1
|
Hernández-Hernández E, Petyuk VA, Valor-Blanquer J, Yáñez-Gómez F, Barr AM, De Jager PL, Chen EY, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Fuster MJ, Ramos-Miguel A. Contributions of major tau kinase activation and phospho-tau accumulation to cortical and hippocampal tangle formation and cognition in older adults. Neurobiol Dis 2025; 210:106924. [PMID: 40254098 DOI: 10.1016/j.nbd.2025.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Aberrant activation of tau kinases (tauK) has been proposed as a major step in tau hyperphosphorylation and misfolding, and subsequent formation of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). However, evidence of tauK hyperactivation in actual AD brains is scarce and inconsistent, and their role in age-related cognitive decline remains undocumented. We evaluated activated/inhibited species of CDK5/p35/p25, GSK3α/β, and ERK1/2 as well as ten tau/phospho-tau (ptau) peptides (mapping Ser202, Thr217, Ser262, Ser305, and Ser404 phospho-residues) by Western blot or selected reaction monitoring proteomics, respectively, in postmortem dorsolateral prefrontal cortex (DLPFC) and hippocampal samples of 150 participants from the Rush Memory and Aging Project (MAP). Regression models and mediation analyses assessed the contributions of these variables to tau phosphorylation, NFT deposition and antemortem cognitive status of MAP participants. Surprisingly, greater p25 and p35 (indices for CDK5 activation) and lower pSer21/9-GSK3α/β (inhibited species) immunodensities were associated with lower ptau peptide amounts. Individuals with higher p25 cortical densities displayed better cognitive outcomes, particularly working memory. Statistical mediation analyses indicated that the beneficial effect of CDK5/p25 on cognition was mediated by lower densities of phospho-Thr217-tau and NFT deposition in DLPFC, and also identified Thr217 and Ser262 as the ptau sites with greatest influence in both NFT accumulation and cognitive impairment. The present data suggest that tau hyperphosphorylation, tangle deposition, and the subsequent cognitive impairment do not rely on aberrant activation of major tauKs. Additionally, novel evidence was provided for the beneficial contribution of cortical CDK5/p25 to the maintenance of working memory.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; IUNICS, University of the Balearic Islands, Palma, Spain.
| | | | - Júlia Valor-Blanquer
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain.
| | - Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alasdair M Barr
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and The Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Er-Yun Chen
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - William G Honer
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada,.
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Leioa, Spain.
| |
Collapse
|
2
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Konsta V, Paschou M, Koti N, Vlachou ME, Livanos P, Xilouri M, Papazafiri P. Neurosteroids Alter p-ERK Levels and Tau Distribution, Restraining the Effects of High Extracellular Calcium. Int J Mol Sci 2024; 25:11637. [PMID: 39519194 PMCID: PMC11546054 DOI: 10.3390/ijms252111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Neurosteroids are undeniably regarded as neuroprotective mediators, regulating brain function by rapid non-genomic actions involving interference with microtubules. Conversely, hyperphosphorylated Tau is considered responsible for the onset of a plethora of neurodegenerative diseases, as it dissociates from microtubules, leading to their destabilization, thus impairing synaptic vesicle transport and neurotransmission. Consequently, we aimed to investigate the effects of neurosteroids, specifically allopregnanolone (Allo) and dehydroepiandrosterone (DHEA), on the levels of total and phosphorylated at Serine 404 Tau (p-Tau) in C57BL/6 mice brain slices. In total tissue extracts, we found that neurosteroids elevated both total and p-Tau levels without significantly altering the p-Tau/Tau ratio. In addition, the levels of several enzymes implicated in Tau phosphorylation did not display significant differences between conditions, suggesting that neurosteroids influence Tau distribution rather than its phosphorylation. Hence, we subsequently examined the mitochondria-enriched subcellular fraction where, again, both p-Tau and total Tau levels were increased in the presence of neurosteroids. These effects seem actin-dependent, as disrupting actin polymerization by cytochalasin B preserved Tau levels. Furthermore, co-incubation with high [Ca2+] and neurosteroids mitigated the effects of Ca2+ overload, pointing to cytoskeletal remodeling as a potential mechanism underlying neurosteroid-induced neuroprotection.
