1
|
Isik OG, Ing C. Maternal exposure to general anesthesia and labor epidural analgesia during pregnancy and delivery, and subsequent neurodevelopmental outcomes in children. Int J Obstet Anesth 2025; 61:104318. [PMID: 39754838 DOI: 10.1016/j.ijoa.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Gestation is a vulnerable developmental period, and exposures during that time may have longterm implications. While evaluating the implications of early exposures on children is an important public health concern, as opposed to other chemical exposures, medications are given for a clinical purpose, and any potential injury must be weighed against the benefits of these medications to the mother and child. This review examines neurodevelopmental outcomes in children following two maternal anesthetic exposures: general anesthesia and labor epidural analgesia. Exposure to general anesthetic agents has been found to interfere with neurodevelopment in animal models, and exposures in children, including prenatal exposures are also associated with worse neurodevelopmental outcomes. While these medications are likely to impact neurodevelopment in animals, it remains unclear if prenatal general anesthetic exposure causes the reported differences in children. As a result, since avoidance or delay of necessary surgery in mothers may result in adverse outcomes in mothers and children, necessary surgery in pregnant mothers should proceed without delay. Concerns about the safety of maternal neuraxial labor analgesia ("epidurals") have also emerged due to a reported association with autism spectrum diagnoses in their children. This may be due to familial factors in pregnant women electing for neuraxial labor analgesia rather than the "epidural" itself. In addition, since clinically significant differences in neurodevelopmental scores in children following exposure have not been found, and a mechanism of injury has not yet been identified in preclinical studies, the benefits of neuraxial labor analgesia appear to outweigh the potential risks.
Collapse
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
2
|
Isik OG, Junaid S, Guo L, Lackraj D, Landau R, Miles CH, Pennell C, von Ungern Sternberg BS, Whitehouse AJO, Li G, Ing C. Behavioural and neuropsychological outcomes in children exposed in utero to maternal labour epidural analgesia. Br J Anaesth 2024; 133:334-343. [PMID: 38702238 PMCID: PMC11590713 DOI: 10.1016/j.bja.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Recent studies report conflicting results regarding the relationship between labour epidural analgesia (LEA) in mothers and neurodevelopmental disorders in their offspring. We evaluated behavioural and neuropsychological test scores in children of mothers who used LEA. METHODS Children enrolled in the Raine Study from Western Australia and delivered vaginally from a singleton pregnancy between 1989 and 1992 were evaluated. Children exposed to LEA were compared with unexposed children. The primary outcome was the parent-reported Child Behaviour Checklist (CBCL) reporting total, internalising, and externalising behavioural problem scores at age 10 yr. Score differences, an increased risk of clinical deficit, and a dose-response based on the duration of LEA exposure were assessed. Secondary outcomes included language, motor function, cognition, and autistic traits. RESULTS Of 2180 children, 850 (39.0%) were exposed to LEA. After adjustment for covariates, exposed children had minimally increased CBCL total scores (+1.41 points; 95% confidence interval [CI] 0.09 to 2.73; P=0.037), but not internalising (+1.13 points; 95% CI -0.08 to 2.34; P=0.066) or externalising (+1.08 points; 95% CI -0.08 to 2.24; P=0.068) subscale subscores. Increased risk of clinical deficit was not observed for any CBCL score. For secondary outcomes, score differences were inconsistently observed in motor function and cognition. Increased exposure duration was not associated with worse scores in any outcomes. CONCLUSIONS Although LEA exposure was associated with slightly higher total behavioural scores, there was no difference in subscores, increased risk of clinical deficits, or dose-response relationship. These results argue against LEA exposure being associated with consistent, clinically significant neurodevelopmental deficits in children.
