1
|
Tarmati V, Sepe A, Accoto A, Conversi D, Laricchiuta D, Panuccio A, Canterini S, Fiorenza MT, Cabib S, Orsini C. Genotype-dependent functional role of the anterior and posterior paraventricular thalamus in pavlovian conditioned approach. Psychopharmacology (Berl) 2025; 242:1275-1289. [PMID: 39663249 DOI: 10.1007/s00213-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE The specific location of deviations from normative models of brain function varies considerably across individuals with the same diagnoses. However, as pathological processes are distributed across interconnected systems, this heterogeneity of individual brain deviations may also reveal similarities and differences between disorders. The paraventricular nucleus of the thalamus (PVT) is a potential switcher to various behavioral responses where functionally distinct cell types exist across its antero-posterior axis. OBJECTIVES This study aimed to test the hypothesis that genotype-dependent differences in the anterior and posterior PVT subregions (aPVT and pPVT) are involved in the Sign-tracking (ST) behavior expressed by C57BL/6J (C57) and DBA/2J (DBA) inbred mice. METHODS Based on previous findings, male mice of the two strains were tested at ten weeks of age. The density of c-Fos immunoreactivity along the antero-posterior axis of PVT was assessed following the expression of ST behavior. Selective excitotoxic lesions of the aPVT or the pPVT by the NMDA infusion were performed prior to development of ST behavior. Finally, the distribution of neuronal populations expressing the Drd2 and Gal genes (D2R + and Gal +) was measured by in situ hybridization (ISH). RESULTS The involvement of PVT subregions in ST behavior is strain-specific, as aPVT is crucial for ST acquisition in DBA mice while pPVT is crucial for C57 mice. Despite similar antero-posterior distribution of D2R + and Gal + neurons, density of D2R + neurons differentiate aPVT in C57 and DBA mice. CONCLUSIONS These genotype-dependent results offer valuable insights into the nuanced organization of brain networks and individual variability in behavioral responses.
Collapse
Affiliation(s)
- Valeria Tarmati
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | - Andrea Sepe
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Daniela Laricchiuta
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | | | - Sonia Canterini
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Simona Cabib
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Rome, Italy
| | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Rome, Italy
| |
Collapse
|
2
|
Godin C, Huppé-Gourgues F. Behavior classification: Introducing machine learning approaches for classification of sign-tracking, goal-tracking and beyond. PLoS One 2025; 20:e0323893. [PMID: 40440289 PMCID: PMC12121781 DOI: 10.1371/journal.pone.0323893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/15/2025] [Indexed: 06/02/2025] Open
Abstract
Classifying behaviors in research often relies on predetermined or subjective cutoff values, which can introduce inconsistencies and reduce objectivity. For example, in Pavlovian conditioning studies, rodents display diverse behaviors which can be quantified using the Pavlovian Conditioning Approach (PavCA) Index score. This score is used to categorize subjects as sign-trackers (ST), goal-trackers (GT), or intermediate (IN) groups, but the cutoff values used to distinguish these categories are often arbitrary and inconsistent. The inconsistencies stem from variability in the skewness and kurtosis of score distributions across laboratories, influenced by a range of biological and environmental factors. To address this issue, we explored two approaches to PavCA Index score classification: the k-Means classification and the derivative method. These methods determine cutoff values based on the distribution of PavCA Index scores in the sample, allowing for broader applicability to various types of behavioral data. Our results suggest that these methods, particularly the derivative method based on mean scores from the final days of conditioning, are effective tools for identifying sign-trackers and goal-trackers, especially in relatively small samples. In contrast to existing methods, our approaches provide a standardized classification framework that reflects unique distributions. Furthermore, these methods are adaptable to a researcher's specific needs, accommodating different models and sample sizes. To facilitate implementation, we provide MATLAB code for classifying subjects using both the k-Means classifier and the derivative method.
Collapse
Affiliation(s)
- Camille Godin
- École de Psychologie, Université de Moncton, Moncton, New-Brunswick, Canada
| | | |
Collapse
|
3
|
Heck M, Durieux N, Anselme P, Quertemont E. Implementations of sign- and goal-tracking behavior in humans: A scoping review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:263-290. [PMID: 39496905 DOI: 10.3758/s13415-024-01230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 11/06/2024]
Abstract
Animal research has identified two major phenotypes in the tendency to attribute incentive salience to a reward-associated cue. Individuals called "sign-trackers" (STs) preferentially approach the cue, assigning both predictive and incentive values to it. In contrast, individuals called "goal-trackers" (GTs) preferentially approach the location of the upcoming reward, assigning only a predictive value to the cue. The ST/GT model has been shown to be relevant to understanding addiction vulnerability and other pathological behaviors in animals. Therefore, recent studies tried to implement this animal model in the human population. This scoping review aimed to identify and map evidence of human sign- and goal-tracking. Studies that explicitly measured human sign- and goal-tracking or related phenomena (e.g., attentional bias induced by reward-related cues), using paradigms in line with the animal model, were eligible for this review. We searched for published, unpublished, and gray literature (PhD theses, posters, conference papers) through the following databases: MEDLINE, Scopus, PsycINFO, Embase, OSF, and Google Scholar. The JBI scoping review methodology was adopted. Screening and extraction were carried out by three reviewers, in pairs. A total of 48 studies were identified. These studies used various experimental paradigms and used the term "sign-tracking" inconsistently, sometimes implicitly or not at all. We conclude that the literature on human sign-tracking is very heterogeneous on many levels. Overall, evidence supports the existence of sign- and goal-tracking behaviors in humans, although further validated research is crucially needed.
Collapse
Affiliation(s)
- Michelle Heck
- Quantitative Psychology, Neuroscience of Cognition - PsyNCog, Université de Liège, Place Des Orateurs 2, B4000, Liege, Belgium.
- Fonds de la Recherche Scientifique - FNRS, Brussels, Belgium.
| | - Nancy Durieux
- Research Unit for a Life-Course Perspective On Health & Education - RUCHE, Université de Liège, Place Des Orateurs 2, 4000, Liège, Belgium
| | | | - Etienne Quertemont
- Quantitative Psychology, Neuroscience of Cognition - PsyNCog, Université de Liège, Place Des Orateurs 2, B4000, Liege, Belgium
| |
Collapse
|
4
|
María-Ríos CE, Murphy GG, Morrow JD. Individual Variation in Intrinsic Neuronal Properties of Nucleus Accumbens Core and Shell Medium Spiny Neurons in Animals Prone to Sign- or Goal-Track. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644332. [PMID: 40236090 PMCID: PMC11996421 DOI: 10.1101/2025.03.24.644332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The "sign-tracking" and "goal-tracking" model of individual variation in associative learning permits the identification of rats with different cue-reactivity and predisposition to addiction-like behaviors. Certainly, compared to "goal-trackers" (GTs), "sign-trackers" (STs) show more susceptibility traits such as increased cue-induced 'relapse' of drugs of abuse. Different cue- and reward-evoked patterns of activity in the nucleus accumbens (NAc) have been a hallmark of the ST/GT phenotype. However, it is unknown whether differences in the intrinsic neuronal properties of NAc medium spiny neurons (MSNs) in the core and shell subregions are also a physiological correlate of these phenotypes. We performed whole-cell slice electrophysiology in outbred male rats and found that STs exhibited the lowest excitability in the NAc core, with lower number of action potentials and firing frequency as well as a blunted voltage/current relationship curve in response to hyperpolarized potentials in both the NAc core and shell. Although firing properties of shell MSNs did not differ between STs and GTs, intermediate responders that engage in both behaviors showed greater excitability compared to both STs and GTs. These findings suggest that intrinsic excitability in the NAc may contribute to individual differences in the attribution of incentive salience. Significance Statement During associative learning, cues acquire predictive value, but in some instances, they also acquire incentive salience, meaning they take on some of the motivational properties of the reward. The propensity to attribute cues with incentive salience varies between individuals, and excessive attribution can lead to maladaptive behaviors. The "sign-and goal-tracking" model allows us to isolate these two properties and disambiguate the neurobiological processes that govern them. To our knowledge this is the first study characterizing passive and active membrane properties of MSNs in the NAc core and shell of STs and GTs, as well as IRs. These findings are meant to better inform investigations of the distinct role of the NAc in reward learning, particularly in the attribution of incentive salience and addiction predisposition.
Collapse
|
5
|
LeCocq MR, Najafipashaki S, Casale D, Laplante I, Samaha AN. Triggered temptations: A new procedure to compare reward-seeking behaviour induced by discriminative and conditioned stimuli in rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06764-4. [PMID: 39994055 DOI: 10.1007/s00213-025-06764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
RATIONALE Environmental cues guide animals towards resources vital for survival but can also drive maladaptive reward-seeking behaviours, as in gambling and eating disorders. While conditioned stimuli (CSs) are paired with reward delivery after reward-seeking actions, discriminative stimuli (DSs) signal reward availability independently of behaviour. OBJECTIVE We introduce a procedure to compare CS and DS effects on reward-seeking behaviour, in the same subjects within a single session. METHODS Female and male Sprague-Dawley rats learned to self-administer sucrose. During each session, DS+ trials signaled that lever pressing would produce sucrose paired with a CS+ , and DS- trials signaled no sucrose and a CS-. Next, in the absence of sucrose, we assessed the ability of the cues to i) reinforce lever pressing and ii) increase sucrose seeking when presented response-independently. We also assessed the effects of the mGlu2/3 receptor agonist LY379268 and d-amphetamine on cue-induced sucrose seeking. RESULTS By the end of self-administration training, lever pressing peaked during DS+ trials and dropped during DS- trials. The DS+ was a conditioned reinforcer of sucrose seeking in both sexes, whereas the CS+ was more effective in males. Response-independent presentations of the DS+ invigorated sucrose seeking in both sexes, whereas the CS+ was effective only in males. LY379268 suppressed DS+ -triggered sucrose seeking in females, with no effect in males. D-amphetamine enhanced sucrose seeking non-specifically across cue conditions in males, with no effect in females. CONCLUSIONS Our new trial-based procedure can be used to identify unique and similar mechanisms underlying DS and CS influences on appetitive behaviour.