Collapse
Affiliation(s)
- Vasiliki Konsta
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.K.); (M.P.); (N.K.); (M.E.V.)
| | - Maria Paschou
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.K.); (M.P.); (N.K.); (M.E.V.)
| | - Nikoleta Koti
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.K.); (M.P.); (N.K.); (M.E.V.)
| | - Maria Evangelia Vlachou
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.K.); (M.P.); (N.K.); (M.E.V.)
| | - Pantelis Livanos
- Division of Cell Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany;
| | - Maria Xilouri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 4, Soranou Efesiou Street, 11527 Athens, Greece;
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece; (V.K.); (M.P.); (N.K.); (M.E.V.)
| |
Collapse
|
4
|
Yáñez-Gómez F, Gálvez-Melero L, Ledesma-Corvi S, Bis-Humbert C, Hernández-Hernández E, Salort G, García-Cabrerizo R, García-Fuster MJ. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats. J Neurosci Res 2024; 102:e25296. [PMID: 38361411 DOI: 10.1002/jnr.25296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - Laura Gálvez-Melero
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Glòria Salort
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
5
|
Ramos-Miguel A, Sánchez-Blázquez P, García-Sevilla JA. Effects of Gαi 2 and Gαz protein knockdown on alpha 2A-adrenergic and cannabinoid CB 1 receptor regulation of MEK-ERK and FADD pathways in mouse cerebral cortex. Pharmacol Rep 2021; 73:1122-1135. [PMID: 33641090 DOI: 10.1007/s43440-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha2A-adrenergic (α2A-AR) and cannabinoid CB1 (CB1-R) receptors exert their functions modulating multiple signaling pathways, including MEK-ERK (extracellular signal-regulated kinases) and FADD (Fas-associated protein with death domain) cascades. These molecules are relevant in finding biased agonists with fewer side effects, but the mechanisms involving their modulations by α2A-AR- and CB1-R in vivo are unclear. This study investigated the roles of Gαi2 and Gαz proteins in mediating α2A-AR- and CB1-R-induced alterations of MEK-ERK and FADD phosphorylation (p-) in mouse brain cortex. METHODS Gαi2 or Gαz protein knockdown was induced in mice with selective antisense oligodeoxinucleotides (ODNs; 3 nmol/day, 5 days) prior to UK-14,304 (UK or brimonidine; 1 mg/kg) or WIN55212-2 (WIN; 8 mg/kg) acute treatments. Inactivated (p-T286) MEK1, activated (p-S217/221) MEK1/2, activated (p-T202/Y204) ERK1/2, p-S191 FADD, and the corresponding total forms of these proteins were quantified by immunoblotting. RESULTS Increased (+ 88%) p-T286 MEK1 cortical density, with a concomitant reduction (-43%) of activated ERK was observed in UK-treated mice. Both effects were attenuated by Gαi2 or Gαz antisense ODNs. Contrastingly, WIN induced Gαi2- and Gαz-independent upregulations of p-T286 MEK1 (+ 63%), p-S217/221 MEK1/2 (+ 86%), and activated ERK (+ 111%) in brain. Pro-apoptotic FADD was downregulated (- 34 to 39%) following UK and WIN administration, whereas the neuroprotective p-S191 FADD was increased (+ 74%) in WIN-treated mice only. None of these latter effects required from Gαi2 or Gαz protein integrity. CONCLUSION The results indicate that α2A-AR (UK), but not CB1-R (WIN), agonists use Gαi2 and Gαz proteins to modulate MEK-ERK, but not FADD, pathway in mouse brain cortex.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (EHU/UPV), Barrio Sarriena s/n, ES48940, Leioa, Biscay, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
6
|
Dai S, Zhang X, Zhang P, Zheng X, Pang Q. Fentanyl inhibits acute myeloid leukemia differentiated cells and committed progenitors via opioid receptor-independent suppression of Ras and STAT5 pathways. Fundam Clin Pharmacol 2020; 35:174-183. [PMID: 32564393 DOI: 10.1111/fcp.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Fentanyl is a common sedative/analgesic used for intrathecal chemotherapy injection in children with acute leukemia. Given the contradictory findings that fentanyl has both inhibitory and stimulatory activities in cancer cells, we investigated the biological effects of fentanyl alone and its combination with standard of care in acute myeloid leukemia (AML) cells at all stages of development. We showed that fentanyl at clinically relevant concentration inhibited growth and colony formation of AML differentiated cells and committed progenitors without affecting their survival. Compared to AML cells without FLT3 mutation, cells harboring FLT3-ITD mutation are likely to be more sensitive to fentanyl. However, fentanyl did not affect the most primitive AML stem cells. Fentanyl significantly augmented the efficacy of cytarabine but not midostaurin in AML differentiated cells and committed progenitors. We further demonstrated that fentanyl inhibited AML cells via suppressing Ras/Raf/MEK/ERK and STAT5 pathway, and this was not dependent on opioid receptor system. Our findings demonstrate the anti-leukemia activity of fentanyl and synergistic effects between fentanyl and cytarabine in AML, via opioid receptor-independent suppression of Ras and STAT5 pathways. Our work is the first to suggest the beneficial effects of fentanyl in children with leukemia.