Collapse
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shaqif Junaid
- Department of Anesthesiology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Ling Guo
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Deven Lackraj
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ruth Landau
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb H Miles
- Department of Biostatistics, Mailman School of Public Health, New York, NY, USA
| | - Craig Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Britta S von Ungern Sternberg
- Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Perth, WA, Australia; Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Perth, WA, Australia; Perioperative Care Program, Perioperative Medicine Team, Telethon Kids Institute, Perth, WA, Australia
| | | | - Guohua Li
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
3
|
Yuan R, Wu C. YTHDF1-mediated sphingosine kinase 2 upregulation alleviates bupivacaine-induced neurotoxicity via the PI3K/AKT axis. Hum Exp Toxicol 2024; 43:9603271231218707. [PMID: 38487884 DOI: 10.1177/09603271231218707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Bupivacaine (BUP), a long-acting local anesthetic, has been widely used in analgesia and anesthesia. However, evidence strongly suggests that excessive application of BUP may lead to neurotoxicity in neurons. Sphingosine kinase 2 (SPHK2) has been reported to exert neuroprotective effects. In this study, we intended to investigate the potential role and mechanism of SPHK2 in BUP-induced neurotoxicity in dorsal root ganglion (DRG) neurons. METHODS DRG neurons were cultured with BUP to simulate BUP-induced neurotoxicity in vitro. CCK-8, LDH, and flow cytometry assays were performed to detect the viability, LDH activity, and apoptosis of DRG neurons. RT-qPCR and western blotting was applied to measure gene and protein expression. Levels. MeRIP-qPCR was applied for quantification of m6A modification. RIP-qPCR was used to analyze the interaction between SPHK2 and YTHDF1. RESULTS SPHK2 expression significantly declined in DRG neurons upon exposure to BUP. BUP challenge substantially reduced the cell viability and increased the apoptosis rate in DRG neurons, which was partly abolished by SPHK2 upregulation. YTHDF1, an N6-methyladenosine (m6A) reader, promoted SPHK2 expression in BUP-treated DRG neurons in an m6A-dependent manner. YTHDF1 knockdown partly eliminated the increase in SPHK2 protein level and the protection against BUP-triggered neurotoxicity in DRG neurons mediated by SPHK2 overexpression. Moreover, SPHK2 activated the PI3K/AKT signaling to protect against BUP-induced cytotoxic effects on DRG neurons. CONCLUSIONS In sum, YTHDF1-mediated SPHK2 upregulation ameliorated BUP-induced neurotoxicity in DRG neurons via promoting activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ru Yuan
- Department of Anesthesiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Chunxia Wu
- Department of Anesthesiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
4
|
Zhao Y, Luo Y, Liu Z, Chen Y, Wei L, Luo X, Zhou G, Lai J, Ji J, Lin Y, Liu J. Ferrostatin-1 ameliorates Bupivacaine-Induced spinal neurotoxicity in rats by inhibiting ferroptosis. Neurosci Lett 2023; 809:137308. [PMID: 37244447 DOI: 10.1016/j.neulet.2023.137308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Bupivacaine (BUP) has previously been shown to trigger neurotoxicity after spinal anesthesia. Further, ferroptosis has been implicated in the pathological processes associated with various central nervous system diseases. Although the impact of ferroptosis on BUP-induced neurotoxicity in the spinal cord has not been fully understood, this research aims to investigate this relationship in rats. Additionally, this study aims to determine whether ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, can provide protection against BUP-induced spinal neurotoxicity. The experimental model for BUP-induced spinal neurotoxicity involved the administration of 5% bupivacaine through intrathecal injection. Then, the rats were randomized into the Control, BUP, BUP + Fer-1, and Fer-1 groups. BBB scores, %MPE of TFL, and H&E and Nissl stainings showed that intrathecal Fer-1 administration improved functional recovery, histological outcomes, and neural survival in BUP-treated rats. Moreover, Fer-1 has been found to alleviate the BUP-induced alterations related to ferroptosis, such as mitochondrial shrinkage and disruption of cristae, while also reducing the levels of malondialdehyde (MDA), iron, and 4-hydroxynonenal (4HNE). Fer-1 also inhibits the accumulation of reactive oxygen species (ROS) and restores the normal levels of glutathione peroxidase 4 (GPX4), cystine/glutamate transporter (xCT), and glutathione (GSH). Furthermore, double-immunofluorescence staining revealed that GPX4 is primarily localized in the neurons instead of microglia or astroglia in the spinal cord. In summary, we demonstrated that ferroptosis play a pivotal role in mediating BUP-induced spinal neurotoxicity, and Fer-1 ameliorated BUP-induced spinal neurotoxicity by reversing the underlying ferroptosis-related changes in rats.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan South Road, Nanchong 637000, Sichuan, China
| | - Yunpeng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China; Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Ziru Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liling Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Gang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jiemei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yunan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
5
|
Tan YZ, Shi RJ, Ke BW, Tang YL, Liang XH. Paresthesia in dentistry: The ignored neurotoxicity of local anesthetics. Heliyon 2023; 9:e18031. [PMID: 37539316 PMCID: PMC10395355 DOI: 10.1016/j.heliyon.2023.e18031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Local anesthetics are frequently used by dentists to relieve localized discomfort of the patient and improve treatment conditions. The risk of paresthesia after local anesthesia is frequently encountered in dental clinics. The neurotoxicity of local anesthetics is a disregarded factor in paresthesia. The review summarizes the types of common local anesthetics, incidence and influencing factors of paresthesia after local anesthesia, and systematically describes the neurotoxicity mechanisms of dental local anesthetic. Innovative strategies may be developed to lessen the neurotoxicity and prevent paresthesia following local anesthesia with the support of a substantial understanding of paresthesia and neurotoxicity.