Collapse
Affiliation(s)
- Mandy Rita LeCocq
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2960 Chemin de La Tour, Room 3108, Montreal, QC, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Shaghayegh Najafipashaki
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2960 Chemin de La Tour, Room 3108, Montreal, QC, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Domiziana Casale
- Department of Psychology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Isabel Laplante
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2960 Chemin de La Tour, Room 3108, Montreal, QC, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2960 Chemin de La Tour, Room 3108, Montreal, QC, H3T 1J4, Canada.
- Neural Signaling and Circuitry Research Group, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Centre for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada.
- Centre for Biomedical Innovation (CIB), Université de Montréal, Montréal, QC, Canada.
- Centre for Studies in Behavioural Neurobiology, Montreal, QC, Canada.
| |
Collapse
|
6
|
Robinson TE, Berridge KC. The Incentive-Sensitization Theory of Addiction 30 Years On. Annu Rev Psychol 2025; 76:29-58. [PMID: 39094061 PMCID: PMC11773642 DOI: 10.1146/annurev-psych-011624-024031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The incentive-sensitization theory (IST) of addiction was first published in 1993, proposing that (a) brain mesolimbic dopamine systems mediate incentive motivation ("wanting") for addictive drugs and other rewards, but not their hedonic impact (liking) when consumed; and (b) some individuals are vulnerable to drug-induced long-lasting sensitization of mesolimbic systems, which selectively amplifies their "wanting" for drugs without increasing their liking of the same drugs. Here we describe the origins of IST and evaluate its status 30 years on. We compare IST to other theories of addiction, including opponent-process theories, habit theories of addiction, and prefrontal cortical dysfunction theories of impaired impulse control. We also address critiques of IST that have been raised over the years, such as whether craving is important in addiction and whether addiction can ever be characterized as compulsive. Finally, we discuss several contemporary phenomena, including the potential role of incentive sensitization in behavioral addictions, the emergence of addiction-like dopamine dysregulation syndrome in medicated Parkinson's patients, the role of attentional capture and approach tendencies, and the role of uncertainty in incentive motivation.
Collapse
Affiliation(s)
- Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
7
|
Schettino M, Mauti M, Parrillo C, Ceccarelli I, Giove F, Napolitano A, Ottaviani C, Martelli M, Orsini C. Resting-state brain activation patterns and network topology distinguish human sign and goal trackers. Transl Psychiatry 2024; 14:446. [PMID: 39438457 PMCID: PMC11496639 DOI: 10.1038/s41398-024-03162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The "Sign-tracker/Goal-tracker" (ST/GT) is an animal model of individual differences in learning and motivational processes attributable to distinctive conditioned responses to environmental cues. While GT rats value the reward-predictive cue as a mere predictor, ST rats attribute it with incentive salience, engaging in aberrant reward-seeking behaviors that mirror those of impulse control disorders. Given its potential clinical value, the present study aimed to map such model onto humans and investigated resting state functional magnetic resonance imaging correlates of individuals categorized as more disposed to sign-tracking or goal-tracking behavior. To do so, eye-tracking was used during a translationally informed Pavlovian paradigm to classify humans as STs (n = 36) GTs (n = 35) or as Intermediates (n = 33), depending on their eye-gaze towards the reward-predictive cue or the reward location. Using connectivity and network-based approach, measures of resting state functional connectivity and centrality (role of a node as a hub) replicated preclinical findings, suggesting a major involvement of subcortical areas in STs, and dominant cortical involvement in GTs. Overall, the study strengthens the translational value of the ST/GT model, with important implications for the early identification of vulnerable phenotypes for psychopathological conditions such as substance use disorder.
Collapse
Affiliation(s)
- Martino Schettino
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marika Mauti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Area of Neuroscience, SISSA, Trieste, Italy
| | | | - Ilenia Ceccarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federico Giove
- Museo storico della fisica e Centro studi e Ricerche Enrico Fermi, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
8
|
Colom M, Kraev I, Stramek AK, Loza IB, Rostron CL, Heath CJ, Dommett EJ, Singer BF. Conditioning- and reward-related dendritic and presynaptic plasticity of nucleus accumbens neurons in male and female sign-tracker rats. Eur J Neurosci 2024; 60:5694-5717. [PMID: 39193632 DOI: 10.1111/ejn.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
Collapse
Affiliation(s)
- Morgane Colom
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Iwona B Loza
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Claire L Rostron
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Eleanor J Dommett
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bryan F Singer
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- School of Psychology, Sussex Neuroscience, Sussex Addiction Research and Intervention Centre, University of Sussex, Brighton, UK
| |
Collapse
|
9
|
Kuhn BN, Cannella N, Crow AD, Lunerti V, Gupta A, Walterhouse SJ, Allen C, Chalhoub RM, Dereschewitz E, Roberts AT, Cockerham M, Beeson A, Nall RW, Palmer AA, Hardiman G, Solberg Woods LC, Chung D, Ciccocioppo R, Kalivas PW. A multi-symptomatic model of heroin use disorder in rats reveals distinct behavioral profiles and neuronal correlates of heroin vulnerability versus resiliency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581440. [PMID: 39211180 PMCID: PMC11361156 DOI: 10.1101/2024.02.22.581440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles. Methods Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors. Using a non-linear stochastic block model clustering analysis, rats were assigned to OUD vulnerable, intermediate and resilient clusters. Additional behavioral tests and circuit analyses using c-fos protein activation were conducted on the vulnerable and resilient subpopulations. Results OUD vulnerable rats exhibited greater heroin taking and seeking behaviors relative to those in the intermediate and resilient clusters. Akin to human OUD diagnosis, further vulnerable rat sub-clustering revealed subpopulations with different combinations of behavioral traits, including sex differences. Lastly, heroin cue-induced neuronal patterns of circuit activation differed between resilient and vulnerable phenotypes. Behavioral sex differences were recapitulated in patterns of circuitry activation, including males preferentially engaging extended amygdala stress circuitry, and females cortico-striatal drug cue-seeking circuitry. Conclusion Using a non-linear clustering approach in rats, we captured behavioral diagnostic heterogeneity reflective of human OUD diagnosis. OUD vulnerability and resiliency were associated with distinct neuronal activation patterns, posing this approach as a translational tool in assessing neurobiological mechanisms underpinning OUD.
Collapse
|
10
|
Felix PC, Flagel SB. Leveraging individual differences in cue-reward learning to investigate the psychological and neural basis of shared psychiatric symptomatology: The sign-tracker/goal-tracker model. Behav Neurosci 2024; 138:260-271. [PMID: 38753398 PMCID: PMC11894610 DOI: 10.1037/bne0000590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In our modern environment, we are bombarded with stimuli or cues that exert significant influence over our actions. The extent to which such cues attain control over or disrupt goal-directed behavior is dependent on several factors, including one's inherent tendencies. Using a rodent model, we have shown that individuals vary in the value they place on stimuli associated with reward. Some individuals, termed "goal-trackers," primarily attribute predictive value to reward cues, whereas others, termed "sign-trackers," attribute predictive and incentive value. Thus, for sign-trackers, the reward cue is transformed into an incentive stimulus that is capable of eliciting maladaptive behaviors. The sign-tracker/goal-tracker animal model has allowed us to refine our understanding of behavioral and computational theories related to reward learning and to parse the underlying neural processes. Further, the neurobehavioral profile of sign-trackers is relevant to several psychiatric disorders, including substance use disorder, impulse control disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and posttraumatic stress disorder. This model, therefore, can advance our understanding of the psychological and neurobiological mechanisms that contribute to individual differences in vulnerability to psychopathology. Notably, initial attempts at translation-capturing individual variability in the propensity to sign-track in humans-have been promising and in line with what we have learned from the animal model. In this review, we highlight the pivotal role played by the sign-tracker/goal-tracker animal model in enriching our understanding of the psychological and neural basis of motivated behavior and psychiatric symptomatology. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Pochapski JA, Gómez-A A, Stringfield SJ, Jaggers H, Boettiger CA, Da Cunha C, Robinson DL. Adolescent alcohol exposure persistently alters orbitofrontal cortical encoding of Pavlovian conditional stimulus components in female rats. Sci Rep 2024; 14:13775. [PMID: 38877100 PMCID: PMC11178901 DOI: 10.1038/s41598-024-64036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Exposure to alcohol during adolescence impacts cortical and limbic brain regions undergoing maturation. In rodent models, long-term effects on behavior and neurophysiology have been described after adolescent intermittent ethanol (AIE), especially in males. We hypothesized that AIE in female rats increases conditional approach to a reward-predictive cue and corresponding neuronal activity in the orbitofrontal cortex (OFC) and nucleus accumbens (NAc). We evaluated behavior and neuronal firing after AIE (5 g/kg intragastric) or water (CON) in adult female rats. Both AIE and CON groups expressed a ST phenotype, and AIE marginally increased sign-tracking (ST) and decreased goal-tracking (GT) metrics. NAc neurons exhibited phasic firing patterns to the conditional stimulus (CS), with no differences between groups. In contrast, neuronal firing in the OFC of AIE animals was greater at CS onset and offset than in CON animals. During reward omission, OFC responses to CS offset normalized to CON levels, but enhanced OFC firing to CS onset persisted in AIE. We suggest that the enhanced OFC neural activity observed in AIE rats to the CS could contribute to behavioral inflexibility. Ultimately, AIE persistently impacts the neurocircuitry of reward-motivated behavior in female rats.
