metabotropic glutamate receptor type 5 antagonist, also attenuated the anxiolytic-like effect of URB602. Moreover, immunofluorescence microscopy revealed co-expression of metabotropic glutamate receptor type 5 and diacylglycerol lipase-α in several neurons in slices from the ventromedial prefrontal cortex. Altogether, our results implicate 2-arachidonoylglycerol and both cannabinoid receptors on anxiety-related behaviors mediated by ventromedial prefrontal cortex. Further, these data support a role for the coupling between metabotropic glutamate receptor type 5 activation and 2-arachidonoylglycerol signalling as a mechanism modulating aversive responses.
Collapse
Affiliation(s)
- Ana F Almeida-Santos
- 1 Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- 1 Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Francisco S Guimaraes
- 2 Department of Pharmacology, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil.,3 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Daniele C Aguiar
- 1 Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
39
|
Gobira PH, Lima IV, Batista LA, de Oliveira AC, Resstel LB, Wotjak CT, Aguiar DC, Moreira FA. N-arachidonoyl-serotonin, a dual FAAH and TRPV1 blocker, inhibits the retrieval of contextual fear memory: Role of the cannabinoid CB1 receptor in the dorsal hippocampus. J Psychopharmacol 2017; 31:750-756. [PMID: 28583049 DOI: 10.1177/0269881117691567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anandamide, an endocannabinoid, inhibits aversive responses by activating the CB1 cannabinoid receptor. At high concentrations, however, anandamide may exert pro-aversive activities mediated by the transient receptor potential vanilloid type-1 channel (TRPV1). Accordingly, N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the anandamide-hydrolysing enzyme fatty acid amide hydrolase (FAAH) and the TRPV1 channel, induces anxiolytic-like effects. Here we tested the hypothesis that AA-5-HT inhibits the expression of contextual fear conditioning by facilitating CB1 receptor signalling in the dorsal hippocampus of mice. Intraperitoneal injection of AA-5-HT (0.1, 0.3, 1 mg/kg) inhibited the retrieval of contextual fear memory (freezing response). The effect of AA-5-HT (0.3 mg/kg) was prevented by systemic injection of the CB1 receptor antagonist, AM251 (1.0 mg/kg), and mimicked by simultaneous FAAH inhibition (URB597, 0.3 mg/kg) and TRPV1 blockage (SB366791, 1 mg/kg). Injection of AA-5-HT (0.125, 0.25, 0.5 nmol) into the dorsal hippocampus also reduced freezing. Finally, the effect of systemic AA-5-HT (0.3 mg/kg) was prevented by intra-hippocampal injection of AM251 (1 nmol). In conclusion, dual FAAH and TRPV1 blockage inhibits contextual fear memory by facilitating anandamide-induced CB1 receptor activation in the dorsal hippocampus. This approach may lead to new pharmacological treatments for traumatic memories and related psychiatric disorders.
Collapse
Affiliation(s)
- Pedro H Gobira
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel V Lima
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luara A Batista
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio C de Oliveira
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo B Resstel
- 2 Department of Pharmacology, Medical School of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Daniele C Aguiar
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- 1 Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
40
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
42
|
Chronic FAAH inhibition during nicotine abstinence alters habenular CB1 receptor activity and precipitates depressive-like behaviors. Neuropharmacology 2017; 113:252-259. [DOI: 10.1016/j.neuropharm.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/23/2022]
|
43
|
Sartim A, Moreira F, Joca S. Involvement of CB 1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior. Neuroscience 2017; 340:126-134. [DOI: 10.1016/j.neuroscience.2016.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 01/03/2023]
|
44
|
|
45
|
Androvicova R, Horacek J, Stark T, Drago F, Micale V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol Res 2016; 115:200-208. [PMID: 27884725 DOI: 10.1016/j.phrs.2016.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana's psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment. In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Renata Androvicova
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
46
|
Aliczki M, Barna I, Till I, Baranyi M, Sperlagh B, Goldberg SR, Haller J. The effects anandamide signaling in the prelimbic cortex and basolateral amygdala on coping with environmental stimuli in rats. Psychopharmacology (Berl) 2016; 233:1889-99. [PMID: 26809457 DOI: 10.1007/s00213-016-4219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023]
Abstract
RATIONALE Several lines of recent evidence suggest that endocannabinoids affect behavior by influencing the general patterns of challenge responding. OBJECTIVES Here, we investigated the brain mechanisms underlying this phenomenon in rats. METHODS The anandamide hydrolysis inhibitor URB597 was condensed into the tip of stainless steel cannulae, which were chronically implanted slightly above the prelimbic cortex (PRL) or the basolateral amygdala (BLA), two important regions of coping and endocannabinoid action. Thereafter, we investigated behavioral responsiveness to ambient light level in the elevated plus-maze and conditioned fear tests. RESULTS URB597 concentration was ~30 μg/mg protein in target areas; local brain anandamide levels increased threefold, without significant changes in 2-arachidonoylglycerol. High levels of illumination halved the time spent by controls in the open arms of the plus-maze. No similar decrease was observed in rats with URB597 implants in the PRL. High light decreased conditioned fear by 30 % in controls, but not in rats with prelimbic URB597 implants. Unresponsiveness to environmental challenges was not attributable to the anxiolytic effects of anandamide enhancement, as implants induced paradoxical anxiogenic-like effects under low light, which could be explained by effects on stimulus responsiveness rather than by effects on anxiety. URB597 implants targeting the BLA did not affect stimulus responsiveness. CONCLUSIONS Our findings show that elevated prelimbic anandamide signaling leads to less environment-dependent (more autonomous) behavioral responses to challenges, which is an attribute of active coping styles. These findings are discussed in light of two emerging concepts of endocannabinoid roles, particularly "emotional homeostasis" and "active coping."
Collapse
Affiliation(s)
- Mano Aliczki
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Istvan Barna
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Ibolya Till
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Maria Baranyi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jozsef Haller
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary.
| |
Collapse
|
47
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
48
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
49
|
Lee TTY, Hill MN, Lee FS. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. GENES, BRAIN, AND BEHAVIOR 2016; 15:108-24. [PMID: 26419643 PMCID: PMC4713313 DOI: 10.1111/gbb.12253] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.
Collapse
Affiliation(s)
- Tiffany T.-Y. Lee
- Dept. of Psychology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Matthew N. Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary AB, Canada T2N4N1
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
50
|
Uliana DL, Hott SC, Lisboa SF, Resstel LBM. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning. Neuropharmacology 2015; 103:257-69. [PMID: 26724373 DOI: 10.1016/j.neuropharm.2015.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
Abstract
Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.
Collapse
Affiliation(s)
- D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - S C Hott
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil
| | - S F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil.
| | - L B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|