Collapse
Affiliation(s)
- Shuangbo Dai
- Department of Anesthesiology, Fujian Provincial Hospital, No. 134 Dongjie Street, Fuzhou, Fujian, 350001, China
| | - Xiaoqing Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, Putuo, 200065, China
| | - Peng Zhang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, No. 279, ZhouZhu Road, Shanghai, Pudong, 201318, China.,Shanghai General Practice Medical Education and Research Center, No. 279, ZhouZhu Road, Shanghai, Pudong, 201318, China
| | - Xuesong Zheng
- Department of Anesthesiology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Qiying Pang
- Department of Anesthesiology, Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, Putuo, 200065, China
| |
Collapse
|
7
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
8
|
Zhong Y, Chen J, Chen J, Chen Y, Li L, Xie Y. Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury. J Neurochem 2019; 151:166-184. [PMID: 31314915 DOI: 10.1111/jnc.14827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
The specific mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated neuropathic pain at the spinal cord level remain elusive. The aim of the present study was to explore the role of crosstalk between Cdk5/p35 and extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in mediating spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury (CCI). Here, we quantified pain behaviour after CCI; detected the localization of p35, Cdk5, phosphorylated ERK1/2 (pERK1/2), phosphorylated peroxisome proliferator-activated receptor γ (pPPARγ), neuronal nuclei (a neuronal marker), glial fibrillary acidic protein (GFAP, an activated astrocyte marker) and ionized calcium binding adaptor molecule 1 (a microglial marker) in the dorsal horn using immunofluorescence; measured the protein levels of Cdk5, p35, pERK1/2, pPPARγ and GFAP using western blot analysis; and gauged the enzyme activity of Cdk5/p35 kinase using a Cdk5/p35 kinase activity assay kit. Tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels were measured using enzyme-linked immunosorbent assay (ELISA). Ligation of the right sciatic nerve induced mechanical allodynia; thermal hyperalgesia; and the time-dependent upregulation of p35, pERK1/2 and GFAP and downregulation of pPPARγ. p35 colocalized with Cdk5, pERK1/2, pPPARγ, neurons and astrocytes but not microglia. Meanwhile, intrathecal injection of the Cdk5 inhibitor roscovitine, the mitogen-activated ERK kinase (MEK) inhibitor U0126 and the PPARγ agonist pioglitazone prevented or reversed behavioural allodynia, increased pPPARγ expression, inhibited astrocyte activation and alleviated proinflammatory cytokine (tumour necrosis factor-α, IL-1β, and IL-6) release from activated astrocytes. Furthermore, crosstalk between the Cdk5/p35 and ERK1/2 pathways was observed with CCI. Blockade of either Cdk5/p35 or ERK1/2 inhibited Cdk5 activity. These findings indicate that spinal crosstalk between the Cdk5/p35 and ERK1/2 pathways mediates astrocyte activity via the PPARγ pathway in CCI rats and that targeting this crosstalk could be an effective strategy to attenuate CCI and astrocyte-derived neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jialin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yanhua Chen
- Department of Anesthesiology, Cardiovascular Institute, Nanning, Guangxi, P. R. China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
9
|
Pan J, Yu J, Sun L, Xie C, Chang L, Wu J, Hawes S, Saez-Atienzar S, Zheng W, Kung J, Ding J, Le W, Chen S, Cai H. ALDH1A1 regulates postsynaptic μ-opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 2019; 9:3602. [PMID: 30837649 PMCID: PMC6401150 DOI: 10.1038/s41598-019-40326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/25/2019] [Indexed: 12/02/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson’s disease (PD). ALDH1A1–positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear. Here we show that μ–type opioid receptor (MOR1) levels were severely decreased in the dorsal striatum of postnatal and adult Aldh1a1 knockout mice, whereas dietary supplement of RA restores its expression. Furthermore, RA treatment also upregulates striatal MOR1 levels and signaling and alleviates L-DOPA–induced dyskinetic movements in pituitary homeobox 3 (Pitx3)–deficient mice that lack of ALDH1A1–expressing nDA neurons. Therefore, our findings demonstrate that ALDH1A1–synthesized RA is required for postsynaptic MOR1 expression in the postnatal and adult dorsal striatum, supporting potential therapeutic benefits of RA supplementation in moderating L-DOPA–induced dyskinesia.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jia Yu