Collapse
Affiliation(s)
- Yong-zhen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong-jia Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo-wen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Paccosi E, Balajee AS, Proietti-De-Santis L. A matter of delicate balance: Loss and gain of Cockayne syndrome proteins in premature aging and cancer. FRONTIERS IN AGING 2022; 3:960662. [PMID: 35935726 PMCID: PMC9351357 DOI: 10.3389/fragi.2022.960662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022]
Abstract
DNA repair genes are critical for preserving genomic stability and it is well established that mutations in DNA repair genes give rise to progeroid diseases due to perturbations in different DNA metabolic activities. Cockayne Syndrome (CS) is an autosomal recessive inheritance caused by inactivating mutations in CSA and CSB genes. This review will primarily focus on the two Cockayne Syndrome proteins, CSA and CSB, primarily known to be involved in Transcription Coupled Repair (TCR). Curiously, dysregulated expression of CS proteins has been shown to exhibit differential health outcomes: lack of CS proteins due to gene mutations invariably leads to complex premature aging phenotypes, while excess of CS proteins is associated with carcinogenesis. Thus it appears that CS genes act as a double-edged sword whose loss or gain of expression leads to premature aging and cancer. Future mechanistic studies on cell and animal models of CS can lead to potential biological targets for interventions in both aging and cancer development processes. Some of these exciting possibilities will be discussed in this review in light of the current literature.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute of Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| |
Collapse
|
7
|
Zhang T, Zhou B, Sun J, Song J, Nie L, Zhu K. Fraxetin suppresses reactive oxygen species-dependent autophagy by the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells. J Appl Toxicol 2021; 42:617-628. [PMID: 34553399 DOI: 10.1002/jat.4243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022]
Abstract
Isoflurane, a common volatile anesthetic, has been widely used to provide general anesthesia in operations. However, exposure to isoflurane may cause widespread neurotoxicity in the developing animal brain. Fraxetin, a natural coumarin derivative extracted from the bark of Fraxinus rhynchophylla, possesses versatile pharmacological properties including anti-oxidative, anti-inflammatory, and neuroprotective effects. However, the effect and action mechanism of fraxetin on neurotoxicity induced by isoflurane are unknown. Reactive oxygen species (ROS) generation, cell viability, lactate dehydrogenase (LDH) release, and apoptosis were estimated by 2',7'-dichlorofluorescin-diacetate (DCFH-DA) staining, MTT, LDH release, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining assays, respectively. The protein levels of light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were detected by western blot analysis. Isoflurane induced ROS, LDH release, apoptosis, and autophagy, but inhibited the viability in HT22 cells, which were overturned by fraxetin or ROS scavenger N-acetyl-L-cysteine. Fraxetin suppressed isoflurane-induced PI3K/Akt inactivation in HT22 cells. PI3K/Akt inactivation by LY294002 resisted the effects of fraxetin on isoflurane-induced autophagy and autophagy-modulated neurotoxicity in HT22 cells. In conclusion, fraxetin suppressed ROS-dependent autophagy by activating the PI3K/Akt pathway to inhibit isoflurane-induced neurotoxicity in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Tongyin Zhang
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junyi Sun
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Jiangling Song
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Limin Nie
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Kairun Zhu
- Operating Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
8
|
Capillarisin protects SH-SY5Y cells against bupivacaine-induced apoptosis via ROS-mediated PI3K/PKB pathway. Life Sci 2020; 259:118279. [DOI: 10.1016/j.lfs.2020.118279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
|
9
|
Mirkheshti A, Shakeri A, Memary E, Baniasadi M, Zaringhalam J, Tajbakhsh A, Mirzaei M, Lak E. Maternal sciatic nerve administered bupivacaine induces hippocampal cell apoptosis in offspring. BMC Anesthesiol 2020; 20:228. [PMID: 32894054 PMCID: PMC7487602 DOI: 10.1186/s12871-020-01143-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bupivacaine, an amid-type local anesthetic, is widely used for clinical patients especially in pregnant women. In addition to neurotoxicity effect of bupivacaine, it can cross the placenta, accumulates in this tissue and retained in fetal tissues. Nevertheless, whether bupivacaine can cause neurotoxicity in fetus remains unclear. Hence, this study was design to investigate the effects of maternal bupivacaine use on fetus hippocampal cell apoptosis and the possible related mechanism. METHODS On day 15 of pregnancy, sciatic nerve of pregnant wistar rat (180-200 g) were exposed by lateral incision of the right thigh and 0.2 ml of bupivacaine was injected. After their delivery, we randomly selected one male offspring of every mother. On day 30 after of their birth, the rat's hippocampi were isolated for molecular studies. Western blotting was used to examine the expression of cleaved caspase-3, caspase-8 and p-Akt in fetal hippocampus. RESULTS Our results showed that maternal bupivacaine use caused a significant increment of cleaved caspase-3 and caspase-8 expression in fetal hippocampus compared with the sham group. In addition, maternally administered bupivacaine could significantly decrease hippocampal P.Akt/T.Akt ratio which was concurrent with an increment of cleaved caspase-3 and caspase-8 expression. CONCLUSION Our data suggest that maternal bupivacaine use increases fetal hippocampal cell apoptosis markers such as caspase 8 and cleaved caspase 3, at least in part, via inhibiting the Akt activation.