Collapse
Affiliation(s)
- Jose A Pochapski
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hannah Jaggers
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudio Da Cunha
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
- Department of Biochemistry, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Paniccia JE, Vollmer KM, Green LM, Grant RI, Winston KT, Buchmaier S, Westphal AM, Clarke RE, Doncheck EM, Bordieanu B, Manusky LM, Martino MR, Ward AL, Rinker JA, McGinty JF, Scofield MD, Otis JM. Restoration of a paraventricular thalamo-accumbal behavioral suppression circuit prevents reinstatement of heroin seeking. Neuron 2024; 112:772-785.e9. [PMID: 38141605 PMCID: PMC10939883 DOI: 10.1016/j.neuron.2023.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of μ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.
Collapse
Affiliation(s)
- Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa M Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kion T Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophie Buchmaier
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Annaka M Westphal
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel E Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Logan M Manusky
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael R Martino
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy L Ward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph Johnson Veterans Administration, Charleston, SC 29425, USA.
| |
Collapse
|
13
|
G Anversa R, Campbell EJ, Walker LC, S Ch'ng S, Muthmainah M, S Kremer F, M Guimarães A, O'Shea MJ, He S, Dayas CV, Andrews ZB, Lawrence AJ, Brown RM. A paraventricular thalamus to insular cortex glutamatergic projection gates "emotional" stress-induced binge eating in females. Neuropsychopharmacology 2023; 48:1931-1940. [PMID: 37474763 PMCID: PMC10584903 DOI: 10.1038/s41386-023-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
It is well-established that stress and negative affect trigger eating disorder symptoms and that the brains of men and women respond to stress in different ways. Indeed, women suffer disproportionately from emotional or stress-related eating, as well as associated eating disorders such as binge eating disorder. Nevertheless, our understanding of the precise neural circuits driving this maladaptive eating behavior, particularly in women, remains limited. We recently established a clinically relevant model of 'emotional' stress-induced binge eating whereby only female mice display binge eating in response to an acute "emotional" stressor. Here, we combined neuroanatomic, transgenic, immunohistochemical and pathway-specific chemogenetic approaches to investigate whole brain functional architecture associated with stress-induced binge eating in females, focusing on the role of Vglut2 projections from the paraventricular thalamus (PVTVglut2+) to the medial insular cortex in this behavior. Whole brain activation mapping and hierarchical clustering of Euclidean distances revealed distinct patterns of coactivation unique to stress-induced binge eating. At a pathway-specific level, PVTVglut2+ cells projecting to the medial insular cortex were specifically activated in response to stress-induced binge eating. Subsequent chemogenetic inhibition of this pathway suppressed stress-induced binge eating. We have identified a distinct PVTVglut2+ to insular cortex projection as a key driver of "emotional" stress-induced binge eating in female mice, highlighting a novel circuit underpinning this sex-specific behavior.
Collapse
Affiliation(s)
- Roberta G Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Muthmainah Muthmainah
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Amanda M Guimarães
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Mia J O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Suheng He
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Christopher V Dayas
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Zane B Andrews
- Biomedicine Discovery Institute and department of Physiology, Monash University, Clayton, Australia
| | - Andrew J Lawrence
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia.
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
14
|
Pinho JS, Cunliffe V, Kareklas K, Petri G, Oliveira RF. Social and asocial learning in zebrafish are encoded by a shared brain network that is differentially modulated by local activation. Commun Biol 2023; 6:633. [PMID: 37308619 DOI: 10.1038/s42003-023-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Group living animals use social and asocial cues to predict the presence of reward or punishment in the environment through associative learning. The degree to which social and asocial learning share the same mechanisms is still a matter of debate. We have used a classical conditioning paradigm in zebrafish, in which a social (fish image) or an asocial (circle image) conditioned stimulus (CS) have been paired with an unconditioned stimulus (US=food), and we have used the expression of the immediate early gene c-fos to map the neural circuits associated with each learning type. Our results show that the learning performance is similar to social and asocial CSs. However, the brain regions activated in each learning type are distinct and a community analysis of brain network data reveals segregated functional submodules, which seem to be associated with different cognitive functions involved in the learning tasks. These results suggest that, despite localized differences in brain activity between social and asocial learning, they share a common learning module and social learning also recruits a specific social stimulus integration module. Therefore, our results support the occurrence of a common general-purpose learning module, that is differentially modulated by localized activation in social and asocial learning.
Collapse
Affiliation(s)
- Júlia S Pinho
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- IMIM - Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | | | - Kyriacos Kareklas
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Giovanni Petri
- ISI Foundation and ISI Global Science Foundation, Torino, Italy
| | - Rui F Oliveira
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- ISPA-Instituto Universitário, Lisboa, Portugal.
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
15
|
Brown A, Chaudhri N. Optogenetic stimulation of infralimbic cortex projections to the paraventricular thalamus attenuates context-induced renewal. Eur J Neurosci 2023; 57:762-779. [PMID: 36373226 DOI: 10.1111/ejn.15862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Contexts associated with prior reinforcement can renew extinguished conditioned responding. The prelimbic (PL) and infralimbic (IL) cortices are thought to mediate the expression and suppression of conditioned responding, respectively. Evidence suggests that PL inputs to the paraventricular nucleus of the thalamus (PVT) drive the expression of cue-induced reinstatement of drug seeking and that IL inputs to the PVT mediate fear extinction retrieval. However, the role of these projections in renewal of appetitive Pavlovian conditioned responding is unknown. We trained male and female Long-Evans rats to associate a conditioned stimulus (CS; 10 s white noise) with delivery of a 10% sucrose unconditioned stimulus (US; .2 ml/CS) to a fluid port in a distinct context (Context A). We then extinguished responding by presenting the CS without the US in a different context (Context B). At test, rats were returned to Context A, and optogenetic stimulation was delivered to either the IL-to-PVT or PL-to-PVT pathway during CS presentations. Optically stimulating the IL-to-PVT, but not the PL-to-PVT pathway, attenuated ABA renewal of CS port entries, and this effect was similar in males and females. Further, rats self-administered optical stimulation of the IL-to-PVT but not the PL-to-PVT pathway suggesting that activation of the IL-to-PVT pathway is reinforcing. The effectiveness of optical stimulation parameters to activate neurons in the IL, PL and PVT was confirmed using Fos immunohistochemistry. These findings provide evidence for novel neural mechanisms in renewal of responding to a sucrose-predictive CS, as well as more generally in contextual processing and appetitive associative learning.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Brown A, Villaruel FR, Chaudhri N. Neural correlates of recall and extinction in a rat model of appetitive Pavlovian conditioning. Behav Brain Res 2023; 440:114248. [PMID: 36496079 DOI: 10.1016/j.bbr.2022.114248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Extinction is a fundamental form of inhibitory learning that is important for adapting to changing environmental contingencies. While numerous studies have investigated the neural correlates of extinction using Pavlovian fear conditioning and appetitive operant reward-seeking procedures, less is known about the neural circuitry mediating the extinction of appetitive Pavlovian responding. Here, we aimed to generate an extensive brain activation map of extinction learning in a rat model of appetitive Pavlovian conditioning. Male Long-Evans rats were trained to associate a conditioned stimulus (CS; 20 s white noise) with the delivery of a 10% sucrose unconditioned stimulus (US; 0.3 ml/CS) to a fluid port. Control groups also received CS presentations, but sucrose was delivered either during the inter-trial interval or in the home-cage. After conditioning, 1 or 6 extinction sessions were conducted in which the CS was presented but sucrose was withheld. We performed Fos immunohistochemistry and network connectivity analyses on a set of cortical, striatal, thalamic, and amygdalar brain regions. Neural activity in the prelimbic cortex, ventral orbitofrontal cortex, nucleus accumbens core, and paraventricular nucleus of the thalamus was greater during recall relative to extinction. Conversely, prolonged extinction following 6 sessions induced increased neural activity in the infralimbic cortex, medial orbitofrontal cortex, and nucleus accumbens shell compared to home-cage controls. All these structures were similarly recruited during recall on the first extinction session. These findings provide novel evidence for the contribution of brain areas and neural networks that are differentially involved in the recall versus extinction of appetitive Pavlovian conditioned responding.
Collapse
Affiliation(s)
- Alexa Brown
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Franz R Villaruel
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
17
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
18
|
Vollmer KM, Green LM, Grant RI, Winston KT, Doncheck EM, Bowen CW, Paniccia JE, Clarke RE, Tiller A, Siegler PN, Bordieanu B, Siemsen BM, Denton AR, Westphal AM, Jhou TC, Rinker JA, McGinty JF, Scofield MD, Otis JM. An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice. Nat Commun 2022; 13:6865. [PMID: 36369508 PMCID: PMC9652456 DOI: 10.1038/s41467-022-34517-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.