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing, 100095, P. R. China
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Saez-Atienzar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wang Zheng
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Children's National Medical Center, Washington, D.C., USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, P. R. China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Ramos-Miguel A, Gicas K, Alamri J, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Cai F, Song W, Barr AM, Honer WG. Reduced SNAP25 Protein Fragmentation Contributes to SNARE Complex Dysregulation in Schizophrenia Postmortem Brain. Neuroscience 2018; 420:112-128. [PMID: 30579835 DOI: 10.1016/j.neuroscience.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. The presence of f-S25 is consistent with reports of calpain-mediated SNAP25 cleavage. Co-immunoprecipitation assays showed that f-S25 retains the ability to bind syntaxin-1, which might prevent VAMP and/or Munc18-1 assembly into the complex. Quantitative analyses in postmortem human orbitofrontal cortex (OFC) revealed that schizophrenia (n = 35), but not major depression (n = 15), is associated with lower amounts of f-S25 (-37%, P = 0.027), and greater SNARE protein-protein interactions (35%, P < 0.001), compared with healthy matched controls (n = 28). Enhanced SNARE complex formation was strongly correlated with lower SNAP25 fragmentation rates (R = 0.563, P < 0.001). Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Biscay, Spain
| | - Kristina Gicas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Fang Cai
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Weihong Song
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
11
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Pentobarbital and other anesthetic agents induce opposite regulations of MAP kinases p-MEK and p-ERK, and upregulate p-FADD/FADD neuroplastic index in brain during hypnotic states in mice. Neurochem Int 2018; 122:59-72. [PMID: 30423425 DOI: 10.1016/j.neuint.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023]
Abstract
Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).
Collapse
Affiliation(s)
- Glòria Salort
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Institut d'investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| |
Collapse
|
12
|
Fan Y, Chen Y, Zhang S, Huang M, Wang S, Li Y, Bai J. Morphine reverses the effects of 1-methyl-4-phenylpyridinium in PC12 cells through activating PI3K/Akt. Int J Neurosci 2018; 129:30-35. [PMID: 29936883 DOI: 10.1080/00207454.2018.1492575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM OF THE STUDY Parkinson's disease (PD) is a neurodegenerative disorder. It is caused by the degeneration of dopaminergic neurons and the dopamine (DA) deletion in the substantia nigra pars compacta (SNpc). Morphine elevates the level of dopamine in the mesolimbic dopamine system and plays a role in alleviating PD symptoms. However, the molecular mechanism is still unclear. The aim of the study is to investigate the mechanism on morphine alleviating PD symptoms. MATERIALS AND METHODS The viability of PC12 cells was measured by using MTT assay. The expressions of tyrosine hydroxylase (TH), thioredoxin-1 (Trx-1), CyclinD1 and Cyclin-dependent kinase5 (Cdk5) were detected by Western Blot. RESULTS In present study, we found that morphine increased the cell viability in PC12 cells. 1-methyl-4-phenylpyridi-nium (MPP+) reduced the cell viability and TH expression, which were reversed by morphine. MPP+ decreased the expressions of Trx-1, CyclinD1, Cdk5, which were restored by morphine. Moreover, the role of morphine in restoring the expressions of Trx-1, CyclinD1 and Cdk5 decreased by MPP+ was abolished by LY294002, phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor. CONCLUSIONS These results suggest that morphine reverses effects induced by MPP þ through activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yuan Fan
- a Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming , China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Yan Chen
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Se Zhang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Mengbing Huang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Shengdong Wang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Ye Li
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Jie Bai
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| |
Collapse
|
13
|
Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28627448 DOI: 10.1016/j.pnpbp.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism.