Collapse
Affiliation(s)
- Alireza Mirkheshti
- Department of Anesthesiology, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Alireza Shakeri
- Department of Anesthesiology, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Elham Memary
- Department of Anesthesiology, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Mansoureh Baniasadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ardeshir Tajbakhsh
- Department of Anesthesiology, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Marzieh Mirzaei
- Department of Gynecology, Tehran Azad University, Tehran, Iran
| | - Elena Lak
- Department of Gastroenterology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kim EJ, Kim HY, Ahn JH. Neurotoxicity of local anesthetics in dentistry. J Dent Anesth Pain Med 2020; 20:55-61. [PMID: 32395610 PMCID: PMC7193059 DOI: 10.17245/jdapm.2020.20.2.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
During dental treatment, a dentist usually applies the local anesthesia. Therefore, all dentists should have expertise in local anesthesia and anesthetics. Local anesthetics have a neurotoxic effect at clinically relevant concentrations. Many studies have investigated the mechanism of neurotoxicity of local anesthetics but the precise mechanism of local anesthetic-induced neurotoxicity is still unclear. In addition, it is difficult to demonstrate the direct neurotoxic effect of local anesthetics because perioperative nerve damage is influenced by various factors, such as the anesthetic, the patient, and surgical risk factors. This review summarizes knowledge about the pharmacology of local anesthetics, nerve anatomy, and the incidence, risk factors, and possible cellular mechanisms of local anesthetic-induced neurotoxicity.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| | - Hee Young Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji-Hye Ahn
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| |
Collapse
|
11
|
MicroRNA dysregulation in manic and euthymic patients with bipolar disorder. J Affect Disord 2020; 261:84-90. [PMID: 31605836 DOI: 10.1016/j.jad.2019.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) is a major psychiatric disorder with an unclear pathophysiology. Peripheral blood samples are easily drawn, making them are good candidates for diagnosing diseases. MicroRNAs are small non-coding RNA transcripts that regulate gene expression by binding to the 3'- UTR of mRNAs and directing their degradation. The aim of this study was to use blood plasma to investigate microRNA dysregulations in bipolar manic and euthymic patients. SUBJECTS AND METHODS Blood samples were collected from 58 patients with bipolar I disorder (19 manic, 39 euthymic) and 51 healthy controls. RESULTS Four microRNAs (miR-29a-3p, p = 0.035; miR-106b-5p, p = 0.014; miR-107, p = 0.011; and miR-125a-3p, p = 0.014) were upregulated in the entire bipolar group, compared to the healthy controls. Seven microRNAs (miR-9-5p, p = 0.032; miR-29a-3p, p = 0.001; miR-106a-5p, p = 0.034; miR-106b-5p, p = 0.003; miR-107, p < 0.001; miR-125a-3p, p = 0.016; and miR-125b-5p, p = 0.004) were more upregulated in bipolar manic patients compared to the healthy controls, and two microRNAs (miR-106a-5p, p = 0.013, and miR-107, p = 0.021) showed statistically significant upregulation in the manic patients compared to the euthymic patients. CONCLUSIONS Our results showed greater miRNA dysregulation in the manic patients than in the euthymic patients. Two microRNAs could be more selective for bipolar manic episodes. Future studies should include depressive patients along with euthymic and manic patients.
Collapse
|
12
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Rogobete AF, Bedreag OH, Sărăndan M, Păpurică M, Preda G, Dumbuleu MC, Vernic C, Stoicescu ER, Săndesc D. Liposomal bupivacaine – New trends in Anesthesia and Intensive Care Units. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Alexandru Florin Rogobete
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Ovidiu Horea Bedreag
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Mirela Sărăndan
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Department Anesthesia and Intensive Care “Casa Austria” , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Marius Păpurică
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Gabriela Preda
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Maria Corina Dumbuleu
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Corina Vernic
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Emil Robert Stoicescu
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Dorel Săndesc
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| |
Collapse
|
14
|
Chen L, Li Q, Wang H, Chen Q, Wu Y, Shang Y. Paeoniflorin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells via suppression of the p38 MAPK pathway. J Cell Biochem 2019; 120:7015-7023. [PMID: 30368886 DOI: 10.1002/jcb.27964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
Bupivacain, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Paeoniflorin has been widely reported as a potential neuroprotective agent in neural injury models. However, the roles and molecular basis of paeoniflorin in bupivacaine-induced neurotoxicity are still undefined. In the current study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell viability. Apoptotic rate was measured through double-staining of Annexin V-FITC and propidium iodide on a flow cytometer. Western blot assay was carried out to examine the protein levels of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated-p38 MAPK (p-p38 MAPK), Bcl-2, and Bax. caspase-3 activity was determined using a caspase-3 activity assay kit. We found that paeoniflorin dose-dependently attenuated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. Moreover, paeoniflorin inhibited bupivacaine-induced activation of p38 MAPK pathway in SH-SY5Y cells. Paeoniflorin alone showed no significant effect on cell viability, apoptosis and p38 MAPK signaling in SH-SY5Y cells. Inhibition of p38 MAPK signaling by SB203580 or small interfering RNA targeting p38 (si-p38) abated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. In conclusion, paeoniflorin alleviated bupivacaine-induced neurotoxicity in SH-SY5Y cells via suppression of the p38 MAPK pathway, highlighting the potential values of paeoniflorin in relieving bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Long Chen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qiushi Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuanyuan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
15
|
Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 2018; 71:22-31. [PMID: 30472095 DOI: 10.1016/j.ntt.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects including deficits in learning and memory. In recent years, the focus of many pre-clinical studies has been on identifying candidate pathways or potential therapeutic targets through intervention trials. These reports have shed light on the mechanisms underlying anesthesia induced neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal mouse models of anesthetic exposure and provide an overview of mechanisms proposed to mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and signaling, growth/nutrient signaling, or direct neuronal modulation.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America.