Collapse
Affiliation(s)
- Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lisa M Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kion T Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher W Bowen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rachel E Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Annika Tiller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Preston N Siegler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Benjamin M Siemsen
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam R Denton
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Annaka M Westphal
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael D Scofield
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
19
|
Keefer SE, Kochli DE, Calu DJ. Inactivation of the Basolateral Amygdala to Insular Cortex Pathway Makes Sign-Tracking Sensitive to Outcome Devaluation. eNeuro 2022; 9:ENEURO.0156-22.2022. [PMID: 36127135 PMCID: PMC9522321 DOI: 10.1523/eneuro.0156-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022] Open
Abstract
Goal-tracking (GT) rats are sensitive to Pavlovian outcome devaluation while sign-tracking (ST) rats are devaluation insensitive. During outcome devaluation, GT rats flexibly modify responding to cues based on the current value of the associated outcome. However, ST rats rigidly respond to cues regardless of the current outcome value. Prior work demonstrated disconnection of the basolateral amygdala (BLA) and anterior insular cortex (aIC) decreased both GT and ST behaviors. Given the role of these regions in appetitive motivation and behavioral flexibility, we predicted that disrupting BLA to aIC pathway during outcome devaluation would reduce flexibility in GT rats and reduce rigid appetitive motivation in ST rats. We inhibited the BLA to aIC pathway by infusing inhibitory DREADDs (hM4Di-mcherry) or control (mCherry) virus into the BLA and implanted cannulae into the aIC to inhibit BLA terminals using intracranial injections of clozapine N-oxide (CNO). After training, we used a within-subject satiety-induced outcome devaluation procedure in which we sated rats on training pellets (devalued condition) or homecage chow (valued condition). All rats received bilateral CNO infusions into the aIC before brief nonreinforced test sessions. Contrary to our hypothesis, BLA-IC inhibition did not interfere with devaluation sensitivity in GT rats but did make ST behaviors sensitive to devaluation. Intermediate rats showed the opposite effect, showing rigid responding to cues with BLA-aIC pathway inactivation. Together, these results demonstrate BLA-IC projections mediate tracking-specific Pavlovian devaluation sensitivity and highlights the importance of considering individual differences in Pavlovian approach when evaluating circuitry contributions to behavioral flexibility.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel E Kochli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
20
|
Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, Calhoon GG, Hitora-Imamura N, Coley AA, Libster A, Bal A, Jin X, Wang H, Jia C, Choudhury SR, Shi X, Felix-Ortiz AC, de la Fuente V, Barth VP, King HO, Izadmehr EM, Revanna JS, Batra K, Fischer KB, Keyes LR, Padilla-Coreano N, Siciliano CA, McCullough KM, Wichmann R, Ressler KJ, Fiete IR, Zhang F, Li Y, Tye KM. Neurotensin orchestrates valence assignment in the amygdala. Nature 2022; 608:586-592. [PMID: 35859170 PMCID: PMC9583860 DOI: 10.1038/s41586-022-04964-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.
Collapse
Affiliation(s)
- Hao Li
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Praneeth Namburi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M Olson
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mackenzie E Lemieux
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Beyeler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Bordeaux, Neurocentre Magendie, INSERM 1215, Bordeaux, France
| | - Gwendolyn G Calhoon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Program, Bates College, Lewiston, ME, USA
| | - Natsuko Hitora-Imamura
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Avraham Libster
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aneesh Bal
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Behavioral Neuroscience, Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Xin Jin
- Society of Fellows, Harvard University, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Peking-Tsinghua Center for Life Science, IDG/McGovern Institute for Brain Research at PKU, Beijing, China
| | - Caroline Jia
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Xi Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ada C Felix-Ortiz
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Verónica de la Fuente
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanessa P Barth
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Hunter O King
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ehsan M Izadmehr
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jasmin S Revanna
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Kanha Batra
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kyle B Fischer
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laurel R Keyes
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kenneth M McCullough
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Romy Wichmann
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ila R Fiete
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Peking-Tsinghua Center for Life Science, IDG/McGovern Institute for Brain Research at PKU, Beijing, China
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Systems Neuroscience Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
21
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
22
|
Nunes EJ, Kebede N, Bagdas D, Addy NA. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J Exp Anal Behav 2022; 117:404-419. [PMID: 35286712 PMCID: PMC9743782 DOI: 10.1002/jeab.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli. Behaviors characterized by increased vigor, persistence, and work output are considered to reflect activational components of motivation. Disruption of DA signaling has been shown to decrease activational components of motivation, while leaving directional features intact. Facilitation of DA release promotes the activational aspects of motivated behavior. In this review, we discuss cholinergic and DA regulation of motivated behaviors. We place emphasis on effort-choice processes and the ability of effort-choice tasks to examine and dissociate changes of motivated behavior in the context of substance use and mood disorders. Furthermore, we consider how altered cholinergic transmission impacts motivated behavior across disease states, and the possible role of cholinergic dysregulation in the etiology of these illnesses. Finally, we suggest that treatments targeting cholinergic activity may be useful in ameliorating motivational disruptions associated with substance use and comorbid substance use and mood disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine,Department of Cellular and Molecular Physiology, Yale School of Medicine,Interdepartmental Neuroscience Program, Yale University,Wu Tsai Institute, Yale University
| |
Collapse
|
23
|
Kuhn BN, Campus P, Klumpner MS, Chang SE, Iglesias AG, Flagel SB. Inhibition of a cortico-thalamic circuit attenuates cue-induced reinstatement of drug-seeking behavior in "relapse prone" male rats. Psychopharmacology (Berl) 2022; 239:1035-1051. [PMID: 34181035 DOI: 10.1007/s00213-021-05894-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE Relapse often occurs when individuals are exposed to stimuli or cues previously associated with the drug-taking experience. The ability of drug cues to trigger relapse is believed to be a consequence of incentive salience attribution, a process by which the incentive value of reward is transferred to the reward-paired cue. Sign-tracker (ST) rats that attribute enhanced incentive value to reward cues are more prone to relapse compared to goal-tracker (GT) rats that primarily attribute predictive value to such cues. OBJECTIVES The neurobiological mechanisms underlying this individual variation in relapse propensity remains largely unexplored. The paraventricular nucleus of the thalamus (PVT) has been identified as a critical node in the regulation of cue-elicited behaviors in STs and GTs, including cue-induced reinstatement of drug-seeking behavior. Here we used a chemogenetic approach to assess whether "top-down" cortical input from the prelimbic cortex (PrL) to the PVT plays a role in mediating individual differences in relapse propensity. RESULTS Chemogenetic inhibition of the PrL-PVT pathway selectively decreased cue-induced reinstatement of drug-seeking behavior in STs, without affecting behavior in GTs. In contrast, cocaine-primed drug-seeking behavior was not affected in either phenotype. Furthermore, when rats were characterized based on a different behavioral phenotype-locomotor response to novelty-inhibition of the PrL-PVT pathway had no effect on either cue- or drug-induced reinstatement. CONCLUSIONS These results highlight an important role for the PrL-PVT pathway in vulnerability to relapse that is consequent to individual differences in the propensity to attribute incentive salience to discrete reward cues.
Collapse
Affiliation(s)
- Brittany N Kuhn
- Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Paolo Campus
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Marin S Klumpner
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Stephen E Chang
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Amanda G Iglesias
- Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Shelly B Flagel
- Neuroscience Graduate Program, University of Michigan, 4137 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI, 48109, USA.
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
24
|
Quantifying the instrumental and noninstrumental underpinnings of Pavlovian responding with the Price equation. Psychon Bull Rev 2021; 29:1295-1306. [PMID: 34918283 DOI: 10.3758/s13423-021-02047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/08/2022]
Abstract
The Price equation is a mathematical expression of selectionist and non-selectionist pressures on biological, cultural, and behavioral change. We use it here to specify instrumental and noninstrumental behaviors as they arise within the context of the Pavlovian autoshaping procedure, for rats trained under reward certainty and reward uncertainty. The point of departure for this endeavor is that some portion of autoshaped behavior referred to as goal-tracking appears instrumental-a function of resource attainment (the individual approaches the location where the unconditioned stimulus is to be delivered). By contrast, some other portion of autoshaped behavior referred to as sign-tracking is noninstrumental-irrelevant to making contact with the to-be-delivered unconditioned stimulus. A Price equation model is proposed that unifies our understanding of Pavlovian autoshaping behavior by isolating operant and respondent influences on goal-tracking (instrumental) and sign-tracking (noninstrumental) behavior.
Collapse
|
25
|
Fleming KA, Cofresí RU, Bartholow BD. Transfer of incentive salience from a first-order alcohol cue to a novel second-order alcohol cue among individuals at risk for alcohol use disorder: electrophysiological evidence. Addiction 2021; 116:1734-1746. [PMID: 33338310 PMCID: PMC8172423 DOI: 10.1111/add.15380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/29/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS In susceptible individuals, cues associated with drug use are theorized to take on incentive-motivational properties, including the ability to reinforce higher-order, drug-related associative learning. This study aimed to test this prediction among people varying in risk for alcohol use disorder. DESIGN, SETTING AND PARTICIPANTS Repeated-measures experiment with a measured individual difference variable at a University psychology laboratory in Missouri, USA. One hundred and six young adults (96 contributed complete data) were pre-selected to represent the upper and lower quartiles of self-reported sensitivity to alcohol's acute effects. MEASUREMENTS Participants completed a second-order Pavlovian conditioning paradigm in which an initially neutral visual cue (second-order conditional stimulus; CS2 ) predicted onset of an olfactory cue (first-order conditional stimulus; CS1 ). Olfactory cues were isolated from alcoholic beverages, sweets and non-comestible substances, each presumed to have a natural history of first-order conditioning. Event-related potential responses to the CS2 across its conditioning and extinction, and to the CS1 , provided neurophysiological indices of incentive salience (IS). FINDINGS The IS of the alcohol CS1 was higher among participants low in alcohol sensitivity (LS), relative to their higher-sensitivity (HS) peers. The IS of the CS2 paired with the alcohol CS1 increased across the CS2 conditioning phase among LS but not HS participants. Also, LS (but not HS) individuals also experienced increases in alcohol craving following alcohol CS1 exposure, and this change was correlated with increases in the IS of the CS2 paired with the alcohol CS1 . CONCLUSIONS Alcoholic beverage odor, a proximal cue for alcohol consumption, appears to reinforce conditioning of neurophysiological responses to a novel cue among low alcohol sensitivity (LS) individuals but not high alcohol sensitivity individuals, providing the first evidence that the LS phenotype may be associated with differences in the conditioned reinforcing properties of alcohol-related cues. These findings support the idea that the LS phenotype may increase alcohol use disorder risk via susceptibility to incentive salience sensitization.