Collapse
|
14
|
Effects of I 2 -imidazoline receptor (IR) alkylating BU99006 in the mouse brain: Upregulation of nischarin/I 1 -IR and μ-opioid receptor proteins and modulation of associated signalling pathways. Neurochem Int 2017; 108:169-176. [DOI: 10.1016/j.neuint.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
|
15
|
Álvaro-Bartolomé M, Salort G, García-Sevilla JA. Disruption of brain MEK-ERK sequential phosphorylation and activation during midazolam-induced hypnosis in mice: Roles of GABA A receptor, MEK1 inactivation, and phosphatase MKP-3. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:84-93. [PMID: 28111292 DOI: 10.1016/j.pnpbp.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/08/2023]
Abstract
Midazolam is a positive allosteric modulator at GABAA receptor that induces a short hypnosis and neuroplasticity, in which the sequential phosphorylation of MEK1/2 and ERK1/2 was shown to play a role. This study investigated the parallel activation of p-MEK and p-ERK and regulatory mechanisms induced by midazolam through the stimulation of GABAA receptors in the mouse brain. During the time course of midazolam (60mg/kg)-induced sleep in mice (lasting for about 2h) p-Ser217/221 MEK1/2 was increased (+146% to +258%) whereas, unexpectedly, p-Tyr204/Thr202 ERK1/2 was found decreased (-16% to -38%), revealing uncoupling of MEK to ERK signals in various brain regions. Midazolam-induced p-MEK1/2 upregulation was prevented by pretreatment (30min) with flumazenil (10mg/kg), indicating the involvement of GABAA receptors. Also unexpectedly, midazolam-induced p-ERK1/2 downregulation was not prevented by flumazenil (10 or 30mg/kg). Notably, during midazolam-induced sleep the content of inactivated p-Thr286 MEK1, which can dampen ERK1/2 activation, was increased (+33% to +149%) through a mechanism sensitive to flumazenil (10mg/kg). Midazolam also increased MKP-3 (+13% to +73%) content and this upregulation was prevented by flumazenil (10mg/kg); an effect suggesting ERK inactivation because MKP-3 is the phosphatase selective for ERK1/2 dephosphorylation. The results indicate that during midazolam-induced sleep in mice there is an uncoupling of p-MEK (increased) to p-ERK (decreased) signals. p-ERK1/2 downregulation (not involving GABAA receptors) is the result of increased inactivated MEK1 and phosphatase MKP-3 (both effects involving GABAA receptors). These findings are relevant for the neurobiology and clinical use of benzodiazepines.
Collapse
Affiliation(s)
- María Álvaro-Bartolomé
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Glòria Salort
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
16
|
Pan J, Cai H. Opioid system in L-DOPA-induced dyskinesia. Transl Neurodegener 2017; 6:1. [PMID: 28105331 PMCID: PMC5240307 DOI: 10.1186/s40035-017-0071-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is a major clinical complication in the treatment of Parkinson’s disease (PD). This debilitating side effect likely reflects aberrant compensatory responses for a combination of dopaminergic neuron denervation and repeated L-DOPA administration. Abnormal endogenous opioid signal transduction pathways in basal ganglia have been well documented in LID. Opioid receptors have been targeted to alleviate the dyskinesia. However, the exact role of this altered opioid activity is remains under active investigation. In the present review, we discuss the current understanding of opioid signal transduction in the basal ganglia and how the malfunction of opioid signaling contributes to the pathophysiology of LID. Further study of the opioid system in LID may lead to new therapeutic targets and improved treatment of PD patients.