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Philip Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
16
|
Guo Z, Liu Y, Cheng M. Resveratrol protects bupivacaine-induced neuro-apoptosis in dorsal root ganglion neurons via activation on tropomyosin receptor kinase A. Biomed Pharmacother 2018; 103:1545-1551. [PMID: 29864941 DOI: 10.1016/j.biopha.2018.04.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND General anesthesia in spinal cord may lead to unexpected but irreversible neurotoxicity. We investigated whether resveratrol (RSV) may protect bupivacaine (BUP)-induced neuro-apoptosis in spinal cord dorsal root ganglia (DRG). METHODS Mouse DRG cells were cultured in vitro, pre-treated with RSV and then 5 mM BUP. A concentration-dependent effect of RSV on reducing BUP-induced apoptosis of DRG neurons (DRGNs) was evaluated using a TUNEL assay. QRT-PCR and western blot assays were also conducted to evaluate gene and protein expressions of tropomyosin receptor kinase A/B/C (TrkA/B/C) and activated (phosphorylated) Trk receptors, phospho-TrkA/B/C. In addition, a functional TrkA blocking antibody MNAC13 was applied in DRG culture to further measure the functional role of Trk receptor in RSV-initiated apoptotic protection on BUP-damaged DRGNs. RESULTS BUP promoted significant apoptosis in DRG. RSV exhibited protective effects against BUP-induced neuro-apoptosis in a concentration-dependent manner. qRT-PCR and western blot showed that RSV did not alter TrkA/B/C gene or protein expression, but significantly upregulated phospho-TrkA. Conversely, application of MNAC13 decreased phospho-TrkA and reversed RSV-initiated neuro-protection on BUP-induced DRGN apoptosis. CONCLUSION Resveratrol may protect anesthesia-induced DRG neuro-apoptosis, and activation of TrkA signaling pathway may be the underlying mechanism in this process.
Collapse
Affiliation(s)
- Zhiliang Guo
- Department of Orthopedic, No. 89 Hospital of Chinese PLA, Weifang, 261021, China
| | - Yuanyuan Liu
- Medicine Research Center, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Min Cheng
- Medicine Research Center, Weifang Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
17
|
Mao S, Zhu C, Chang Y. Effects of different anesthesia methods on postoperative transient neurological syndrome in patients with lumbar disc herniation. Exp Ther Med 2017; 14:3112-3116. [PMID: 28966685 PMCID: PMC5613204 DOI: 10.3892/etm.2017.4900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
The objective of the present study was to investigate the effects of different anesthesia methods on postoperative transient neurologic syndrome (TNS) in patients with lumbar disc herniation (LDH). Ninety-six patients with LDH were selected from November 2015 to October 2016 in Cangzhou Central hospital. All patients were treated with percutaneous transforaminal endoscopic discectomy. The patients were randomly divided into the control group and observation group, with 48 patients each. Combined spinal-epidural anesthesia was performed for patients in the control group, while epidural anesthesia was applied in the observation group. The levels of T lymphocyte subsets (CD4+ and CD8+) and inflammatory factors (IL-2 and TNF-α) were measured and compared before and 1 week after surgery. The incidence rate of TNS within 1 week after surgery was compared between the two groups. Fugl-Meyer Assessment was used to evaluate lower limb motor function and sensory disturbances at 1, 3 and 5 days after treatment. One week after treatment, the serum levels of CD4+ and CD8+ in the two groups were significantly lower than those before surgery (p<0.05), but no significant differences were found between the groups (p>0.05). The incidence rate of TNS within 1 week after surgery was significantly lower in the observation group than in the control group (p<0.05). The scores of lower limb motor function and sensory disturbances in the observation group evaluated at 1, 3 and 5 days after treatment were significantly higher than those in the control group (p<0.05). In conclusion, combined spinal-epidural anesthesia and epidural anesthesia caused no significant differences in immune function or inflammatory indexes in patients with LDH. However, the application of epidural anesthesia significantly reduced the incidence rate of postoperative TNS, which in turn reduced nerve damage.