Collapse
Affiliation(s)
- Kimberly A. Fleming
- Psychiatric and Behavioral Health Institute, Allegheny Health Network
- Department of Psychiatry, Drexel University College of Medicine
| | | | | |
Collapse
|
26
|
Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021; 15:706713. [PMID: 34220458 PMCID: PMC8250420 DOI: 10.3389/fnint.2021.706713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we highlight evidence that supports a role for the paraventricular nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical and neurochemical overview, outlining what is known of the cellular makeup of the region and its most prominent afferent and efferent connections. We discuss how these connections and distinctions across the anterior-posterior axis correspond to the perceived function of the PVT. We then focus on the hypothalamic-thalamic-striatal circuit and the neuroanatomical and functional placement of the PVT within this circuit. In this regard, the PVT is ideally positioned to integrate information regarding internal states and the external environment and translate it into motivated actions. Based on data that has emerged in recent years, including that from our laboratory, we posit that orexinergic (OX) innervation from the lateral hypothalamus (LH) to the PVT encodes the incentive motivational value of reward cues and thereby alters the signaling of the glutamatergic neurons projecting from the PVT to the shell of the nucleus accumbens (NAcSh). The PVT-NAcSh pathway then modulates dopamine activity and resultant cue-motivated behaviors. As we and others apply novel tools and approaches to studying the PVT we will continue to refine the anatomical, cellular, and functional definitions currently ascribed to this nucleus and further elucidate its role in motivated behaviors.
Collapse
Affiliation(s)
- Amanda G. Iglesias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Male Goal-Tracker and Sign-Tracker Rats Do Not Differ in Neuroendocrine or Behavioral Measures of Stress Reactivity. eNeuro 2021; 8:ENEURO.0384-20.2021. [PMID: 33731330 PMCID: PMC8116112 DOI: 10.1523/eneuro.0384-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Environmental cues attain the ability to guide behavior via learned associations. As predictors, cues can elicit adaptive behavior and lead to valuable resources (e.g., food). For some individuals, however, cues are transformed into incentive stimuli and elicit motivational states that can be maladaptive. The goal-tracker (GT)/sign-tracker (ST) animal model captures individual differences in cue-motivated behaviors, with reward-associated cues serving as predictors of reward for both phenotypes but becoming incentive stimuli to a greater degree for STs. While these distinct phenotypes are characterized based on Pavlovian conditioned approach (PavCA) behavior, they exhibit differences on a number of behaviors relevant to psychopathology. To further characterize the neurobehavioral endophenotype associated with individual differences in cue-reward learning, neuroendocrine and behavioral profiles associated with stress and anxiety were investigated in male GT, ST, and intermediate responder (IR) rats. It was revealed that baseline corticosterone (CORT) increases with Pavlovian learning, but to the same degree, regardless of phenotype. No significant differences in behavior were observed between GTs and STs during an elevated plus maze (EPM) or open field test (OFT), nor were there differences in CORT response to the OFT or physiological restraint. Upon examination of central markers associated with stress reactivity, we found that STs have greater glucocorticoid receptor (GR) mRNA expression in the ventral hippocampus, with no phenotypic differences in the dorsal hippocampus or prelimbic cortex (PrL). These findings demonstrate that GTs and STs do not differ on stress-related and anxiety-related behaviors, and suggest that differences in neuroendocrine measures between these phenotypes can be attributed to distinct cue-reward learning styles.
Collapse
|
28
|
Margetts-Smith G, Macnaghten AI, Brebner LS, Ziminski JJ, Sieburg MC, Grimm JW, Crombag HS, Koya E. Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice. Eur J Neurosci 2021; 53:2580-2591. [PMID: 33565633 PMCID: PMC8085094 DOI: 10.1111/ejn.15146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 02/02/2021] [Indexed: 12/04/2022]
Abstract
Exposure to environmental enrichment can modify the impact of motivationally relevant stimuli. For instance, previous studies in rats have found that even a brief, acute (~1 day), but not chronic, exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker "Fos." Currently, it is not known whether acute EE also reduces sucrose seeking and corticoaccumbens activity elicited by non-contingent or "forced" exposure to sucrose cues, which more closely resembles cue exposure encountered in daily life. We therefore measured the effects of acute/intermittent (1 day or 6 day of EE prior to test day) versus chronic (EE throughout conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6 day or chronic EE , reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1 day, 6 day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking across species.
Collapse
Affiliation(s)
- Gabriella Margetts-Smith
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- University of Exeter College of Medicine and Health, Hatherly Laboratories, Exeter, UK
| | | | - Leonie S. Brebner
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joseph J. Ziminski
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Meike C. Sieburg
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Biomedicine/DANDRITE, Aarhus University, Aarhus C, Denmark
| | - Jeffrey W. Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, USA
| | - Hans S. Crombag
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| | - Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| |
Collapse
|
29
|
Abstract
Learning to respond appropriately to one's surrounding environment is fundamental to survival. Importantly, however, individuals vary in how they respond to cues in the environment and this variation may be a key determinant of psychopathology. The ability of seemingly neutral cues to promote maladaptive behavior is a hallmark of several psychiatric disorders including, substance use disorder, post-traumatic stress disorder, eating disorders and obsessive-compulsive disorder. Thus, it is important to uncover the neural mechanisms by which such cues are able to attain inordinate control and promote psychopathological behavior. Here, we suggest that glucocorticoids play a critical role in this process. Glucocorticoids are primarily recognized as the main hormone secreted in response to stress but are known to exert their effects across the body and the brain, and to affect learning and memory, cognition and reward-related behaviors, among other things. Here we speculate that glucocorticoids act to facilitate a dopamine-dependent form of cue-reward learning that appears to be relevant to a number of psychiatric conditions. Specifically, we propose to utilize the sign-tracker/goal-tracker animal model as a means to capture individual variation in stimulus-reward learning and to isolate the role of glucocorticoid-dopamine interactions in mediating these individual differences. It is hoped that this framework will lead to the discovery of novel mechanisms that contribute to complex neuropsychiatric disorders and their comorbidity.
Collapse
Affiliation(s)
- Sofia A. Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shelly B. Flagel
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021; 125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in understanding the behavioral and brain mechanisms for motivational systems, much less is known about competition between motivational states or motivational conflict (e.g., approach - avoidance conflict). Despite being produced under diverse conditions, behavior during motivational competition has two signatures: bistability and metastability. These signatures reveal the operation of positive feedback mechanisms in behavioral selection. Different neuronal architectures can instantiate this selection to achieve bistability and metastability in behavior, but each relies on circuit-level inhibition to achieve rapid and stable selection between competing tendencies. Paraventricular thalamus (PVT) is identified as critical to this circuit level inhibition, resolving motivational competition via its extensive projections to local inhibitory networks in the ventral striatum and extended amygdala, enabling adaptive responding under motivational conflict.
Collapse
|
31
|
Sadler JR, Shearrer GE, Burger KS. Alterations in ventral attention network connectivity in individuals with prediabetes. Nutr Neurosci 2021; 24:140-147. [PMID: 31030631 PMCID: PMC6817402 DOI: 10.1080/1028415x.2019.1609646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective: Type 2 diabetes (T2D) is associated with aberrant neural functioning; however, the point at which brain function alterations occur in the progression of T2D is unknown. Here, we tested for differences in functional connectivity in adults with prediabetes and healthy individuals. We hypothesized that prediabetes, defined by glycated hemoglobin (HbA1c) 5.7-6.4% would be associated with disruptions in default mode network (DMN) connectivity. Methods: Fourteen brain networks were tested in 88 adults (prediabetes: n = 44; HbA1c = 5.8±0.2%; healthy: n = 44; HbA1c = 4.7±0.2%) matched for sex, age, and BMI. Results: We did not find differences in DMN connectivity between groups. Individuals with prediabetes showed stronger connectivity between the ventral attention network and (1) a visual network (p FWE = 0.0001); (2) a somatosensory network (p FWE = 0.0027). Individuals with healthy HbA1c showed stronger connectivity of the ventral attention network and (1) cingulo-opercular network (p FWE = 0.002); (2) a thalamic-striatal-visual network (p FWE = 0.001). Conclusions: Relative to individuals with prediabetes, those with a healthy HbA1c showed stronger connectivity between brain networks underlying self-control and attention to stimuli. In contrast, those with prediabetes demonstrated stronger connectivity between brain networks associated with sensory and attention to stimuli. While T2D reported contribute to decreased DMN connectivity, prediabetes is characterized by a shift in functional connectivity from a self-control network towards increasing connectivity in sensory network.