Collapse
Affiliation(s)
- Jing Pan
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|
17
|
Cyclin-dependent kinase 5 activity is required for allogeneic T-cell responses after hematopoietic cell transplantation in mice. Blood 2016; 129:246-256. [PMID: 28064242 DOI: 10.1182/blood-2016-05-702738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/16/2016] [Indexed: 01/14/2023] Open
Abstract
Molecular intermediates in T-cell activation pathways are crucial targets for the therapy and prevention of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (allo-HCT). We recently identified an essential role for cyclin-dependent kinase 5 (Cdk5) in T-cell activation and effector function, but the contribution of Cdk5 activity to the development of GVHD has not been explored. Using an established, preclinical, murine, GVHD model, we reveal that Cdk5 activity is increased in key target organs early after allo-HCT. We then generated chimeric mice (Cdk5+/+C or Cdk5-/-C) using hematopoietic progenitors from either embryonic day 16.5 Cdk5+/+ or Cdk5-/- embryos to enable analyses of the role of Cdk5 in GVHD, as germ line Cdk5 gene deletion is embryonically lethal. The immunophenotype of adult Cdk5-/-C mice is identical to control Cdk5+/+C mice. However, transplantation of donor Cdk5-/-C bone marrow and T cells dramatically reduced the severity of systemic and target organ GVHD. This phenotype is attributed to decreased T-cell migration to secondary lymphoid organs (SLOs), reduced in vivo proliferation within these organs, and fewer cytokine-producing donor T cells during GVHD development. Moreover, these defects in Cdk5-/- T-cell function are associated with altered CCR7 signaling following ligation by CCL19, a receptor:ligand interaction critical for T-cell migration into SLOs. Although Cdk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of Cdk5 preserved leukemia-free survival. Collectively, our data implicate Cdk5 in allogeneic T-cell responses after HCT and as an important new target for therapeutic intervention.
Collapse
|
18
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
19
|
Beaudry H, Mercier-Blais AA, Delaygue C, Lavoie C, Parent JL, Neugebauer W, Gendron L. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5. Br J Pharmacol 2015; 172:2573-87. [PMID: 25598508 PMCID: PMC4409908 DOI: 10.1111/bph.13088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process.
Collapse
Affiliation(s)
- H Beaudry
- Département de Physiologie et Biophysique, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Xia P, Pan S, Cheng J, Yang M, Qi Z, Hou T, Yang X. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord. Neural Regen Res 2014; 9:1688-95. [PMID: 25374590 PMCID: PMC4211189 DOI: 10.4103/1673-5374.141804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.
Collapse
Affiliation(s)
- Peng Xia
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Su Pan
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Jieping Cheng
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Maoguang Yang
- Department of Endocrinology, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Zhiping Qi
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Tingting Hou
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Yang
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Kobori T, Fujiwara S, Miyagi K, Harada S, Nakamoto K, Nakagawa T, Takahashi H, Narita M, Tokuyama S. Involvement of moesin in the development of morphine analgesic tolerance through P-glycoprotein at the blood-brain barrier. Drug Metab Pharmacokinet 2014; 29:482-9. [PMID: 25048710 DOI: 10.2133/dmpk.dmpk-14-rg-042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Altered expression of P-glycoprotein (P-gp), a drug efflux transporter expressed by brain capillary endothelial cells (BCECs), may contribute to the development of opioid analgesic tolerance, as demonstrated by cumulative evidence from research. However, the detailed mechanism by which chronic morphine treatment increases P-gp expression remains unexplained. Ezrin/radixin/moesin (ERM) are scaffold proteins that are known to regulate the plasma membrane localization of some drug transporters such as P-gp in peripheral tissues, although a few reports suggest its role in the central nervous system as well. In this study, we investigated the involvement of ERM in the development of morphine analgesic tolerance through altered P-gp expression in BCECs. Repeated treatment with morphine (10 mg/kg/day, s.c. for 5 days) decreased its analgesic effect in the tail-flick test and increased P-gp protein expression in BCECs, as determined by Western blotting. Furthermore, moesin protein expression increased in the same fraction whereas that of ezrin decreased; no change was observed in the radixin expression. Furthermore, immunoprecipitation and immunofluorescence assays revealed interaction between moesin and P-gp molecules, along with co-localization, in BCECs. In conclusion, an increase in moesin expression may contribute to the increased expression of P-gp in BCECs, leading to the development of morphine analgesic tolerance.