Collapse
Affiliation(s)
- Shunhong Mao
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Chunhua Zhu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yulin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
18
|
Activation of p47phox as a Mechanism of Bupivacaine-Induced Burst Production of Reactive Oxygen Species and Neural Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8539026. [PMID: 28751934 PMCID: PMC5480047 DOI: 10.1155/2017/8539026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 12/02/2022]
Abstract
Bupivacaine has been shown to induce neurotoxicity through inducing excessive reactive oxygen species (ROS), but the underlying mechanism remains unclear. NOX2 is one of the most important sources of ROS in the nervous system, and its activation requires the membrane translocation of subunit p47phox. However, the role of p47phox in bupivacaine-induced neurotoxicity has not been explored. In our in vitro study, cultured human SH-SY5Y neuroblastoma cells were treated with 1.5 mM bupivacaine to induce neurotoxicity. Membrane translocation of p47phox was assessed by measuring the cytosol/membrane ratio of p47phox. The effects of the NOX inhibitor VAS2870 and p47phox-siRNA on bupivacaine-induced neurotoxicity were investigated. Furthermore, the effect of VAS2870 on bupivacaine-induced neurotoxicity was assessed in vivo in rats. All these changes were reversed by pretreatment with VAS2870 or transfection with p47phox-siRNA in SH-SY5Y cells. Similarly, pretreatment with VAS2870 attenuated bupivacaine-induced neuronal toxicity in rats. It is concluded that enhancing p47phox membrane translocation is a major mechanism whereby bupivacaine induced neurotoxicity and that pretreatment with VAS2870 or local p47phox gene knockdown attenuated bupivacaine-induced neuronal cell injury.
Collapse
|
19
|
Beiranvand S, Eatemadi A, Karimi A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:307. [PMID: 27342601 PMCID: PMC4920745 DOI: 10.1186/s11671-016-1520-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/07/2016] [Indexed: 05/29/2023]
Abstract
Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.
Collapse
Affiliation(s)
- Siavash Beiranvand
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Karimi
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran.
| |
Collapse
|
20
|
Xiong J, Kong Q, Dai L, Ma H, Cao X, Liu L, Ding Z. Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity. J Cell Mol Med 2016; 21:579-587. [PMID: 27860187 PMCID: PMC5323818 DOI: 10.1111/jcmm.13003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/03/2016] [Indexed: 11/29/2022] Open
Abstract
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.
Collapse
Affiliation(s)
- Jingwei Xiong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Leyang Dai
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - He Ma
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway. Neurochem Res 2016; 41:2425-32. [PMID: 27233246 DOI: 10.1007/s11064-016-1955-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/06/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.
Collapse
|
22
|
Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P. Local Anesthetic-Induced Neurotoxicity. Int J Mol Sci 2016; 17:339. [PMID: 26959012 PMCID: PMC4813201 DOI: 10.3390/ijms17030339] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.
Collapse
Affiliation(s)
- Mark Verlinde
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Markus W Hollmann
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Markus F Stevens
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Henning Hermanns
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Philipp Lirk
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| |
Collapse
|
23
|
Lv D, Bai Z, Yang L, Li X, Chen X. Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3β signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:85-91. [PMID: 26809062 DOI: 10.1016/j.etap.2016.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Some findings have suggested that the rescue of bupivacaine (BPV)-induced cardiotoxicity by lipid emulsion (LE) is associated with inhibition of mitochondrial permeability transition pore (mPTP). However, the mechanism of this rescue action is not clearly known. In this study, the roles of phosphoinositide 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) in the molecular mechanism of LE-induced protection and its relationship with mPTP were explored. h9c2 cardiomyocytes were randomly divided into several groups: control, BPV, LE, BPV+LE. To study the effect of LE on mPTP, atractyloside (Atr, 20 μM, mPTP opener) and cyclosporine A (CsA, 10 μM, mPTP blocker) were used. To unravel whether LE protects heart through the PI3K/Akt/GSK-3β signaling pathway, cells were treated with LY294002 (LY, 30 μM, PI3K blocker) or TWS119 (TWS 10 μM, GSK-3β blocker). Later mitochondrial respiratory chain complexes, apoptosis, opening of mPTP and phosphorylation levels of Akt/GSK-3β were measured. LE significantly improved the mitochondrial functions in h9c2 cardiomyocytes. LE reversed the BPV-induced apoptosis and the opening of mPTP. The effect of LE was not only enhanced by CsA and TWS, but also abolished by Atr and LY. LE also increased the phosphorylation levels of Akt and GSK-3β. These results suggested that LE can reverse the apoptosis in cardiomyocytes by BPV and a mechanism of its action is inhibition of mPTP opening through the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Danni Lv
- Ning Xia Medical University, Yin Chuan, China.