Collapse
Affiliation(s)
- Jennifer R Sadler
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Grace E Shearrer
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Kyle S Burger
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
32
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
33
|
The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020; 237:3741-3758. [PMID: 32852601 PMCID: PMC7960144 DOI: 10.1007/s00213-020-05651-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.
Collapse
|
34
|
Barson JR, Mack NR, Gao WJ. The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci 2020; 14:598469. [PMID: 33192373 PMCID: PMC7658442 DOI: 10.3389/fnbeh.2020.598469] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has for decades been acknowledged to be an important node in the limbic system, but studies of emotional processing generally fail to incorporate it into their investigational framework. Here, we propose that the PVT should be considered as an integral part of the emotional processing network. Through its distinct subregions, cell populations, and connections with other limbic nuclei, the PVT participates in both major features of emotion: arousal and valence. The PVT, particularly the anterior PVT, can through its neuronal activity promote arousal, both as part of the sleep-wake cycle and in response to novel stimuli. It is also involved in reward, being both responsive to rewarding stimuli and itself affecting behavior reflecting reward, likely via specific populations of cells distributed throughout its subregions. Similarly, neuronal activity in the PVT contributes to depression-like behavior, through yet undefined subregions. The posterior PVT in particular demonstrates a role in anxiety-like behavior, generally promoting but also inhibiting this behavior. This subregion is also especially responsive to stressors, and it functions to suppress the stress response following chronic stress exposure. In addition to participating in unconditioned or primary emotional responses, the PVT also makes major contributions to conditioned emotional behavior. Neuronal activity in response to a reward-predictive cue can be detected throughout the PVT, and endogenous activity in the posterior PVT strongly predicts approach or seeking behavior. Similarly, neuronal activity during conditioned fear retrieval is detected in the posterior PVT and its activation facilitates the expression of conditioned fear. Much of this involvement of the PVT in arousal and valence has been shown to occur through the same general afferents and efferents, including connections with the hypothalamus, prelimbic and infralimbic cortices, nucleus accumbens, and amygdala, although a detailed functional map of the PVT circuits that control emotional responses remains to be delineated. Thus, while caveats exist and more work is required, the PVT, through its extensive connections with other prominent nuclei in the limbic system, appears to be an integral part of the emotional processing network.
Collapse
Affiliation(s)
- Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | | | | |
Collapse
|
35
|
McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020; 14:590528. [PMID: 33177999 PMCID: PMC7596164 DOI: 10.3389/fnbeh.2020.590528] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is highly interconnected with brain areas that control reward-seeking behavior. Despite this known connectivity, broad manipulations of PVT often lead to mixed, and even opposing, behavioral effects, clouding our understanding of how PVT precisely contributes to reward processing. Although the function of PVT in influencing reward-seeking is poorly understood, recent studies show that forebrain and hypothalamic inputs to, and nucleus accumbens (NAc) and amygdalar outputs from, PVT are strongly implicated in PVT responses to conditioned and appetitive or aversive stimuli that determine whether an animal will approach or avoid specific rewards. These studies, which have used an array of chemogenetic, optogenetic, and calcium imaging technologies, have shown that activity in PVT input and output circuits is highly heterogeneous, with mixed activity patterns that contribute to behavior in highly distinct manners. Thus, it is important to perform experiments in precisely defined cell types to elucidate how the PVT network contributes to reward-seeking behaviors. In this review, we describe the complex heterogeneity within PVT circuitry that appears to influence the decision to seek or avoid a reward and point out gaps in our understanding that should be investigated in future studies.
Collapse
Affiliation(s)
- Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
36
|
Sangarapillai N, Ellenberger M, Wöhr M, Schwarting RKW. Ultrasonic vocalizations and individual differences in rats performing a Pavlovian conditioned approach task. Behav Brain Res 2020; 398:112926. [PMID: 33049281 DOI: 10.1016/j.bbr.2020.112926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USV), including high-frequency 50-kHz USV, which occur in appetitive situations. Such 50-kHz USV are thought to reflect positive affective states, for example in case of reward anticipation, and are linked to dopamine signaling. The present study was conducted to investigate whether rats emit 50-kHz USV during a Pavlovian conditioned approach task and whether trait-like differences in 50-kHz USV emission are associated with sign- versus goal-tracking. We hypothesize that individuals engaging more with a cue predicting a food reward will also elicit more 50-kHz USV. In order to test this, we investigated 34 female rats and gauged USV while they underwent a Pavlovian conditioned approach training and extinction paradigm. For one, we found a high subject-dependent variability in the emission of 50-kHz calls. These were not largely affected by state differences, since these 50-kHz USV were observed throughout the task. During task progress and in most subjects, there was a rather complete shift toward goal-tracking, but subjects engaging more with the cue predicting a reward also emitted higher numbers of appetitive 50-kHz calls. This supports the hypothesis that sign-tracking is positively associated with the emission of 50-kHz USV. The high subject-dependent variability in the emission of 50-kHz calls warrants special attention in future appetitive studies.
Collapse
Affiliation(s)
- Nivethini Sangarapillai
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032, Marburg, Germany
| | - Marek Ellenberger
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032, Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032, Marburg, Germany.
| |
Collapse
|
37
|
Munkhzaya U, Chinzorig C, Matsumoto J, Nishimaru H, Ono T, Nishijo H. Rat Paraventricular Neurons Encode Predictive and Incentive Information of Reward Cues. Front Behav Neurosci 2020; 14:565002. [PMID: 33033475 PMCID: PMC7509094 DOI: 10.3389/fnbeh.2020.565002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been implicated in cue-induced motivated behaviors. Although reward-associated cues (conditioned stimuli, CSs) contain different types of information including predictive information of future reward delivery and incentive (motivational) value of the reward, it remains unknown whether PVT neurons represent predictive and incentive information of CSs. It is suggested that neural activity just after the onset of CSs (early activity) and that just before reward delivery (late activity) might more strongly represent predictive and incentive information, respectively. In this study, rats were trained to lick a tube, which was protruded close to their mouth just after a CS, to obtain a reward (sucrose or water) (cue-induced licking task). Auditory and visual CSs were used: each elemental cue (CS) predicted reward or non-reward outcome, while simultaneous presentation of the two elemental cues (configural cues) predicted the opposite reward outcome. We recorded PVT neurons in the cue-induced licking task, and report that half of the CS-responsive PVT neurons responded selectively to the CSs predicting reward outcome regardless of physical property of the cues (CS+-selective). In addition, the early activity of the CS+-selective neurons discriminated reward/non-reward association (predictive information) and was less sensitive to reward value and motivation reflected by lick latency (incentive information), while the late activity of the CS+-selective neurons was correlated with reward value and motivation rather than reward/non-reward association. Early and late population activity of the CS+-selective neurons also represented predictive and incentive information of the CSs, respectively. On the other hand, activity of more than half of the PVT neurons was correlated with individual licking during licking to acquire reward. Taken together, the results suggest that the PVT neurons engage in different neural processes involved in cue-induced motivated behaviors: CS encoding to determine reward availability and form motivation for reward-seeking behavior, and hedonic mouth movements during reward consumption.