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan; Department of Pharmacology, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Zhang H, Shao H, Xue Q, Yu B. ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity. PLoS One 2014; 9:e87788. [PMID: 24498195 PMCID: PMC3909239 DOI: 10.1371/journal.pone.0087788] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 is a proline-directed serine/threonine kinase and its activity participates in the regulation of nociceptive signaling. Like binding with the activators (P35 or P25), the phosphorylation of Cdk5 plays a critical role in Cdk5 activation. However, it is still unclear whether Cdk5 phosphorylation (p-Cdk5) contributes to pain hyperalgesia. The aim of our current study was to identify the roles of p-Cdk5 and its upstream regulator in response to peripheral inflammation. Complete Freund's adjuvant (CFA) injection induced acute peripheral inflammation and heat hyperalgesia, which was accompanied by sustained increases in phospho-ERK1/2 (p-ERK1/2) and phospho-Cdk5S159 (p-Cdk5S159) in the spinal cord dorsal horn (SCDH). CFA-induced p-ERK primarily colocalized with p-Cdk5S159 in superficial dorsal horn neurons. Levels in p-ERK and p-Cdk5 were also increased in the 2nd phase of hyperalgesia induced by formalin injection, which can produce acute and tonic inflammatory pain. MAP kinase kinase inhibitor U0126 intrathecal delivery significantly suppressed the elevation of p-Cdk5S159, Cdk5 activity and pain response behavior (Heat hyperalgesia, Spontaneous flinches) induced by CFA or formalin injection. Cdk5 inhibitor roscovitine intrathecal administration also suppressed CFA-induced heat hyperalgesia and Cdk5 phosphorylation, but did not attenuate ERK activation. All these findings suggested that p-Cdk5S159 regulated by ERK pathway activity may be a critical mechanism involved in the activation of Cdk5 in nociceptive spinal neurons contributes to peripheral inflammatory pain hypersensitivity.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Anesthesia, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Honghai Zhang
- Department of Anesthesia, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Department of Anesthesia, Hangzhou First People's Hospital, Nanjing Medical University, Zhejiang, P.R. China
| | - Haijun Shao
- Department of Anesthesia, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qingsheng Xue
- Department of Anesthesia, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Buwei Yu
- Department of Anesthesia, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
23
|
CDK5-induced p-PPARγ(Ser 112) downregulates GFAP via PPREs in developing rat brain: effect of metal mixture and troglitazone in astrocytes. Cell Death Dis 2014; 5:e1033. [PMID: 24481447 PMCID: PMC4040704 DOI: 10.1038/cddis.2013.514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), a group of ligand-activated transcriptional factors, is expressed in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Here, we investigated the role of PPARγ in regulating GFAP using a mixture of As, Cd and Pb (metal mixture, MM) that induces apoptosis and aberrant morphology in rat brain astrocytes. We observed a phospho PPARγ (serine 112 (S112)) (p-PPARγ (S112))-mediated downregulation of GFAP in the MM-exposed astrocytes. We validated this using pure PPARγ agonist, troglitazone (TZ). As reported with MM, TZ induced astrocyte damage owing to reduced GFAP. In silico analysis in the non-coding region of GFAP gene revealed two PPARγ response elements (PPREs); inverted repeat 10 and direct repeat 1 sequences. Gel shift and chromatin immunoprecipitation assays demonstrated enhancement in binding of p-PPARγ (S112) to the sequences, and luciferase reporter assay revealed strong repression of GFAP via PPREs, in response to both MM and TZ. This indicated that suppression in GFAP indeed occurs through direct regulation of these elements by p-PPARγ (S112). Signaling studies proved that MM, as well as TZ, activated the cyclin-dependent kinase 5 (CDK5) and enhanced its interaction with PPARγ resulting into increased p-PPARγ (S112). The p-CDK5 levels were dependent on proximal activation of extracellular signal-regulated protein kinase 1/2 and downstream Jun N-terminal kinase. Taken together, these results are the first to delineate downregulation of GFAP through genomic and non-genomic signaling of PPARγ. It also brings forth a resemblance of TZ with MM in terms of astrocyte disarray in developing brain.
Collapse
|
24
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|