| | - Zhixia Bai
- Department of Anesthesiology, Tumor Hospital, General Hospital of Ning Xia Medical University, Yin Chuan, China.
| | - Libin Yang
- Department of Anesthesiology, First People's Hospital, Shi Zui Shan, China.
| | - Xiaohui Li
- Ning Xia Medical University, Yin Chuan, China.
| | - Xuexin Chen
- Department of Anesthesiology, Tumor Hospital, General Hospital of Ning Xia Medical University, Yin Chuan, China.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Neural toxicity of substances injected into the intrathecal space has been a matter of debate since the introduction of spinal anesthesia in clinical practice. In recent years, new local anesthetics and adjuvants have been proposed for intrathecal use, and new techniques such as the use of ultrasound have been propagated. The present review summarizes recent clinical and experimental data on the neurotoxic effects of drugs and substances used for or in conjunction with spinal anesthesia. RECENT FINDINGS Chloroprocaine has been demonstrated to be associated with a lower risk of transient neurologic symptoms compared with lidocaine. However, despite extensive research, the issue of chloroprocaine or bisulfite neurotoxicity has not yet been resolved.Recent experimental data have identified a smaller neurotoxic potential for ropivacaine compared to levobupivacaine, procaine and bupivacaine. The addition of epinephrine has not been shown to increase lidocaine neurotoxicity. In-vivo experimental data suggest that lidocaine and bupivacaine neurotoxicity is not enhanced in diabetic patients.Furthermore, intrathecal introduction of aqueous ultrasound gel has been demonstrated to cause a distinct neuroinflammatory reaction. Finally, a large cohort study did not find the use of chlorhexidine gluconate for skin disinfection before neuraxial block to be associated with the risk of adhesive arachnoiditis. SUMMARY Clinical data suggest a high safety profile for intrathecal drugs and substances used for or in conjunction with spinal anesthesia. Recent experimental models for toxicity have provided further insight into the mechanisms and demonstrated possible, albeit clinically small differences in the relative neurotoxic potential of intrathecal drugs. This may contribute to a further increase in the safe use of spinal anesthesia in the clinical setting.
Collapse
|
25
|
Impaired Autophagosome Clearance Contributes to Local Anesthetic Bupivacaine-induced Myotoxicity in Mouse Myoblasts. Anesthesiology 2015; 122:595-605. [DOI: 10.1097/aln.0000000000000568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Background:
The current study examined the role(s) of autophagy in myotoxicity induced by bupivacaine in mouse myoblast C2c12 cells.
Methods:
C2c12 cells were treated with bupivacaine. Myotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (n = 3 to 30), live/dead assay (n = 3 to 4), and morphological alterations (n = 3). Autophagosome formation was reflected by microtubule-associated protein light chain 3 conversion (n = 4 to 12) and light chain 3 punctation (n = 4 to 5). Autophagosome clearance was evaluated by p62 protein level (n = 4) and autolysosomes generation (n = 3).
Results:
Bupivacaine induced significant cell damage. Notably, there was a significant increase in autophagosome generation as evidenced by light chain 3 puncta formation (72.7 ± 6.9 vs. 2.1 ± 1.2) and light chain 3 conversion (2.16 ± 0.15 vs. 0.33 ± 0.04) in bupivacaine-treated cells. Bupivacaine inactivated the protein kinase B/mammalian target of rapamycin/p70 ribosomal protein S6 kinase signaling. However, cellular levels of p62 protein were significantly increased upon bupivacaine treatment (1.29 ± 0.15 vs. 1.00 ± 0.15), suggesting that the drug impaired autophagosome clearance. Further examination revealed that bupivacaine interrupted autophagosome–lysosome fusion (10.87% ± 1.48% vs. 32.94% ± 4.22%). Administration of rapamycin increased autophagosome clearance and, most importantly, improved the survival in bupivacaine-treated cells. However, knockdown of autophagy-related protein 5 (atg5) exacerbated bupivacaine-induced impairment of autophagosome clearance and myotoxicity.
Conclusions:
The data suggest that autophagosome formation was induced as a stress response mechanism after bupivacaine challenge; however, autophagosome clearance was impaired due to inadequate autophagosome–lysosome fusion. Therefore, impairment of autophagosome clearance appears to be a novel mechanism underlying bupivacaine-induced myotoxicity.