Collapse
Affiliation(s)
- Unur Munkhzaya
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Choijiljav Chinzorig
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Physiology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
38
|
Gheidi A, Cope LM, Fitzpatrick CJ, Froehlich BN, Atkinson R, Groves CK, Barcelo CN, Morrow JD. Effects of the cannabinoid receptor agonist CP-55,940 on incentive salience attribution. Psychopharmacology (Berl) 2020; 237:2767-2776. [PMID: 32494975 PMCID: PMC7502542 DOI: 10.1007/s00213-020-05571-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Pavlovian conditioned approach paradigms are used to characterize the nature of motivational behaviors in response to stimuli as either directed toward the cue (i.e., sign-tracking) or the site of reward delivery (i.e., goal-tracking). Recent evidence has shown that activity of the endocannabinoid system increases dopaminergic activity in the mesocorticolimbic system, and other studies have shown that sign-tracking behaviors are dependent on dopamine. OBJECTIVES Therefore, we hypothesized that administration of a cannabinoid agonist would increase sign-tracking and decrease goal-tracking behaviors. METHODS Forty-seven adult male Sprague-Dawley rats were given a low, medium, or high dose of the cannabinoid agonist CP-55,940 (N = 12 per group) or saline (N = 11) before Pavlovian conditioned approach training. A separate group of rats (N = 32) were sacrificed after PCA training for measurement of cannabinoid receptor type 1 (CB1) and fatty acid amide hydrolase (FAAH) using in situ hybridization. RESULTS Contrary to our initial hypothesis, CP-55,940 dose-dependently decreased sign-tracking and increased goal-tracking behavior. CB1 expression was higher in sign-trackers compared with that in goal-trackers in the prelimbic cortex, but there were no significant differences in CB1 or FAAH expression in the infralimbic cortex, dorsal or ventral CA1, dorsal or ventral CA3, dorsal or ventral dentate gyrus, or amygdala. CONCLUSIONS These results demonstrate that cannabinoid signaling can specifically influence behavioral biases toward sign- or goal-tracking. Pre-existing differences in CB1 expression patterns, particularly in the prelimbic cortex, could contribute to individual differences in the tendency to attribute incentive salience to reward cues.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Psychiatry, University of Michigan
| | - Lora M. Cope
- Department of Psychiatry, University of Michigan,Addiction Center, University of Michigan
| | | | | | | | | | - Clair N. Barcelo
- Molecular and Behavioral Neuroscience Institute, University of Michigan
| | - Jonathan D. Morrow
- Department of Psychiatry, University of Michigan,Addiction Center, University of Michigan,Neuroscience Graduate Program, University of Michigan,Corresponding Author: Jonathan D. Morrow, Biomedical Science Research Building Room 5047, 109 Zina Pitcher Place Ann Arbor, MI 48109, 1-734-764-4283 (phone), 1-734-232-0244 (fax),
| |
Collapse
|
39
|
Pandey S, Barson JR. Heightened Exploratory Behavior Following Chronic Excessive Ethanol Drinking: Mediation by Neurotensin Receptor Type 2 in the Anterior Paraventricular Thalamus. Alcohol Clin Exp Res 2020; 44:1747-1759. [PMID: 32623746 DOI: 10.1111/acer.14406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic, excessive alcohol drinkers, even without dependence, can exhibit changes in behavior and neurochemical systems. Identifying these changes and their relationship with one another could provide novel avenues for the prevention and treatment of alcohol use disorder. We recently demonstrated, in rats, that neurotensin (NTS) in the paraventricular thalamus (PVT) regulates excessive ethanol (EtOH) drinking. Here, we investigate the effects of chronic EtOH drinking on the PVT-NTS system and its contribution to EtOH-induced behavioral changes. METHODS We gave adult male Long-Evans rats 20% EtOH under the intermittent access 2-bottle-choice paradigm or maintained them on chow and water for up to 11 weeks. Prior to EtOH exposure and following several weeks of access, during acute abstinence, we tested these groups for multiple behaviors. In the 12th week, during acute abstinence, we examined gene expression and peptide levels of NTS and its receptors in the anterior and posterior subregions of the PVT. Finally, in chronic EtOH drinkers, during acute abstinence, we microinjected the NTS receptor type 2 (NTS2R) agonist, JMV-431, in the anterior PVT (aPVT) and examined subsequent EtOH intake and behavior. RESULTS Following chronic intermittent EtOH access, rats were classified by cluster analysis as high or low EtOH drinkers. High EtOH drinkers spent more time in the light chamber of a light-dark box and open arms of an elevated plus maze and entered fewer familiar holes in a hole-board apparatus. These differences were absent prior to EtOH exposure but were detectable as early as 4 weeks into drinking. Time in the light chamber following chronic drinking also predicted level of subsequent drinking. High EtOH drinkers also showed elevated protein levels of NTS2R in the aPVT, and pharmacological stimulation of aPVT NTS2R in low drinkers mimicked the increased time spent in the light chamber that was observed in high drinkers. CONCLUSIONS Our findings suggest that chronic, excessive, but not lower level, EtOH drinking induces heightened or flexible exploratory behavior, which predicts future EtOH drinking and is partly mediated by elevated NTS2R signaling in the aPVT. These EtOH-induced alterations represent adaptations that could perpetuate excessive drinking and lead to the development of EtOH dependence.
Collapse
Affiliation(s)
- Surya Pandey
- From the, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica R Barson
- From the, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
From sign-tracking to attentional bias: Implications for gambling and substance use disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109861. [PMID: 31931091 DOI: 10.1016/j.pnpbp.2020.109861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/11/2023]
Abstract
Sign-tracking behavior in Pavlovian autoshaping is known to be a relevant index of the incentive salience attributed to reward-related cues. Evidence has accumulated to suggest that animals that exhibit a sign-tracker phenotype are especially vulnerable to addiction and relapse due to their proneness to attribute incentive salience to drug cues, and their relatively weak cognitive and attentional control over their behavior. Interestingly, sign-tracking is also influenced by reward uncertainty in a way that may promote gambling disorder. Research indicates that reward uncertainty sensitizes sign-tracking responses and favors the development of a sign-tracker phenotype, compatible with the conditioned attractiveness of lights and sounds in casinos for problem gamblers. The study of attentional biases in humans (an effect akin to sign-tracking in animals) leads to similar observations, notably that the propensity to develop attraction for conditioned stimuli (CSs) is predictive of addictive behavior. Here we review the literature on drug addiction and gambling disorder, highlighting the similarities between studies of sign-tracking and attentional biases.
Collapse
|
41
|
Colaizzi JM, Flagel SB, Joyner MA, Gearhardt AN, Stewart JL, Paulus MP. Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci Biobehav Rev 2020; 111:84-94. [PMID: 31972203 PMCID: PMC8087151 DOI: 10.1016/j.neubiorev.2020.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
As evidenced through classic Pavlovian learning mechanisms, environmental cues can become incentivized and influence behavior. These stimulus-outcome associations are relevant in everyday life but may be particularly important for the development of impulse control disorders including addiction. Rodent studies have elucidated specific learning profiles termed 'sign-tracking' and 'goal-tracking' which map onto individual differences in impulsivity and other behaviors associated with impulse control disorders' etiology, course, and relapse. Whereas goal-trackers are biased toward the outcome, sign-trackers fixate on features that are associated with but not necessary for achieving an outcome; a pattern of behavior that often leads to escalation of reward-seeking that can be maladaptive. The vast majority of the sign- and goal-tracking research has been conducted using rodent models and very few have bridged this concept into the domain of human behavior. In this review, we discuss the attributes of sign- and goal-tracking profiles, how these are manifested neurobiologically, and how these distinct learning styles could be an important tool for clinical interventions in human addiction.
Collapse
Affiliation(s)
- Janna M Colaizzi
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA.
| | - Shelly B Flagel
- University of Michigan Molecular and Behavioral Neuroscience Institute, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Michelle A Joyner
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Ashley N Gearhardt
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA
| |
Collapse
|
42
|
Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Rep 2020; 30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
|
43
|
Chisholm A, Iannuzzi J, Rizzo D, Gonzalez N, Fortin É, Bumbu A, Batallán Burrowes AA, Chapman CA, Shalev U. The role of the paraventricular nucleus of the thalamus in the augmentation of heroin seeking induced by chronic food restriction. Addict Biol 2020; 25:e12708. [PMID: 30623532 DOI: 10.1111/adb.12708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Drug addiction is a chronic disorder that is characterized by compulsive drug seeking and involves cycling between periods of compulsive drug use, abstinence, and relapse. In both human addicts and animal models of addiction, chronic food restriction has been shown to increase rates of relapse. Previously, our laboratory has demonstrated a robust increase in drug seeking following a period of withdrawal in chronically food-restricted rats compared with sated rats. To date, the neural mechanisms that mediate the effect of chronic food restriction on drug seeking have not been elucidated. However, the paraventricular nucleus of the thalamus (PVT) appears to be a promising target to investigate. The objective of the current study was to examine the role of the PVT in the augmentation of heroin seeking induced by chronic food restriction. Male Long-Evans rats were trained to self-administer heroin for 10 days. Rats were then removed from the training chambers and experienced a 14-day withdrawal period with either unrestricted (sated) or mildly restricted (FDR) access to food. On day 14, rats underwent a 1-hour heroin-seeking test under extinction conditions, during which neural activity in the PVT was either inhibited or increased using pharmacological or chemogenetic approaches. Unexpectedly, inhibition of the PVT did not alter heroin seeking in food-restricted or sated rats, while enhancing neural activity in the PVT-attenuated heroin seeking in food-restricted rats. These results indicate that PVT activity can modulate heroin seeking induced by chronic food restriction.
Collapse
Affiliation(s)
- Alexandra Chisholm
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Jessica Iannuzzi
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Damaris Rizzo
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Natasha Gonzalez
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Émilie Fortin
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Alexandra Bumbu
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Ariel A. Batallán Burrowes
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - C. Andrew Chapman
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| | - Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie ComportementaleConcordia University Montreal Canada
| |
Collapse
|
44
|
Individual variation in the attribution of incentive salience to social cues. Sci Rep 2020; 10:2583. [PMID: 32054901 PMCID: PMC7018846 DOI: 10.1038/s41598-020-59378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/02/2020] [Indexed: 11/08/2022] Open
Abstract
Research on the attribution of incentive salience to drug cues has furthered our understanding of drug self-administration in animals and addiction in humans. The influence of social cues on drug-seeking behavior has garnered attention recently, but few studies have investigated how social cues gain incentive-motivational value. In the present study, a Pavlovian conditioned approach (PCA) procedure was used to identify rats that are more (sign-trackers; STs) or less (goal-trackers; GTs) prone to attribute incentive salience to food reward cues. In Experiment 1, a novel procedure employed social ‘peers’ to compare the tendency of STs and GTs to attribute incentive salience to social reward cues as well as form a social-conditioned place preference. In Experiment 2, social behavior of STs and GTs was compared using social interaction and choice tests. Finally, in Experiment 3, levels of plasma oxytocin were measured in STs and GTs seven days after the last PCA training session, because oxytocin is known to modulate the mesolimbic reward system and social behavior. Compared to GTs, STs attributed more incentive salience to social-related cues and exhibited prosocial behaviors (e.g., social-conditioned place preference, increased social interaction, and social novelty-seeking). No group differences were observed in plasma oxytocin levels. Taken together, these experiments demonstrate individual variation in the attribution of incentive salience to both food- and social-related cues, which has important implications for the pathophysiology of addiction.
Collapse
|
45
|
Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019; 13:262. [PMID: 31849622 PMCID: PMC6895146 DOI: 10.3389/fnbeh.2019.00262] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a neuropsychiatric disorder with grave personal consequences that has an extraordinary global economic impact. Despite decades of research, the options available to treat addiction are often ineffective because our rudimentary understanding of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational design of successful therapies. This understanding will arise first from animal models of addiction where experimentation at the level of circuits and molecular biology is possible. We will review the most common preclinical models of addictive behavior and discuss the advantages and disadvantages of each. This includes non-contingent models in which animals are passively exposed to rewarding substances, as well as widely used contingent models such as drug self-administration and relapse. For the latter, we elaborate on the different ways of mimicking craving and relapse, which include using acute stress, drug administration or exposure to cues and contexts previously paired with drug self-administration. We further describe paradigms where drug-taking is challenged by alternative rewards, such as appetitive foods or social interaction. In an attempt to better model the individual vulnerability to drug abuse that characterizes human addiction, the field has also established preclinical paradigms in which drug-induced behaviors are ranked by various criteria of drug use in the presence of negative consequences. Separation of more vulnerable animals according to these criteria, along with other innate predispositions including goal- or sign-tracking, sensation-seeking behavior or impulsivity, has established individual genetic susceptibilities to developing drug addiction and relapse vulnerability. We further examine current models of behavioral addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after reviewing the face validity of the aforementioned models, we consider the most common standardized tests used by pharmaceutical companies to assess the addictive potential of a drug during clinical trials.
Collapse
Affiliation(s)
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
46
|
Dissociating neural learning signals in human sign- and goal-trackers. Nat Hum Behav 2019; 4:201-214. [DOI: 10.1038/s41562-019-0765-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 09/25/2019] [Indexed: 01/20/2023]
|
47
|
Campus P, Covelo IR, Kim Y, Parsegian A, Kuhn BN, Lopez SA, Neumaier JF, Ferguson SM, Solberg Woods LC, Sarter M, Flagel SB. The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. eLife 2019; 8:e49041. [PMID: 31502538 PMCID: PMC6739869 DOI: 10.7554/elife.49041] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
Cues in the environment can elicit complex emotional states, and thereby maladaptive behavior, as a function of their ascribed value. Here we capture individual variation in the propensity to attribute motivational value to reward-cues using the sign-tracker/goal-tracker animal model. Goal-trackers attribute predictive value to reward-cues, and sign-trackers attribute both predictive and incentive value. Using chemogenetics and microdialysis, we show that, in sign-trackers, stimulation of the neuronal pathway from the prelimbic cortex (PrL) to the paraventricular nucleus of the thalamus (PVT) decreases the incentive value of a reward-cue. In contrast, in goal-trackers, inhibition of the PrL-PVT pathway increases both the incentive value and dopamine levels in the nucleus accumbens shell. The PrL-PVT pathway, therefore, exerts top-down control over the dopamine-dependent process of incentive salience attribution. These results highlight PrL-PVT pathway as a potential target for treating psychopathologies associated with the attribution of excessive incentive value to reward-cues, including addiction.
Collapse
Affiliation(s)
- Paolo Campus
- Molecular and Behavioral Neuroscience InstituteUniversity of MichiganAnn ArborUnited States
| | - Ignacio R Covelo
- Molecular and Behavioral Neuroscience InstituteUniversity of MichiganAnn ArborUnited States
| | - Youngsoo Kim
- Department of PsychologyUniversity of MichiganAnn ArborUnited States
| | - Aram Parsegian
- Molecular and Behavioral Neuroscience InstituteUniversity of MichiganAnn ArborUnited States
| | - Brittany N Kuhn
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
| | - Sofia A Lopez
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
| | - John F Neumaier
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUnited States
| | - Susan M Ferguson
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUnited States
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular MedicineWake Forest School of MedicineWinston-SalemUnited States
| | - Martin Sarter
- Department of PsychologyUniversity of MichiganAnn ArborUnited States
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
| | - Shelly B Flagel
- Molecular and Behavioral Neuroscience InstituteUniversity of MichiganAnn ArborUnited States
- Department of PsychiatryUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
48
|
Langdon AJ, Hathaway BA, Zorowitz S, Harris CBW, Winstanley CA. Relative insensitivity to time-out punishments induced by win-paired cues in a rat gambling task. Psychopharmacology (Berl) 2019; 236:2543-2556. [PMID: 31256220 PMCID: PMC7388589 DOI: 10.1007/s00213-019-05308-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE Pairing rewarding outcomes with audiovisual cues in simulated gambling games increases risky choice in both humans and rats. However, the cognitive mechanism through which this sensory enhancement biases decision-making is unknown. OBJECTIVES To assess the computational mechanisms that promote risky choice during gambling, we applied a series of reinforcement learning models to a large dataset of choices acquired from rats as they each performed one of two variants of a rat gambling task (rGT), in which rewards on "win" trials were delivered either with or without salient audiovisual cues. METHODS We used a sampling technique based on Markov chain Monte Carlo to obtain posterior estimates of model parameters for a series of RL models of increasing complexity, in order to assess the relative contribution of learning about positive and negative outcomes to the latent valuation of each choice option on the cued and uncued rGT. RESULTS Rats which develop a preference for the risky options on the rGT substantially down-weight the equivalent cost of the time-out punishments during these tasks. For each model tested, the reduction in learning from the negative time-outs correlated with the degree of risk preference in individual rats. We found no apparent relationship between risk preference and the parameters that govern learning from the positive rewards. CONCLUSIONS The emergence of risk-preferring choice on the rGT derives from a relative insensitivity to the cost of the time-out punishments, as opposed to a relative hypersensitivity to rewards. This hyposensitivity to punishment is more likely to be induced in individual rats by the addition of salient audiovisual cues to rewards delivered on win trials.
Collapse
Affiliation(s)
- Angela J Langdon
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| | - Brett A Hathaway
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Samuel Zorowitz
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Cailean B W Harris
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Catharine A Winstanley
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
49
|
Stringfield SJ, Madayag AC, Boettiger CA, Robinson DL. Sex differences in nicotine-enhanced Pavlovian conditioned approach in rats. Biol Sex Differ 2019; 10:37. [PMID: 31315660 PMCID: PMC6637589 DOI: 10.1186/s13293-019-0244-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background Nicotine exposure enhances Pavlovian conditioned approach (PCA), or the learned approach to reward-predictive cues. While females show elevated approach to conditioned stimuli compared to males, potentially indicating heightened addiction vulnerability, it is unknown how sex may interact with nicotine to influence approach behavior. Additionally, brain-derived neurotrophic factor (BDNF) levels can be altered significantly after repeated nicotine exposure, suggesting a potential mechanism contributing to nicotine-induced behavioral phenotypes. The present study investigated the role of sex on nicotine-induced changes to stimulus-response behavior and associated BDNF protein levels. Methods Male and female rats were exposed to nicotine (0.4 mg/kg, subcutaneously) or saline 15 min prior to each PCA session. PCA training consisted of 29 sessions of 15 trials, in which a 30-s cue presentation ended concurrently with a sucrose reward (20% w/v in water, 100 μL), and a 120-s variable intertrial interval occurred between trials. Approach behavior to the cue and reward receptacle was recorded. Preference toward the reward receptacle indicated a goal-tracking phenotype, and preference toward the cue indicated a sign-tracking phenotype, demonstrating that the cue had gained incentive salience. Twenty-four hours after the last PCA session, brain tissue was collected and BDNF levels were measured in the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens using Western blot analysis. Results Nicotine exposure enhanced both sign- and goal-tracking conditioned approach, and females showed elevated sign-tracking compared to males. There were no sex-by-drug interactions on conditioned approach. Day-to-day variability in conditioned approach was similar between sexes. In contrast to prior studies, neither repeated exposure to nicotine nor sex significantly affected BDNF expression. Conclusions Drug-naïve females exhibited heightened sign-tracking compared to males, and nicotine enhanced conditioned approach similarly in males and females. Further, non-significant changes to BDNF expression in brain regions highly associated with PCA indicate that BDNF is unlikely to drive nicotine-enhanced conditioned behavior.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Aric C Madayag
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA. .,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Manning EE, Dombrovski AY, Torregrossa MM, Ahmari SE. Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior. Neuropsychopharmacology 2019; 44:1494-1504. [PMID: 30587851 PMCID: PMC6785097 DOI: 10.1038/s41386-018-0307-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 01/29/2023]
Abstract
Convergent functional neuroimaging findings implicate hyperactivity across the prefrontal cortex (PFC) and striatum in the neuropathology of obsessive compulsive disorder (OCD). The impact of cortico-striatal circuit hyperactivity on executive functions subserved by these circuits is unclear, because impaired recruitment of PFC has also been observed in OCD patients during paradigms assessing cognitive flexibility. To investigate the relationship between cortico-striatal circuit disturbances and cognitive functioning relevant to OCD, Sapap3 knockout mice (KOs) and littermate controls were tested in an instrumental reversal-learning paradigm to assess cognitive flexibility. Cortical and striatal activation associated with reversal learning was assessed via quantitative analysis of expression of the immediate early gene cFos and generalized linear mixed-effects models. Sapap3-KOs displayed heterogeneous reversal-learning performance, with almost half (n = 13/28) failing to acquire the reversed contingency, while the other 15/28 had similar acquisition as controls. Notably, reversal impairments were not correlated with compulsive grooming severity. cFos analysis revealed that reversal performance declined as medial PFC (mPFC) activity increased in Sapap3-KOs. No such relationship was observed in controls. Our studies are among the first to describe cognitive impairments in a transgenic OCD-relevant model, and demonstrate pronounced heterogeneity among Sapap3-KOs. These findings suggest that increased neural activity in mPFC is associated with impaired reversal learning in Sapap3-KOs, providing a likely neural basis for this observed heterogeneity. The Sapap3-KO model is thus a useful tool for future mechanistic studies to determine how mPFC hyperactivity contributes to OCD-relevant cognitive dysfunction.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Alexandre Y Dombrovski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|