Collapse
|
26
|
Jiang S, Zhu W, Wu J, Li C, Zhang X, Li Y, Cao K, Liu L. α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicol In Vitro 2014; 28:1461-73. [PMID: 25193743 DOI: 10.1016/j.tiv.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/05/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
It has been long noted that cardiac cell apoptosis provoked by excessive production of nitric oxide (NO) plays important roles in the pathogenesis of variant cardiac diseases. Attenuation of NO-induced injury would be an alternative therapeutic approach for the development of cardiac disorders. This study investigated the effects of α-lipoic acid (LA) on the injury induced by sodium nitroprusside (SNP), a widely used NO donor, in rat cardiomyoblast H9c2 cells. SNP challenge significantly decreased cell viability and increased apoptosis, as evidenced by morphological abnormalities, nuclear condensation and decline of mitochondrial potential (ΔΨm). These changes induced by SNP were significantly attenuated by LA pretreatment. Furthermore, LA pretreatment prevented the SNP-triggered suppression of Akt and Gsk-3β activation. Blockade of Akt activation with triciribin (API) completely abolished the cytoprotection of LA against SNP challenge. In addition, LA moderately increased intracellular ROS production. Interestingly, inhibition of ROS with N-acetylcysteine abrogated Akt/Gsk-3β activation and the LA-induced cytoprotection following SNP stimulation. Taken together, the results indicate that LA protected the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt/Gsk-3β signaling in a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weina Zhu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, United States
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Kejiang Cao
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
27
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
28
|
Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M. The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway. Cell Biochem Biophys 2014; 70:241-9. [DOI: 10.1007/s12013-014-9888-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 2014; 9:e89563. [PMID: 24586874 PMCID: PMC3931808 DOI: 10.1371/journal.pone.0089563] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer.
Collapse
Affiliation(s)
- Yuan-Ching Chang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shih-Yuan Huang
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (MCH); (SPC)
| | - Shih-Ping Cheng
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MCH); (SPC)
| |
Collapse
|
30
|
Growth inhibition by bupivacaine is associated with inactivation of ribosomal protein S6 kinase 1. BIOMED RESEARCH INTERNATIONAL 2014; 2014:831845. [PMID: 24605337 PMCID: PMC3925553 DOI: 10.1155/2014/831845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 12/28/2022]
Abstract
Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation.
Collapse
|
31
|
Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl) 2014; 231:345-56. [PMID: 23958944 DOI: 10.1007/s00213-013-3240-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Abstract
RATIONALE Xanthoceraside, a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, reverses cognitive deficits in intracerebroventricular injection of Aβ25-35 or Aβ1-42 mice. However, whether xanthoceraside has a positive effect on hyperphosphorylated tau protein remains unclear. OBJECTIVES We investigated the effects of xanthoceraside on behavioural impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and its potential mechanisms. MATERIALS AND METHODS The rats were administered with xanthoceraside (0.06, 0.12 or 0.24 mg/kg) or vehicle once daily after STZ intracerebroventricular injections. The Y-maze test and novel object recognition test were performed 21 and 22 days after the second STZ injection, respectively. The levels of hyperphosphorylated tau, phosphatidylinositol-3-kinase (PI3K)/serine/threonine protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), protein phosphatase 1 (PP-1) and protein phosphatase 2A (PP-2A) were also tested by Western blot. RESULTS Xanthoceraside treatment significantly attenuated learning and memory impairments and reduced the level of STZ-induced hyperphosphorylated tau protein. Xanthoceraside also enhanced PP-2A and PP-1 expressions, increased PI3K (p85) and Akt (Ser473) phosphorylation and decreased GSK-3β (tyr216) phosphorylation. CONCLUSIONS Xanthoceraside has protective effect against learning and memory impairments and inhibits tau hyperphosphorylation in the hippocampus, possibly through the inhibition of the PI3K/Akt-dependent GSK-3β signalling pathway and an enhancement of phosphatases activity.
Collapse
|
32
|
Kim J, Yang M, Kim SH, Kim JC, Wang H, Shin T, Moon C. Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS One 2013; 8:e70356. [PMID: 23940567 PMCID: PMC3734066 DOI: 10.1371/journal.pone.0070356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Miyoung Yang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
- Department of Physiology and Neurosceince Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Hongbing Wang
- Department of Physiology and Neurosceince Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (TS); (CM)
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
- * E-mail: (TS); (CM)
| |
Collapse
|
33
|
Protective Effect of FTY720 Against Sevoflurane-Induced Developmental Neurotoxicity in Rats. Cell Biochem Biophys 2013; 67:591-8. [DOI: 10.1007/s12013-013-9546-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Harato M, Huang L, Kondo F, Tsunekawa K, Feng GG, Fan JH, Ishikawa N, Fujiwara Y, Okada S. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells. BMC Neurosci 2012; 13:149. [PMID: 23227925 PMCID: PMC3541351 DOI: 10.1186/1471-2202-13-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells.
Collapse
Affiliation(s)
- Misako Harato
- Department of Anesthesiology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|